
Datadriven Visual Graph Query Interface Construction
and Maintenance: Challenges and Opportunities

Sourav S Bhowmick
School of Computer Science

and Engineering
Nanyang Technological

University
Singapore

assourav@ntu.edu.sg

Byron Choi
Department of Computer

Science
Hong Kong Baptist University

Hong Kong

bchoi@comp.hkbu.edu.hk

Curtis Dyreson
Department of Computer

Science
Utah State University

USA

curtis.dyreson@usu.edu

ABSTRACT

Visual query interfaces make it easy for scientists and other non-

expert users to query a data collection. Heretofore, visual query

interfaces have been statically-constructed, independent of the data.

In this paper we outline a vision of a different kind of interface, one

that is built (in part) from the data. In our data-driven approach,

the visual interface is dynamically constructed and maintained. A

data-driven approach has many benefits such as reducing the cost

in constructing and maintaining an interface, superior support for

query formulation, and increased portability of the interface. We

focus on graph databases, but our approach is applicable to several

other kinds of databases such as JSON and XML.

1. INTRODUCTION
Graphs are a natural way of modeling data in a wide variety

of domains and have been extensively studied in mathematics and

many areas of computer science. Graph data in real-world applica-

tions such as biological and chemical databases (e.g., PubChem),

social networks (e.g., Twitter), co-purchase networks (e.g., Ama-

zon.com), and information networks (e.g., DBpedia) has lead to

a rejuvenation of research on graph data management and analyt-

ics. Several novel graph data management platforms have emerged

from academia, industrial research labs (e.g., Trinity), and startup

companies (e.g., GraphX). Several database query languages have

been proposed for textually querying graph databases, e.g., SPARQL,

Cypher1, and GraphQL [17]. Creating queries in these languages

often demands considerable cognitive effort from users and requires

“programming” skill that is at least comparable to SQL [2]. A

user must be familiar with the syntax of the language, and must be

able to express her needs accurately in a syntactically correct form.

However, in many real life domains (e.g., life sciences, social sci-

ence, chemical science) it is unrealistic to assume that end users are

proficient in such query languages. For example, chemists cannot

be expected to learn the complex syntax of a graph query language

1
http://neo4j.com/docs/stable/cypher-query-lang.html

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 21508097/16/08.

1

Panel 2

Panel 3

Panel 4

Figure 1: GUI for substructure search in PubChem.

in order to formulate meaningful substructure queries over a chem-

ical compound database such as PubChem2 or eMolecule3.

A popular approach to make query formulation user-friendly is

to provide a visual query interface (a.k.a GUI) for interactively con-

structing queries. A GUI for graph query formulation is usually

composed of several panels, such as a panel to display the set of

labels or attributes of nodes or edges of the underlying data graphs,

a panel to construct a graph query graphically, a panel containing

canned patterns to expedite query formulation, and a results panel

to view query results. Intuitively, a canned pattern is a small topo-

logical pattern (e.g., a benzene ring) which users can drag-and-drop

into a query. For example, Figure 1 depicts the screenshot of a vi-

sual interface provided by PubChem for substructure or subgraph

search on chemical compounds. Specifically, Panel 3 provides a

list of chemical symbols that a user can choose from to assign la-

bels to nodes of a graph query. Panel 2 lists a set of canned patterns

which a user may drag-and-drop in Panel 4 during visual query

construction. Note that the availability of canned patterns greatly

improves the usability of the interface by enabling users to quickly

construct a graph query with fewer clicks than when constructed in

an “edge-at-a-time” mode. For instance, the query in Panel 4 can

be constructed from two such canned patterns in Panel 2 instead of

taking the tedious route of constructing nine edges iteratively. Par-

ticularly, Panel 2 is useful if (a) there exists a sufficiently diverse

collection of canned patterns in Panel 2 that can aid a user to for-

mulate most (if not all) of her queries; and (b) a user can quickly

absorb and find relevant patterns from the collection.

2
http://pubchem.ncbi.nlm.nih.gov/

3
https://www.emolecules.com/

984

1.1 Dataunaware Visual Query Interfaces
Visual query interfaces utilize the results of decades of research

by the HCI community related to various theoretical models of vi-

sual tasks, menu design, and human factors. Unfortunately, de-

spite the significant progress this community has made towards

constructing user-friendly visual interfaces, three key drawbacks

hinder progress.

1. Lack of diverse content. First, the content of various com-

ponents (e.g., Panels 2 and 3) are created manually by “hard

coding” them during GUI implementation. Consequently,

the set of canned patterns is limited to those selected in ad-

vance by a domain expert, e.g., the patterns in Panel 2 are

manually selected and added to the GUI. A user may find the

pre-selected patterns in Panel 2 useless in formulating some

queries. Similar problem also arise in Panel 3 where the la-

bels of nodes are manually added instead of automatically

generated from the underlying data.

2. Static content. Second, the visual interface is static. That

is, the content of Panels 2 and 3 remains static even when

the underlying data evolves. As a result, some patterns (resp.

labels) in Panel 2 (resp. Panel 3) may become obsolete as

graphs containing such patterns (resp. labels) may no longer

exist. Similarly, some new patterns (resp. labels), which are

not in Panel 2 (resp. Panel 3), may emerge due to the addition

of new data graphs or new nodes in existing graphs.

3. Lack of portability. Third, classical query interfaces lack

portability as a GUI cannot be seamlessly integrated with

another graph repository in a different domain (e.g., protein

structure, social networks). As the contents of Panels 2 and 3

are domain-dependent and manually created, the GUI needs

to be reconstructed when the domain changes in order to ac-

commodate new domain-specific patterns and labels.

1.2 Our Vision
The common theme that runs through the limitations mentioned

above is that visual query interface construction and maintenance

should be dynamic and data-driven rather than pre-selected or

manually constructed. In this paper, we articulate a vision shaped

by two fundamental questions.

1. How can we automatically generate and maintain the con-

tents of relevant panels in a visual query interface?

2. Can data-driven visual query interfaces enhance usability and

portability across graph repositories?

Specifically, our vision calls for a generic data-driven approach

to address the aforementioned limitations associated with the con-

struction and maintenance of traditional data-unaware visual graph

query interfaces. A data-driven paradigm has several benefits such

as superior support for visual subgraph query construction, signif-

icant reduction in the manual cost of maintaining an interface for

any graph-based application, and portability of the interface across

the diverse variety of graph querying applications. To the best of

our knowledge, prior to our recent publication [43], we are not

aware of any systematic endeavor of making visual query interface

construction and maintenance data-driven.

