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Robust Transmit Nulling in Wideband Arrays
Peter G. Vouras, Member, IEEE, and Trac D. Tran, Fellow, IEEE

Abstract—The ability to create nulls in the transmit pattern of
a phased array antenna has many applications in communication
and radar systems, including interference and clutter mitigation.
This paper describes the implementation of transmit nulls in
wideband arrays through the use of a filter bank inserted behind
each array element. The filter bank decimates and partitions the
transmit signal into independent subbands and utilizes a tapped
delay line (TDL) in each subband to form frequency invariant
spatial nulls in the array’s transmit pattern. New contributions
developed in this paper include an algorithm for determining the
TDL coefficients and a novel band partitioning scheme based on
principal component filter banks (PCFBs), which is shown to be
optimal for minimizing spectral errors if the TDL coefficients are
quantized. Numerical techniques are presented for approximating
ideal PCFBs using practical paraunitary filter banks (PUFBs) and
perfect reconstruction filter banks (PRFBs).

Index Terms—Optimization methods, wideband radar, adaptive
arrays, filter bank design.

I. INTRODUCTION

M ODERN adaptive arrays deployed in many radar
systems have the ability to place nulls in the receive

pattern of the antenna. The nulls attenuate unwanted energy
received from external sources such as hostile jammers, un-
intentional electromagnetic interference, or ambient clutter.
These antennas typically transmit with a uniform amplitude
weighting across the aperture to maximize main beam gain.
However, an increasing body of recent research has developed
extensive techniques for creating nulls in the transmit pattern of
the antenna as well. The benefit is that the antenna can impose
a significant two-way loss on clutter signals. Most transmit
nulling algorithms developed to date are for narrowband appli-
cations and assume infinite phase and amplitude precision. New
contributions described in this paper include a transmit nulling
architecture for wideband applications and a band partitioning
scheme which allocates more quantization bits to the signal
frequency bands with greater energy so as to minimize the
random quantization errors which degrade transmit nulling
performance.
Notation: The following conventions are adopted in terms

of notation: Bold-faced characters are used to denote matrices
and vectors. and denote the identity and the null matrices
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or sub-matrices. , , , , , and
denote the transpose, the conjugate transpose, the trace, the
determinant, the real part, and the Frobenius norm of re-
spectively. Discrete-time scalar or vector sequences and filters
are denoted with lower-case letters, for instance or ,
and their z-transform with upper-case letters, such as or

. When used with matrices of rational functions of the
complex variable , will denote the paraconjugate matrix
obtained by transposing , conjugating all the coefficients
of the rational functions in , and replacing by . For a
filter , denotes the filter whose impulse response is
the complex conjugate of the time-reversed impulse response
of . The term Laurent polynomial describes a finite im-
pulse response (FIR) filter with complex coefficients, such as

, with possibly both positive and negative
powers of . The ring of Laurent polynomials is denoted

where is the field of complex numbers. The ring
of -dimensional matrices with Laurent polynomial entries is
written as . Fields are designated by italicized
capital letters as in . A polynomial in the indeterminate
with coefficients in is denoted . A polynomial in with
coefficients in the ring is denoted . The
notation signifies that the polynomial divides

.
1) List of Acronyms: Acronyms in this paper are provided in

the footnote.1

A. Previous Work on Narrowband Transmit Nulling

In most practical radar systems, amplitude and phase control
is not available at the array element level. Instead, independent
phase commands are applied at each array element to form the
desired spatial null. A common algorithm for creating transmit
nulls using phase-only weights is described by Day in [1], [2].
Day uses the Moore-Penrose pseudoinverse to compute a min-
imum norm weight vector with arbitrary amplitude and phase
components which satisfy a set of equality constraints on the
voltage gain of the adapted array pattern. Next, Day minimizes
the sample variance of the computed weight vector to arrive at a
phase-only solution. Another popular algorithm for computing
array element weights was developed by Dufort in [3]. Dufort
postulates interference sources in the desired null directions and
computes element weights which maximize the signal-to-in-
terference-plus-noise ratio (SINR) at the output of the array.
Steyskal describes a classic algorithm for computing phase-only
weights using a perturbation function in [4], [5]. Smith derives
a numerical search method for computing phase-only adaptive