1.3 Paper Organization
The rest of the paper is organized as follows. In Section 2, we

describe the generic structure of a visual graph query interface.

Section 3 introduces the architecture of a data-driven visual graph

1

Panel 4Panel 2
Panel 3

Panel 5

Panel 1

Figure 2: GUI for graph query formulation.

query interface construction and maintenance system and key novel

research challenges that need to be addressed in order to realize it.

Section 4 briefly presents the related research and highlights the

novelty of our vision. We briefly report our initial effort to realize

this vision in Section 5. The last section concludes this paper.

2. STRUCTURE OF A QUERY GUI
Many visual interfaces for graph query construction [9,19,20,40]

are comprised of at least four key panels.

1. An Attribute Panel to display the set of labels or attributes of

nodes or edges of the underlying data. For simplicity, we as-

sume that this panel consists of a set of node or edge labels4.

2. A Pattern Panel to display the set of canned patterns that can

aid query formulation.

3. A Query Panel for constructing a graph query graphically by

adding a node or canned pattern iteratively.

4. A Results Panel that displays the query results.

Figure 2 depicts a screen dump of such a visual interface for

querying a set of data graphs (chemical compounds). A typical

query would be constructed using the interface by performing the

following sequence of steps.

1. Move the mouse cursor to the Attribute or Pattern Panel.

2. Scan and select a label or pattern (e.g., label C, benzene ring

pattern).

3. Drag the selected item to the Query Panel and drop it. Each

such action represents formulation of a single node or a sub-

graph in the query graph.

4. Repeat, if necessary, Steps 1–3 for constructing another node

or subgraph.

5. Construct edges (if necessary) between relevant nodes in the

constructed subgraphs by clicking on them.

6. Repeat Steps 4 and 5 until the complete query graph is for-

mulated.

4
Attributes associated with nodes or edges of multi-attribute graphs can be easily

added in the panel.

985

Figure 3: Framework of data-driven visual graph query inter-

face construction and maintenance.

Observe that the contents of a Query Panel and a Results Panel

are very much dependent on a user and a specific query, respec-

tively. In contrast, the contents of the Attribute and Pattern Panels

depend on the data. Hence, data-driven construction and mainte-

nance of a visual graph query interface must focus on constructing

and maintaining the contents of Attribute and Pattern Panels auto-

matically from the underlying data.

Additional Panel. Although the aforementioned panels are preva-

lent in many real-world visual graph query interfaces, some recent

interfaces provide an additional Suggestion Panel to support intel-

ligent suggestions and feedbacks during graph query formulation.

For example, viiq [18] automatically suggests top-k new edges rele-

vant to a user-specified partial query graph on the Query Panel and

displays label suggestions for newly added nodes and edges in a

Suggestion Panel.

3. NOVEL RESEARCH CHALLENGES
Figure 3 depicts the framework of a system for realizing our

proposed vision. At the bottom of the figure, graph data is the

foundation used to construct and maintain a visual interface, and

influences the layout in the interface. At the top of the figure, ap-

plications (users) interact with the developed interface. In this sec-

tion, we discuss in detail the novel research challenges associated

with realizing this framework. We first discuss these challenges

by assuming that the underlying graph repository contains a large

collection of small or medium-sized graphs (Sections 3.1 and 3.2).

Then, in Section 3.3 we reconsider these challenges in the context

of massive networks (e.g., social network). Note that it is impor-

tant to distinguish between these two types of graph-structured data

that are prevalent in many real-world applications as several re-

cent studies have shown that data management and analytics tech-

niques designed for one cannot be directly adopted to handle the

other [15]. Unless specified otherwise, we assume that query logs

are not available5.

5
This assumption is reasonable; otherwise we have to defer realization of our

paradigm until the query log is sufficiently large. Furthermore, such log-based tech-

niques are not effective in handling ad hoc query formulation.

F O

C S

F O

Figure 4: An infrequent canned pattern.

3.1 Datadriven GUI Construction
As remarked earlier, traditionally, data is not used to construct or

maintain a visual graph query interface. This limits the usability of

an interface and also curtails the portability of the interface since it

needs to be manually reconstructed or modified to facilitate visual

querying in a new domain. We propose a data-driven strategy to

overcome the limitations of the classical approach. Our goal is to

generate the contents of the Attribute and Pattern Panels automati-

cally. Note that the content of the Suggestion Panel is only relevant

when a query is being formulated and not during GUI construction.

While the set of labels or attributes of nodes or edges of the data

graphs (displayed on the Attribute Panel) can be easily generated by

traversing them, automatically generating the set of canned patterns

(for Pattern Panel) is computationally challenging. These patterns

should not only maximally cover the underlying graph data but

should also minimize topological similarity (redundancy) among

the patterns so that a diverse set of canned patterns is available to

the end users for query formulation. Note that there can be a pro-

hibitively large number of such patterns. Hence, the size of the

pattern set should not be too large due to limited display space on

the GUI as well as the inability of users to absorb too many patterns

during query formulation.

As some of the canned patterns may be frequent in the under-

lying data, at first glance it may seem that they can be generated

using any frequent subgraph mining algorithm [39]. For example,

both GUIs in Figures 1 and 2 contain the benzene ring as one of

the canned pattern since many chemical compounds contain the

ring. However, this is not the case as it is not necessary for all

canned patterns to be frequent. It is indeed possible that some pat-

terns are frequently used by end users to formulate visual queries

but are infrequent in the collection. For example, although the pat-

tern in Figure 4 is an infrequent subgraph in Pubchem, it can be

useful in formulating queries to retrieve different types of (fluoro-

sulfonyl) acetic acid compounds having antiviral properties. Notice

that this pattern does not appear in the GUI in Figure 1. Further-

more, a frequent subgraph mining technique may generate a pro-

hibitively large number of patterns, which may be too large for the

limited display space of the GUI and also may not necessarily min-

imize redundancy as well as maximally cover the underlying graph

data. Graph summarization techniques [21, 22, 37], which focus

on grouping nodes at different resolutions in a large network, can-

not be adopted here as these techniques do not focus on generating

a concise canned pattern set by maximizing coverage while mini-

mizing redundancy under a GUI constraint. In summary, a novel

strategy is necessary to address the problem of data-driven GUI

construction.

Given a large collection of data graphs, a data-driven strategy for

constructing the contents of the Pattern Panel can be as follows.