1Paraunitary Filter Bank (PUFB, page 1), Perfect Reconstruction Filter Bank
(PRFB, page 1), Principal Component Filter Bank (PCFB, page 1), Discrete
Fourier Transform Filter Bank (DFTFB, page 5), Signal-to-Interference-plus-
Noise-Ratio (SINR, page 1), Tapped Delay Line (TDL, page 1), Mean Square
Error (MSE, page 2), Finite Impulse Response (FIR, page 1), Effective Radiated
Power (ERP, page 2).
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Fig. 1. Frequency cuts of array transmit pattern.

weights based on conjugate gradient optimization and Newton’s
method in [6].

B. Wideband Problem Description

Typically, the phase weights applied at each array element
are only computed for the center frequency of the array, which
corresponds to half-wavelength spacing between the elements.
Furthermore, the phase shifter behind each element is only
calibrated for the array center frequency. Therefore, the actual
phase shift at each array element deviates from the desired
value for frequencies other than the array center frequency. As
a result, the transmit null changes pointing direction over the
entire signal bandwidth.
To illustrate the impact of signal bandwidth on transmit nulls,

consider Fig. 1 which shows a phase-only null computed using
Smith’s algorithm for a uniform linear array with 32 elements
[6]. The plot shows a deep null in the desired direction of 19.57
azimuth at the array center frequency of 9 MHz. For this ex-
ample an ideal array is assumed with no random noise or errors
present so the null depth is essentially infinite. The pointing di-
rection of the null clearly changes with frequency, as is also seen
in the frequency dependent array pattern of Fig. 2 where the
color bar corresponds to directivity in dBi. The yellow line at
19.57 corresponds to the transmit null and the frequency de-
pendent slope of the line indicates that the direction of the null
is a function of frequency.

C. Previous Filter Bank Applications to Wideband Arrays

Filterbank designs have been used extensively in wideband
adaptive arrays for frequency invariant beamforming and in
sidelobe cancellers to mitigate wideband interference. Zhao in
[7] creates frequency invariant beam patterns by partitioning
the signal at each array element into subbands and imple-
menting independent beamformers in each subband. Subband
adaptive processing using filter banks is also employed in [8]
by Zhang to mitigate intersymbol and cochannel interference
in digital communications. Compton describes nulling perfor-
mance on receive for a band partitioned adaptive array in [9].

Fig. 2. Array transmit pattern as a function of frequency.

Lin presents measured data from an experimental wideband
canceller testbed with band partitioning in [10]. Weiss explores
the use of oversampled filter banks for broadband adaptive
beamforming in [11]. The use of linear phase paraunitary
filterbanks in wideband adaptive arrays is described in [12].

D. Overall Technical Approach and Performance Metrics

This paper presents two new algorithms for computing com-
plex element weights that form frequency invariant nulls in an
array’s transmit pattern. Both algorithms are suitable for wide-
band arrays but one algorithm employs band partitioning to re-
duce the sampling rate required in practical implementations.
For narrowband arrays, the figure of merit used for transmit
nulling performance is null depth. Null depth is defined as the
magnitude squared of the array voltage pattern in the direction
of the null at the center frequency of the array. For the wideband
case with signal energy uniformly distributed over the instanta-
neous transmit bandwidth the performance metric is null depth
averaged over the signal bandwidth. For the most general case
with signal energy not uniformly distributed over the entire in-
stantaneous bandwidth, the chosen figure of merit is the Effec-
tive Radiated Power (ERP) of the array in the null direction av-
eraged over the signal bandwidth. ERP is also used to compare
transmit nulling performance in the presence of quantization er-
rors. Section V shows that a band partitioning scheme adapted to
the spectrum of the transmit signal is optimal for minimizing the
effect of quantization errors. Two algorithms are presented for
designing FIR filter banks that approximate the transfer function
of the desired ideal filter bank. Both algorithms minimize the
mean square error (MSE) between the ideal filter bank and the
approximation. An alternative approach to designing an array
band partitioning scheme is to directly optimize the filter bank
coefficients so as to yield the lowest possible ERP in the desired
null direction. This approach is not considered here due to the
much greater complexity of the objective function.