First, we partition the set of graphs into a set of clusters where the

topological similarity among the graphs in a cluster is high, and the

similarity is low for graphs in other clusters. Since computing such

similarity for all pairs of data graphs can be prohibitively expen-

986

sive [35], it is paramount to discover certain topological feature-

based similarity bounds of the data graph pairs (wherever possi-

ble) to allocate them in the correct cluster without computing the

similarity scores. However, if the search of effective similarity

bounds becomes impractical, then a sampling-based technique may

be leveraged to identify a set of representative data graphs (which

is significantly smaller than the entire collection) and subsequently

cluster these representative graphs instead.

Next, the data graphs in each cluster can be merged into a single

graph called a closure graph based on their topological similari-

ties. Intuitively, a closure graph “summarizes” the content of each

cluster. The intuition behind this step is that each cluster represents

topologically similar data graphs, so it is sufficient to generate a

concise and accurate closure graph to represent the cluster in con-

trast to attempting to finding such closure graphs directly from the

underlying repository. Lastly, a collection of canned patterns to

be displayed in the GUI can be extracted by traversing these clo-

sure graphs. Note that the set of candidate canned patterns that

maximally cover these closure graphs may be too large to fit in the

limited space of the GUI. Hence, it is important to explore effective

strategies to select a subset of these patterns by minimizing redun-

dancy and maximizing coverage of the patterns for a given GUI

constraint6 . The selected patterns also need to ensure superior GUI

aesthetics (elaborated in Section 3.4).

Our strategy for data-driven construction of canned patterns can

also take advantage of in-memory systems [44]. Observe that each

cluster can be processed in parallel for closure graph generation

as well as canned patterns extraction. Hence, it is interesting to

explore how data-level parallelism and shared-memory scale-up

parallelism of in-memory systems can be exploited to enhance the

performance of the data-driven GUI construction. Specifically, the

aforementioned approach needs to be redesigned in the context of

the availability of SIMD, bit-parallel algorithms, and on-chip hard-

ware accelerators such as GPUs and FPGAs.

It is worth noting that in practice the construction of a GUI is car-

ried out prior to querying the underlying graph repository. Hence,

it is realistic to assume that query logs and usage patterns of users

are unavailable to facilitate canned pattern generation.

3.2 Datadriven GUI Maintenance
The preceding subsection focuses on extracting contents of the

Attribute and Pattern Panels from a specific snapshot of the un-

derlying graph data. However, real-world graphs are dynamic in

nature. A recent study [45] described approximately 4,000 new

structures were added daily to the SCI finder database7 . In the

presence of rapidly-growing or changing data, the contents of the

Attribute and Pattern Panels can grow stale quickly. But running

the data-driven visual query interface construction technique fre-

quently would be expensive. So it is important to develop an effi-

cient, incremental approach that can dynamically update the con-

tents of these two panels as the underlying database evolves.

There have been several studies on mining evolution of graph-

structured data [4]. Yuan et al. [41, 42] proposed an incremental

technique to update the indexed graph features for subgraph search

in response to database updates. None of these efforts focus on

updating “summary” patterns in an evolving graph repository. Re-

cent efforts on graph summarization [21, 22, 37] do not focus on

updating them with changes to the underlying data.

6
The GUI constraint can be expressed as follows: the GUI can only display canned

patterns having size ranging from k1 to k2 (e.g., 2 to 8) and the maximum number of

patterns is M for each size.
7
www.cas.org/products/scifinder.

Given a set of existing canned patterns and labels, and a set of

updated data graphs, the goal here is to incrementally maintain the

labels and canned patterns. To this end, a key challenge is to main-

tain the clusters so that updated closure graphs, labels, and canned

patterns can be generated. One possible strategy is to exploit the

closure graphs instead of individual data graphs to determine the

cluster membership of an updated or new data graph. This is more

efficient since the number of closure graphs is typically signifi-

cantly smaller than the number of data graphs. Specifically, for

a new data graph, an existing closure graph that “best” matches the

new graph needs to be identified. If there does not exist any such

closure graph, then the new graph can be assigned to a new clus-

ter and a new closure graph is computed. Otherwise, it is assigned

to the best matching cluster and the corresponding closure graph

needs to be updated. It is important to explore upper and lower

bounds for the matching function to prune matching with irrelevant

closure graphs. If an existing data graph is deleted or modified then

the corresponding cluster and its closure graph is updated accord-

ingly.

Once the closure graphs are updated, the Attribute Panel can be

updated in a straightforward manner by scanning the updated clo-

sure graphs to identify new labels or remove obsolete labels. The

canned patterns can be maintained by traversing these updated clo-

sure graphs to seek patterns that can be added to or removed from

the Pattern Panel. This requires optimization of an objective func-

tion that determines whether after addition of a new pattern or re-

moval of an existing pattern, there is gain in coverage and reduction

in redundancy in the canned pattern set. Once again it is important

to explore the upper and lower bounds of the objective function to

filter irrelevant candidate patterns.

Observe that a key challenge to overcome is that the proposed

solution must efficiently update the Attribute and Pattern Panels in

real time as such updates may be performed frequently depending

on the evolutionary characteristics of the underlying graph repos-

itory. Although label updates can be efficiently handled, updating

canned patterns can be challenging due to the complexity of the

problem especially when the updates are large and occur frequently.

Similar to the data-driven GUI construction, one way to address

this challenge is to design algorithms that can leverage data-level

parallelism and scale-up parallelism of in-memory systems [44]. If

updates are so frequent that real-time update is still too expensive,

it is possible to batch the updates and perform them periodically

at fixed intervals. Note that the challenge here is to identify the

“best” periodicity, which is application and workload dependent.

Specifically, machine learning-based techniques can be explored

to mine the temporal history of updates of the underlying reposi-

tory to predict the “best” interval for canned pattern maintenance.

Since real-world graph data sources may be frequently updated,

such information can be used as the ground truth for training the

algorithms.

When sufficiently large query logs are available the aforemen-

tioned maintenance techniques can be extended to incorporate them.

For instance, if a certain pattern rarely appears in past queries then

it may be given lower priority to appear in the Pattern Panel. Sim-

ilarly, if certain data graphs are rarely retrieved by user queries,

then canned patterns affected by changes to these data graphs can

be lazily maintained by deferring their maintenance. Two key chal-

lenges here are to devise efficient data structures to represent a large

collection of graph query logs in a compressed form by identifying

common subgraphs and to create a judicious, efficient canned pat-

tern maintenance strategy that integrates these query logs and clo-

sure graphs to produce a superior set of canned patterns for a given

GUI constraint.

987

3.3 Datadriven GUIs for Massive Graphs
The aforementioned research challenges are targeted for a sin-

gle machine-based graph repository containing a large collection of

small or medium-sized graphs. As remarked earlier, several real-

world graphs (e.g., social networks, Web graph, road networks) do

not fall into this category of graphs as they are typically modelled

as massive networks containing millions or billions of nodes and

edges. Processing such massive graphs in a distributed comput-

ing environment (instead of a single-machine system) often yields

better performance [23]. Consequently, the single machine-based

solutions devised to address the preceding aims cannot be directly

used for data-driven construction and maintenance of visual inter-

faces on such networks.

There have been efforts to build distributed graph computing sys-

tems for data processing and analytics applications [1, 23, 26, 28].

These systems are built on top of a shared-nothing architecture and

have typically focused on PageRank computation [28], comput-

ing connected components [32], subgraph search [13, 27, 36], and

data mining [24]. None of these efforts focus on data-driven visual

query interface construction or maintenance.

A possible approach to address this problem is to use an appro-

priate distributed graph computing framework (e.g., Pregel [28],

Giraph [1]) to evenly partition the vertex or edge set of the massive

network into M machines. A keen reader may observe that a single

partitioning technique may not always be the “best” choice for all

applications. For instance, vertex partitioning may be a good choice

for uniform-degree graphs (e.g., road networks) but may lead to

computation and communication imbalance for power-law graphs

(e.g., social networks) [23]. In fact, for the latter case edge parti-

tioning is a better choice [23]. Hence, given a massive graph for a

specific application, we first analyze its topology, and subsequently

use the topology to select the partitioning framework.

After partitioning, each machine in our framework contains a

large subnetwork of the original massive network. The subnetwork

residing on each machine can be further partitioned into a set of

subgraphs, which can easily be done in parallel over M machines.

Observe that a partition on a machine is similar to a data graph

representing a small or medium-sized graph. Hence, conceptually

each machine now contains a set of small or medium-sized graphs.

Since each machine now contains a set of “data graphs”, we can

adopt the cluster and label generation strategies discussed in Sec-

tion 3.1 to generate the clusters and labels on each machine. Note

that this step is independent for each machine. Hence, it can be

done in parallel. Particularly, three levels of parallelism [44] can be

exploited to construct the canned patterns of a GUI.

The labels, on the other hand, are first generated in each ma-

chine and then merged using message passing to create a distinct

list of labels. Next, the data graphs in each cluster in each machine

can be combined into a closure graph by adopting the strategy dis-

cussed earlier. Hence, each machine now contains a set of closure

graphs. Note that due to the distributed nature of the problem, a

closure graph may occur in multiple machines. Consequently, it is

important to devise an efficient strategy to merge the closure graph

collection in multiple machines by removing identical graphs. This

requires exploration of a message passing-based solution that min-

imizes the number of messages sent over the network yet achieves

the desired goal. Lastly, given the GUI constraint, the canned pat-

terns needs to be generated in parallel from the closure graphs re-

siding in each machine. Similar to the above step, a canned pattern

may be generated in different machines as it may occur in multiple

closure graphs residing in different machines. Hence, a message

passing-based solution is required so that a pattern is only extracted

once.

The strategy for maintaining labels and canned patterns when the

data changes also needs to be designed by leveraging the distributed

nature of the data. Given a set of machines that contains the mod-

ified subnetworks, the set of clusters affected by the updates needs

to be identified and the update strategies for corresponding clusters

and closure graphs as highlighted in the preceding subsection need

to be extended to handle this challenge. Note that, similar to the

above step, we need to ensure that the resultant collection of clo-

sure graphs in multiple machines is distinct as a modification may

lead to the generation of identical closure graphs. The labels and

canned patterns can be updated accordingly by leveraging the up-

date strategy in Section 3.2 while ensuring distinct sets of labels

and patterns are generated using message passing.

One of the key challenges for the above strategy is that the mes-

sage passing-based techniques need to effectively remove unneces-

sary canned patterns or closure graphs without adding significant

cost due to messages exchanged. A potentially viable alternative

may be to use a master machine for serial computation. Specifi-

cally, the closure graphs from all machines are sent to the master,

which then aggregates these graphs by removing duplicates and

sent them back to the workers. Similarly, the canned patterns or

labels from each machine are sent to the master, which then selects

the final list of patterns/labels based on the GUI constraint.

3.4 Datadriven Visual Layout Design

Task complexity-aware visual layout design. Given the set of

labels and canned patterns to be displayed on the GUI, their judi-

cious layout will facilitate fast and easy visual query formulation.

It is well-known in the HCI community that how items are laid out

impacts the item selection time [10, 11]. For instance, in Figure 1

the labels and patterns are laid out in a matrix format whereas in

Figure 2 the labels are arranged as a list of items and the patterns

are grouped by size and laid out in tabbed panels. The former lay-

out scheme is useful when there are only a small number of labels

and patterns while the latter is suitable for displaying larger collec-

tions of items. Recall that a limited choice of labels or patterns may

adversely impact visual query formulation time and make these

panels less useful. Hence, here we seek to answer the following

question: Given a graph repository, what is the “optimal” layout

scheme for the labels and patterns that can greatly facilitate fast

and easy formulation of visual queries? Note that the layout de-

sign of the current generation of GUIs for graph querying is not

data-driven and is based either on arbitrary choices or some simple

HCI or aesthetic rules.

Any effective solution to the aforementioned question needs to

consider the following two key factors, (a) availability of canned

patterns and labels on the GUI; and (b) search time to find relevant

patterns and labels during query formulation. For example, too few

canned patterns would decrease the usability of the GUI in Fig-

ure 1. Our data-driven strategies discussed in Sections 3.1 to 3.3

can greatly alleviate this issue. The second factor, i.e., search time,

is critical, a user who spends too much time searching for patterns

or labels during query formulation will be deterred from using the

GUI. If a user has extensive knowledge of the GUI, either through

prior experience or because the items (patterns or labels) are or-

ganized “optimally,” then she will be able to find her target item

rapidly. On other hand, if the user is unfamiliar with the items (e.g.,

the items are randomly organized or its organization is unknown),

then she has to visually inspect each item in the panels to find the

desired item, which increases task completion time. For example,

in order to search for a pattern in Figure 2, a novice user needs to

click on the size-specific tab and then visually search each pattern

988

in the list to choose the desired one. On the other hand, in Figure 1

she can find the target pattern relatively quickly.