II. WIDEBAND ARRAY ARCHITECTURE

A tapped delay line (TDL) is equivalent to a discrete-time
FIR filter with unity sample delay between the filter coefficients.
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Fig. 3. Wideband array architecture.

Fig. 3 illustrates the proposed TDL architecture for forming fre-
quency invariant transmit nulls in wideband arrays. This archi-
tecture does not implement any band partitioning.
Behind each of the array elements is a TDL with real

taps spaced seconds apart. The response of a TDL array can
be written as [13]

(1)

where is the th tap coefficient of the th array element,
and is the phase difference between adjacent array elements
given by

(2)

The parameter is the distance between array elements, is the
wavelength of the transmitted signal, and is the main beam
steering direction with respect to array normal. If the highest
transmit frequency of interest is , then is chosen to be
to avoid spatial aliasing and is chosen to be to avoid
temporal aliasing.

A. Objective Function

To compute the TDL coefficients for a wideband null, the
SINR integrated over the signal bandwidth of interest for a hy-
pothetical interference source in the direction of the desired null
is maximized. This objective function is derived as follows.
Define a frequency dependent steering vector in the direction
for a linear array with isotropic elements as

(3)

where each component in (3) is given by

(4)

with equal to the inter-element spacing, the transmit signal
frequency, the steering angle of the signal with respect to array

normal, and the speed of light in free space. A vector of fre-
quency dependent weights to be applied to each array element
is defined as

(5)

where is the frequency response of the th TDL and

(6)

The frequency dependent signal and noise covari-
ance matrices can be written for the main beam steering direc-
tion and the direction of the desired null as

(7)

(8)

where is the power of a zero mean additive white noise
Gaussian process, and is a real positive scalar. The cost func-
tion to be maximized over the signal bandwidth of interest is the
integrated SINR

(9)

where and are the frequency endpoints of the signal band-
width and is a nonnegative real scalar weighting function.
The metric used to gauge nulling performance is the average
null depth over the bandwidth of interest, defined as

(10)

where is the number of frequency samples within the
signal bandwidth, is the desired null location, and

is the frequency dependent array voltage pattern;
. For the case where nulls in the

array pattern are desired, the noise covariance matrix is written
as

(11)

B. Gradient Computation

To maximize the integrated SINR , the conjugate gradient
algorithm may be used. This algorithm requires computing the
gradient of with respect to the TDL coefficients. Define the
matrix of TDL coefficients for array elements with taps
each and the delay chain vector by

...
...

. . .
...

(12)

and

(13)
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Fig. 4. Array element with band partitioning.

Then

(14)

The gradient of with respect to can be computed by
taking the partial derivatives of with respect to (denoted
) as

(15)

with and . For simplicity, assume
. By the Dominated Convergence Theorem [14], the

partial derivative may be brought inside the integral to yield

(16)

where the frequency argument is suppressed.
Useful relations for a matrix and vectors and are

(17)

where the overbar denotes complex conjugation. These relations
and the fact that the matrices and are Hermitian yield
the derivatives

(18)

(19)

Next using the quotient rule yields

(20)

where

(21)

and

(22)

C. Conjugate Gradient Algorithm

The stated optimization objective is to maximize over all
. Equivalently, the reciprocal may be minimized. The

pseudocode for implementing the unconstrained minimization
program using a conjugate gradient algorithm is presented in
Algorithm 1. The objective function , or , will in general
have many local maxima or minima and the final solution will
depend to some degree on the initial condition chosen for the
algorithm. A suitable initial condition for which yields rea-
sonable results is to set the TDL for each array element equal to
an arbitrary Type-1 FIR filter.

Algorithm 1: Algorithm to Compute TDL Coefficients

Require: Initial TDL coefficients . Possible initial
condition for each TDL is an arbitrary Type-1 FIR filter with
linear phase.