We envisage that a data-driven approach to designing the lay-

out of these items can greatly reduce the search time. Rather than

organizing the patterns by their size, it may be more effective to

display separately patterns that are most likely to be used for for-

mulating queries by a wide variety of users. For instance, if the

family of benzene rings (e.g., chlorobenzene) frequently appear in

queries then it makes sense to have them readily available to the

users. Hence, the technical challenge here is to devise efficient

query-log-oblivious strategies to find patterns that are most likely

to appear in queries from the collection of canned patterns. This

requires analysis of the closure graphs to identify patterns that are

topologically diverse but appear frequently in different locations of

the data. In the case of availability of query logs or user access

patterns (of canned patterns), the strategy can be further refined

by mining these data to identify canned patterns that have been ac-

cessed together in the past in order to formulate a variety of queries.

On the other hand, instead of organizing the labels randomly (e.g.,

Figure 2), they can be first sorted based on their labels and then

based on their frequency of occurrence in the data. This will help

a user to move rapidly to a target region and then visually search

frequently appearing labels first in the Attribute Panel.

Additionally, it is worth exploring techniques to improve the

search time by dynamically adapting these panels during query

formulation. Given a visual fragment of a query Q currently for-

mulated by a user, certain items can be disabled (by making them

transparent or gray) in real time if they are not going to be con-

structed in the subsequent steps in order to return a non-empty re-

sult set for Q. For instance, if a user has drawn a C node then we can

disable the Pa item in the Attribute Panel as the latter is not in the

local neighborhood of C in the underlying data. Similarly, certain

patterns can be disabled based on their “distance” from the current

query fragment matches in the underlying data. Note that since the

closure graphs preserve the topological connectivity between nodes

and patterns, they can be efficiently leveraged to achieve such dy-

namically adaptive layout of items. Observe that disabling patterns

or labels allows a user to skip these items rapidly and move to a

target region, thereby reducing the search time in subsequent steps.

Another alternative strategy towards reducing the query formula-

tion task complexity is to automatically identify top-k canned pat-

terns in the Pattern Panel that a user is most likely to use in the

subsequent step during query formulation and display them in the

Suggestion Panel (Recall from Section 2) for easy access. Observe

that availability of such suggested patterns eliminates the search

time required to seek for these patterns in the Pattern Panel during

query formulation. As above, given a partially formulated query

and the canned pattern set, the closure graphs can be analyzed to

provide such suggestions. Furthermore, if query logs or history of

user access patterns are available, the suggestion generation strat-

egy can further exploit these data to populate the Suggestion Panel.

For instance, if we know that two canned patterns are frequently

accessed together during query formulation by analyzing user ac-

cess patterns, then whenever a user selects one of them, the other

can be given higher priority in the top-k suggestion list in the Sug-

gestion Panel. The recent query log-driven effort in [18], which

suggests edge increments to the current query graph, is a step in

this direction. However, since it provides only edge suggestions,

the query formulation process may take many steps and users can

only choose limited structural information in comparison to canned

patterns.

Aesthetics-aware visual layout design. The aforementioned is-

sues of data-driven visual layout design only aim to reduce the

complexity of query formulation task. An issue of equal impor-

tance to an end user is the aesthetics of the layout. People prefer

attractive interfaces and the effect of aesthetics in GUI appreciation

is significant [12]. Existing approaches to make a GUI stand out

is to work out all of the details of visual design manually. That is,

the layout of a visual query interface is not automatically generated

by considering various GUI aesthetics metrics. Hence, how can

we make data-driven visual layout design not only task complexity-

aware but also visual aesthetics-aware?

Many HCI studies have asserted a strong link between visual

complexity and aesthetics of web pages [38] and have attempted to

measure their aesthetics automatically by analyzing HTML sources

and screenshots of web pages [33]. In particular, GUI screenshot-

based measure is considered superior to other methods as it better

represents what a user sees [33]. The work in [29–31] proposed an

array of aesthetics metrics to quantify visual complexity such as vi-

sual clutter, color variability, contour congestion, and layout qual-

ity. Hence, the data-driven visual layout design problem can be re-

formulated as an optimization problem where the goal is to find an

“optimal” layout that minimizes query formulation task complex-

ity and visual complexity of the interface. Observe that the visual

complexity can be automatically quantified by extending the afore-

mentioned aesthetics metrics, originally designed for web pages,

to handle visual graph query interfaces. Furthermore, notice that

metrics such as visual clutter and layout quality are influenced by

the number of canned patterns and labels on the Pattern, Attribute,

and Suggestion Panels. Hence, the data-driven selection and main-

tenance of the patterns and labels discussed earlier needs to also

consider aesthetics metrics so that the visual complexity of the GUI

is not adversely impacted.

3.5 Quantitative Models for Performance Study
Lastly, in order to systematically evaluate the effectiveness of

our vision of data-driven visual query interface construction over

its classical counterpart, it is paramount to undertake an exhaustive

empirical study across different datasets and applications. While

traditional measures such as efficiency and scalability of various

techniques to realize the aforementioned components are naturally

important to evaluate the framework, we believe that systematic

empirical study to understand user experiences with data-driven vi-

sual query interfaces is paramount for the success of the proposed

paradigm. At first glance, it may seem that such an investigation

can be performed by simply undertaking a user study to measure

whether data-driven visual query interfaces provide superior expe-

rience in query formulation as well as GUI appreciation compared

to classical query interfaces. We believe that subjective studies pro-

vide good data for modeling user preferences, but it is also impor-

tant to incorporate objective analyses for at least two reasons.

• First, it is often prohibitively expensive and time-consuming

to engage a large number of users to either formulate a large

number of visual subgraph queries on a set of visual inter-

faces (across different applications) or survey aesthetics of

such visual interfaces. This is especially true for small com-

panies, start-ups, small academic research groups, and indi-

vidual developers and researchers.

• Second, objective methods, such as quantitative models, are

less influenced by individual users. That is, they can capture

the actual behavior of a user with the visual interface rather

than the user perception of it. Note that subjective measures

such as user studies are susceptible to a variety of evaluation

conditions (e.g., cognitive load) that can impart variations in

the outcomes of the study.

989

Query

Processor

 GUI

Graph

Database

Candidates

Patterns
Node Label

Generator

Cluster

Generator

Closure Graph

Set Computation

Results

Visualizer

Canned Pattern

Set Generator

Closure

Graph Set

Query
Results

Canned

Patterns

Label

set

Figure 5: Architecture of DaVinci: our initial effort.

Thus, we emphasize the need for objective measures. In partic-

ular, a quantitative model for measuring and comparing the bene-

fits of data-driven visual query interfaces over classical query in-

terfaces (in terms of task complexity and visual aesthetics) needs

to be integrated with the traditional subjective usability assessment

methods to enable us to systematically investigate the effectiveness

of our proposed vision.

Although there is recent work towards building quantitative mod-

els for realistic simulation of visual subgraph query formulation [7],

to the best of our knowledge, similar effort is missing in the con-

text of visual query interface construction, maintenance, and layout

design.

4. RELATED WORK & NOVELTY
Several visual graph querying systems have been proposed to

query graph-structured data [9, 18–20, 40]. However, all these ap-

proaches follow the conventional paradigm of visual query inter-

face construction and maintenance. In particular, our vision jet-

tisons the longstanding and traditional visual query interface con-

struction paradigm, and takes a data-driven approach to construct

and maintain its key components.

In [6], we laid down the vision of integrating DB and HCI (re-

ferred to as HCI-aware data management) techniques towards su-

perior consumption and management of data. Specifically, we pre-

sented a “synopsis” of a variety of issues in order to realize HCI-

aware data management such as data-driven visual query interface

management, visual action-aware indexing and query processing,

and HCI-driven visual query performance simulation. In particular,

it was skewed more towards the paradigm of making visual query

formulation and processing HCI-aware. In contrast, in this paper

we focus on challenges and opportunities related to data-driven vi-

sual graph query interface construction and maintenance, which is a

component of visual query interface management. Specifically, [6]

gives a high-level summary of our discussion in Section 3.1 al-

though it did not emphasize on the role of modern hardware in

facilitating data-driven construction of different GUI panels. Ad-

ditionally, except for canned pattern suggestion during query for-

mulation, it did not lay down the vision for strategies related to

data-driven GUI maintenance (Section 3.2), strategies for realizing

it on massive graphs (Section 3.3), data-driven visual layout design

(Section 3.4), and quantitative models for performance study (Sec-

tion 3.5). In fact, the HCI-driven performance simulation discussed

in [6] focuses on simulation of visual query formulation [7] instead

of quantitative study of usability and aesthetics of visual query in-

terfaces generated in a data-driven manner. In summary, the vision

described here complements the one reported in [6].

The HCI community has made significant progress in studying

various issues related to user-friendly visual interface design such

as task modelling [34], menu design [5, 10], and pointing and se-

lection activities [3]. However, the HCI community has not taken

a data-driven strategy to create these visual interfaces. Algorithmi-

cally, as highlighted in Section 3, our vision raises several novel and

intriguing research challenges that have not been addressed before.

Lastly, the emphasis of GUI independence for Model-View-

Controller (MVC) design pattern [8] in the software engineering

domain is orthogonal to our vision. The GUI (view) in MVC is a

visualization of the model (the data). Generic views can be auto-

matically generated, though users can also program views as de-

sired. When the user needs to program a view, they often use a

different kind of GUI (e.g., Ruby-on-rails) to quickly and easily

program the view. A visual graph query interface is a GUI in the

latter sense (making it easy to program a view of the data, e.g.,

a Ruby-on-rails for graph databases) and not in the former sense

(a constructed view in MVC). Hence, the data-driven approach to

building a visual graph query interface is akin to automatically tai-

loring the Ruby-on-rails GUI to a specific data collection, an appli-

cation constructed using this tailored GUI would still implement an

MVC approach.

5. INITIAL EFFORT
In the last two years, we have investigated this novel paradigm

and made the first effort to realize its feasibility by building the

data-driven visual graph query interface construction component

called DaVinci [43]8 for a large collection of small or medium-sized

graphs. It is implemented in Java and realizes some of the strategies

discussed in Section 3.1. Specifically, it automatically generates the

contents of the Attribute and Pattern Panels of a visual graph query

interface from the underlying database.

Figure 3 shows the architecture of DaVinci9. The Node La-

bel Generator module traverses the underlying collection of data

graphs D (e.g., chemical compounds) to generate the set of unique

labels in it, which are then displayed on the GUI. The Cluster Gen-

erator module constructs clusters of data graphs fromD where the

similarity among data graphs in the same cluster is high while it is

low for graphs in different clusters. We use maximum connected

common subgraphs (mccs) [35] to compute similarity between a

pair of graphs. First, a pair of data graphs g1 and g2 are randomly

chosen from D that have potentially least similarity by utilizing

data graph features (for reason discussed below). This pair is used

as two pivots for clustering. For all remaining data graphs gi ∈ D,

we sort them in ascending order based on the difference of their

similarity scores w.r.t g1 and g2 and associate the first half of the

sorted list to g1 and the rest to g2. This strategy is recursively car-

ried out until the size of the cluster is below a specific threshold.

As remarked earlier, computing similarity scores of all pairs of data

graphs can be prohibitively expensive. Hence, we utilize some sim-

ple heuristics (e.g., size of data graphs, label set similarity) of the

data graph pairs to allocate a data graph in the correct cluster when-

ever possible, without computing the similarity scores. For exam-

ple, if the size of data graph is significantly different from g1 then

it is highly likely that they are dissimilar and hence is put in the

cluster of g2, without computing the similarity scores. Similarly, if

the label set of a data graph is significantly different from g1 then

it is directly put into the other cluster. For the remnant data graphs

we sort them based on the similarity scores.

8
DaVinci is demonstrated in IEEE ICDE 2015 [43].

9
The Query Processor and the Results Visualizer modules are used to evaluate the for-

mulated query and display the query results, respectively. Hence, they are orthogonal

to our vision and were only included in DaVinci to “close-the-loop” for demonstration

purpose.