1:
2:
3: For each iteration compute a step size
using any line optimization routine. Alternatively, set
to a small value that ensures convergence.

4:
5:

6:
7:
8:
9: Go to 3

III. BAND PARTITIONING

A drawback to the TDL array architecture shown in Fig. 3
is the high sampling frequency associated with the inter-tap
delays. Recall was chosen in (1) to prevent aliasing. The
TDL filtering can be performed at a lower sampling rate by
partitioning the transmit signal into independent subbands
using a filter bank behind each array element. A maximally
decimated filter bank with channels will decimate the input
sampling frequency by a factor of , which yields the lowest
possible sampling frequency in each channel. Fig. 4 illustrates
the polyphase structure of a maximally decimated filter bank
behind one array element. Desirable filter banks for a wideband
array are paraunitary filter banks (PUFBs) or more general
perfect reconstruction filter banks (PRFBs) since they preserve
the input signal in the absence of any subband processing.
Oversampled filter banks have also received some attention
in wideband beamforming [11]. However, with oversampled
filter banks the decimation factor is less than the number of
frequency channels so these filter banks will not be considered
here.

A. Paraunitary Filter Banks

Consider a maximally decimated filter bank with channels
and a subband decimation factor equal to . Each analysis filter

with impulse response can be expressed in terms
of its polyphase components as

(23)
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where for and

(24)

The entire bank of analysis filters can be written as

(25)

where the transfer function vector and the delay chain
vector are defined to be

...
...

(26)

The -by- polyphase component matrix is
. Based on the polyphase representa-

tions of analysis and synthesis filters, a filter bank may be
efficiently implemented as shown in Fig. 4.
Paraunitary (orthonormal) polyphase matrices satisfy the

conditions,

(27)

where the overbar denotes conjugation and the complex variable
. Causal and stable paraunitary polyphase matrices are

unitary on the unit circle, meaning . The
analysis filters and the synthesis filters of length
in a paraunitary filter bank are related as

(28)

In other words, the impulse response of the synthesis filters of
a PUFB can be obtained by conjugating and time-reversing the
coefficients of the analysis filters. The analysis and synthesis
filters of a PUFB will have the same magnitude response up to
a scaling factor [15].

B. Discrete Fourier Transform Filter Bank

Two similar filter banks used extensively in signal pro-
cessing applications are the Discrete Fourier Transform Filter
Bank (DFTFB) and the Discrete Cosine Transform Filter Bank
[16]. Neither filter bank allows for any optimized filter design
and both filter banks uniformly partition the signal spectrum.
Therefore, only the DFTFB will be considered here.
The DFTFB is a maximally decimated FIR paraunitary

system with a bank of analysis filters that are uniformly
shifted versions of a lowpass prototype filter . In other
words,

(29)

where and

(30)

Notice that the filters have length , which is equal to
the number of channels. The analysis polyphase matrix

, where is the -by- DFT matrix with ele-
ments . The synthesis polyphase matrix
is given by and the reconstructed signal at the
output of the filter bank is

(31)

which is simply a delayed version of the input. The synthesis
filters are related by

(32)

where . Thus each synthesis filter has the same
magnitude response as the corresponding analysis filter (see [15,
p. 241], [16, p. 300]).

C. Band Partitioned Transmit Nulling Algorithm

The proposed nulling algorithm for a band-partitioned array
architecture is similar to the algorithm previously described in
Section II. The only differences are that the optimization objec-
tive must be maximized independently for each subband and the
scalar weighting function in (9) is set equal to the com-
posite magnitude response of the analysis and synthesis filters
in each channel, i.e., . Thus, the objec-
tive function to be maximized in the th subband becomes

(33)

This objective may also be maximized using the conjugate gra-
dient algorithm previously described, after the gradient vector
in (20) has been modified to include the new weighting function
via

(34)