990

The Closure Graph Set Computation module combines all the

data graphs in each cluster into a single graph called the closure

graph that “summarizes” the content of each cluster as highlighted

in Section 3.1. Currently, we extend the idea of graph closure

in [16] to compute it. First, for each cluster we create a map-

ping between a pair of data graphs (g1, g2) by extending each data

graph with dummy vertices and edges such that each vertex and

edge in g1 has a corresponding mapping in g2 based on label and

edge matching. A dummy vertex or edge is assigned the label ε

and each non-dummy vertex and edge is annotated with the identi-

fier of the original data graph it belongs to. Next, given two such

extended graphs and a mapping between them, its closure graph

gc(Vc,Ec) is constructed where the attribute of a vertex (resp. edge)

in gc is union of the attributes of the corresponding mapped vertices

(resp. edges) of the extended graphs. All the matchings between

the vertices and edges are established by computing the similarity

between each pair of vertices using the Neighbor Biased Mapping

(NBM) [16], which bias the matching towards neighbors of already

matched vertices. Each vertex (resp. edge) in gc is also annotated

with the union of the data graph identifiers of the corresponding

mapped vertex (resp. edge) pairs. The dummy labels are removed

from the closure graph. The final closure graph to represent the set

of data graphs in a cluster is built recursively from the data graphs

and the closure graphs.

Lastly, the Canned Pattern Generator module extracts a collec-

tion of canned patterns from the set of closure graphs, which are

displayed on the GUI grouped by their size. It consists of two

key steps, namely, candidate pattern set generation and canned

pattern set selection. In the first step, we find candidate patterns

(subgraphs) in a closure graph that maximize the objective function

|g|Cov(g) where |g| = |E | is the size of a subgraph g and Cov(g) is

the coverage of g measured as the number of data graphs that con-

tain g. Next, the candidate pattern sets from all closure graphs are

aggregated by removing duplicate patterns and aggregating their

coverage. Since this candidate pattern set can be too large to fit

in a given GUI in its entirety, in the next step a subset of these

patterns are selected greedily by maximizing an objective function

that maximizes coverage and minimizes similarities among the pat-

terns. First, the candidate patterns are grouped by their size and

within each group the pattern p with the maximum coverage is se-

lected. The coverage of each remaining candidate pattern in the

group is updated by penalizing it by its similarity to p. This pro-

cess is repeated until the selected pattern set satisfies the GUI con-

straint (recall from Section 3.1). Finally, these canned patterns are

displayed on the gui (grouped by size).

The road ahead. Our aforementioned initial effort demonstrates

the feasibility of the promise of data-driven visual query interface

construction. Note that in this effort the canned patterns are gen-

erated offline as the cluster generation step is time-consuming. Al-

though we have used simple feature-based heuristics to reduce the

computational cost, it still takes a significant amount of time (i.e.,

several hours) to generate clusters especially for large collection of

data graphs. Hence, a more efficient and scalable solution to this

problem is an open research challenge that needs to be addressed.

To this end, we have not yet explored the alternative sampling-

based technique to identify a set of representative data graphs for

clustering as remarked in Section 3.1. Furthermore, the current im-

plementation of DaVinci does not leverage on data-level parallelism

and shared-memory scale-up parallelism to improve the efficiency

and scalability of data-driven GUI construction. Also, our canned

pattern selection technique is GUI aesthetics-unaware.

In addition, DaVinci does not currently focus on data-driven GUI

maintenance (Section 3.2) and data-driven visual layout design (Sec-

tion 3.4). Also, observe that our initial effort was built on top of a

graph repository consisting of a large set of small or medium-sized

data graphs. Hence, realizing these issues on massive graphs (Sec-

tion 3.3) is an open problem. Lastly, although we received much

positive feedback from the audience on DaVinci during our demon-

stration in ICDE 2015, comprehensive qualitative and quantitative

models for performance study (Section 3.5) have not yet been ex-

plored. This is crucial for wider acceptance of our vision of data-

driven visual query interface construction and maintenance.

6. CONCLUSIONS
This paper contributes a vision of data-driven visual graph query

interface construction and maintenance by presenting a visual graph

querying framework where the contents of several panels of the

GUI are automatically generated and maintained from the underly-

ing data. Specifically, our vision attempts to carve out a substan-

tially new research topic that blends two orthogonal fields, namely

data management (graph query formulation) and HCI (visual inter-

face design), to make query interface design data-driven. To the

best of our knowledge, this paradigm has not been systematically

investigated before, prior to our recent publication.

Measures of success. Successful realisation of this paradigm will

enhance the portability and maintainability of visual query inter-

faces and reduce construction cost. But several non-trivial and

novel research challenges need to be overcome to realize the

paradigm. To this end, it is paramount to conduct extensive user

studies to investigate the benefits of a data-driven approach in com-

parison to the classical approach of constructing and maintaining

visual query interfaces. As discussed in Section 3.5, such a user

study should complement quantitative performance models. Fur-

thermore, wide-spread adoption of data-driven query interfaces in

lieu of classical interfaces will be another measure of success.

Wider applicability. We focused on graph querying as graphs are

a natural way of modeling data in a wide variety of domains. How-

ever, it is easy to see that our vision can be adopted for a variety

of complex database management systems such as JSON [25] and

XML databases, etc. as all these databases use formal query lan-

guages that are widely acknowledged for their syntactic complex-

ity [2, 14]. Consequently, the novel research challenges discussed

in this paper to realize data-driven visual graph query interface are

also relevant to building data-driven visual query interfaces for tree-

structured data.

7. ACKNOWLEDGMENTS
Sourav S Bhowmick was supported by the Singapore-MOE AcRF

Tier-2 Grant MOE2015-T2-1-040. Byron Choi was partially sup-

ported by HKRGC GRF, HKBU12201315.

991

8. REFERENCES

[1] Apache Giraph. http://giraph.apache.org/.

[2] S. Abiteboul, et al. The Lowell Database Research

Self-Assessment. In Communication of the ACM, 2005.

[3] J, Accot, S. Zhai. Beyond Fitts’ Law: Models for

Trajectory-Based HCI Tasks. In ACM SIGCHI, 1997.

[4] C C. Aggarwal, K. Subbian. Evolutionary Network Analysis:

A Survey. ACM Comput. Surv. (CSUR), 47(1):10, 2014.

[5] D. Ahlstrom, R. Alexandrowicz, M. Hitz. Improving Menu

Interaction: A Comparison of Standard, Force Enhanced and

Jumping Menus. In SIGCHI, 2006.

[6] S. S. Bhowmick. DB ⊲⊳ HCI: Towards Bridging the Chasm

Between Graph Data Management and HCI. In DEXA, 2014.

[7] S. S. Bhowmick, H.-E. Chua, B. Thian, B. Choi. ViSual: An

HCI-inspired Simulator of Blending Visual Subgraph Query

Construction and Processing. In ICDE, 2015.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.

Stal. Pattern-Oriented Software Architecture. Wiley, 1996.

[9] D. H. Chau , C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher,

T. Eliassi-Rad. GRAPHITE: A Visual Query System for

Large Graphs. ICDM Workshop , 2008.

[10] A. Cockburn, C. Gutwin, S. Greenberg. A Predictive Model

of Menu Performance. In ACM SIGCHI, 2007.

[11] A. Cockburn, C. Gutwin. A Predictive Model of Human

Performance with Scrolling and Hierarchical Lists.

Human-Computer Interaction 24(3): 273-314 (2009).

[12] A. De Angeli, A. Sutcliffe, J. Hartmann. Interaction,

Usability and Aesthetics: What Influences Users’

Preferences? In Proc. of Conference on Designing

Interactive Systems, 2006.

[13] W. Fan, X. Wang, Y. Wu, D. Deng. Distributed Graph

Simulation: Impossibility and Possibility. In PVLDB, 7(12),

2014.

[14] J. Gray, D. T. Liu, M. Nieto-Santisteban, et al. Scientific

Data Management in the Coming Decade. In SIGMOD

Record, 34(4), 2005.

[15] W.-S Han, J. Lee, M.-D. Pham, J. X. Yu. iGraph: A

Framework for Comparisons of Disk Based Graph Indexing

Techniques. In VLDB, 2010.

[16] H. He, A. K. Singh. Closure-tree: An Index Structure for

Graph Queries. In ICDE, 2006.

[17] H. He, A. K. Singh. Graphs-at-a-time: Query Language and

Access Methods for Graph Databases. In SIGMOD, 2008.

[18] N. Jayaram, S. Goyal, C. Li. VIIQ: Auto-Suggestion Enabled

Visual Interface for Interactive Graph Query Formulation. In

PVLDB, 8(12), 2015.

[19] C. Jin, S. S. Bhowmick, X. Xiao, J. Cheng, B. Choi.

GBLENDER: Visual Subgraph Query Formulation Meets

Query Processing. In SIGMOD, 2011.

[20] C. Jin, S. S. Bhowmick, B. Choi, S. Zhou. PRAGUE: A

Practical Framework for Blending Visual Subgraph Query

Formulation and Query Processing. In ICDE, 2012.

[21] D. Koutra, U. Kang, J. Vreeken, C. Faloutsos. VOG:

Summarizing and Understanding Large Graphs. In SDM,

2014.

[22] K. LeFevre, E. Terzi. GraSS: Graph Structure

Summarization. In SDM, 2010.

[23] A. Lenharth, D. Nguyen, K. Pingali. Parallel Graph

Analytics. Communications of the ACM, 59(5), 2016.

[24] W. Lin, X. Xiao, G. Ghinita. Large-scale Frequent Subgraph

Mining in MapReduce. In ICDE, 2014.

[25] Z. H. Liu, B. C. Hammerschmidt, D. McMahon. JSON Data

Management: Supporting Schema-less Development in

RDBMS. In SIGMOD, 2014.

[26] Y. Low, J. Gonzalez, A. Kyrola, et al. Distributed GraphLab:

A Framework for Machine Learning in the Cloud. In

PVLDB, 5(8), 2012.

[27] S. Ma, Y. Cao, J. Huai, T. Wo. Distributed Graph Pattern

Matching. In WWW, 2012.

[28] G. Malewicz, M. H. Austern, A. J. C. Bik, et al. Pregel: A

System for Large-scale Graph Processing. In SIGMOD,

2010.

[29] E. Michailidou, S. Harper, S. Bechhofer. Visual Complexity

and Aesthetic Perception of Web Pages. In Proc. of ACM

International Conference on Design of Communication,

2008.

[30] A. Miniukovich, A. De Angeli. Quantification of Interface

Visual Complexity. In Working Conference on Advanced

Visual Interfaces, 2014.

[31] A. Miniukovich, A. De Angeli. Computation of Interface

Aesthetics. In SIGCHI, 2015.

[32] V. Rastogi, A. Machanavajjhala, L. Chitnis, A. D. Sarma.

Finding connected components in MapReduce in logarithmic

rounds. In ICDE, 2013.

[33] K. Reinecke, T. Yeh, et al. Predicting Users’ First

Impressions of Website Aesthetics with a Quantification of

Perceived Visual Complexity and Colorfulness. In SIGCHI,

2013.

[34] D. D. Salvucci, N. Taatgen, J. P. Borst. Toward a Unified

Theory of the Multitasking Continuum: From Concurrent

Performance to Task Switching, Interruption, and

Resumption. In SIGCHI, 2009.

[35] H. Shang, X. Lin, Y. Zhang, J. X. Yu, W. Wang. Connected

Substructure Similarity Search. In SIGMOD, 2010.

[36] Z. Sun, H. Wang, H. Wang, B. Shao, J. Li. Efficient Subgraph

Matching on Billion Node Graphs. In PVLDB, 5(9), 2012.

[37] Y. Tian, R. A. Hankins, J. M. Patel. Efficient Aggregation for

Graph Summarization. In SIGMOD, 2008.

[38] A. N. Tuch, E. E. Presslaber, et al. The Role of Visual

Complexity and Prototypicality Regarding First Impression

of Websites: Working Towards Understanding Aesthetic

Judgements. International J. of Human-Computer Studies,

70, 2012.

[39] X. Yan, J. Han. gSpan: Graph-based Substructure Pattern

Mining. In ICDM, 2002.

[40] S. Yang, Y. Xie, Y. Wu, et al. SLQ: A User-friendly Graph

Querying System. In SIGMOD, 2014.

[41] D. Yuan, P. Mitra, H. Yu, C. L. Giles. Iterative Graph Feature

Mining for Graph Indexing. In IEEE ICDE, 2012.

[42] D. Yuan, P. Mitra, H. Yu, C. L. Giles. Updating Graph

Indices with a One-Pass Algorithm. In SIGMOD, 2015.

[43] J. Zhang, S. S. Bhowmick, H. H. Nguyen, B. Choi, F. Zhu.

DAVINCI: Data-driven Visual Interface Construction for

Subgraph Search in Graph Databases. In IEEE ICDE, 2015.

[44] H. Zhang, G. Chen, B. C. Ooi, et al. In-memory Big Data

Management and Processing: A Survey. In TKDE,

27(7):1920–1947, 2015.

[45] L. Zou, L. Chen, J. Xu Yu, Y. Lu. A Novel Spectral Coding

in a Large Graph Database. In EDBT, 2008.

992