IV. TDL COEFFICIENT QUANTIZATION

For transmit nulling operation in any practical radar system
with hundreds or perhaps thousands of elements, it is not fea-
sible to compute the TDL coefficients in real-time. Instead, the
TDL coefficients must be pre-computed and retrieved from a
look-up table. The resulting number of data points in the table
could be substantial if it accounts for every possible combina-
tion of main beam and null pointing directions. To reduce the
memory footprint of such a scheme, the TDL coefficients must
be quantized and stored in fixed precision using as few bits as
possible. The effect of such an implementation on nulling per-
formance is to introduce errors in the frequency response of each
TDL. These errors in turn will degrade the depth of the transmit
null. Quantizing the TDL coefficients to a range of discrete
values can be modeled by adding random quantization noise to
each infinite precision coefficient. The quantization noise is as-
sumed to be independent between bins of the quantizer.
Assume a -bit quantizer is used to represent the computed

TDL coefficients in finite precision. The output of the quantizer
can be modeled by adding random errors to the real TDL
coefficients . If , then the smallest quanta at
the output of the quantizer is , and the quantization errors
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will be uniformly distributed in the interval
with a variance of [17].

A. Quantization Effects on TDL Frequency Response

If the TDL coefficients in each subband are stored in fixed
precision, the TDL frequency response will differ from ideal.
It is possible to derive an upper bound for the error in the
magnitude squared response of a TDL due to coefficient quan-
tization. Let denote a desired TDL frequency response,
where is normalized frequency (i.e., the sampling
frequency corresponds to ). Assume a direct realization
of the TDL using coefficients .
The quantized parameters are
obtained by adding quantization errors to the ideal coeffi-
cients as in

(35)

Let represent the frequency response of the quantized
TDL. Then using a Taylor Series Expansion yields

(36)

where

(37)

Thus,

(38)

Using the derivative formulas

(39)

and the product rule for differentiation yields

(40)

Let denote the full scale value used for the coefficient .
One way of choosing the full scale value is to find the coefficient
having the largest magnitude from all the TDLs and use it as the
full scale value for all the coefficients [18]. In other words,

(41)

for where the
index varies across all taps, varies across all subbands, and
varies across all array elements. Then

(42)

where and is the number of quantizer bits. Thus,

(43)

Since any TDL is stable and has finite coefficients, there exists
a finite constant such that

(44)

for any TDL in any subband of any array element. Thus,

(45)
where .
Let the input to the TDL in the th subband be a zero-

mean wide-sense–stationary (WSS) process with power spec-
tral density (psd) . The absolute difference between the
output of an ideal TDLwith coefficients of infinite precision and
the output of a quantized TDL is the spectral error ,

(46)

An upper bound for is

(47)

Note that this upper bound holds for all the TDLs in the array
and that the constant can be taken to be independent of the
band-partitioning scheme in any filter bank. Integrating
over all frequencies yields

(48)

where the variance of is

(49)

The quantity represents an upper bound on the average
power of the spectral error in the th subband. Thus, the impact
of TDL quantization on null depth can be mitigated by mini-
mizing the sum of over all subbands. Since the factor
does not affect the minimization, it may be dropped. Conse-

quently, the criterion for minimizing TDL quantization effects
reduces to finding a filter bank from the class of paraunitary
filter banks that minimizes the objective function

(50)
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where is the number of quantization bits allocated to the th
subband. Notice the minimization objective is purely a func-
tion of the subband variances. The optimal filter bank for this
problem is described in the next section.

V. PRINCIPAL COMPONENT FILTER BANKS

Definition

Principal Component Filter Banks (PCFBs) have been
studied extensively in the literature and discovered to be op-
timal for a variety of applications, including maximizing the
coding gain in data compression applications [19]–[21]. In this
section, PCFBs are also shown to be optimal for minimizing
the signal errors at the output of a paraunitary filter bank due
to subband processing with quantized TDLs. PCFBs have the
property that most of the signal energy is packed into the first
subband, the second most energy into the second subband,
and so on. Consequently, by assigning a greater number of
quantization bits to the subbands with greater signal energy,
the overall impact of quantization errors can be reduced at the
output of the filter bank.
Let denote the variance of the th subband signal pro-

duced by feeding the scalar signal to the input of the filter
bank. To every possible filter bank within the class of parauni-
tary filter banks, there corresponds a subband variance vector
. Let denote the -fold blocked version of given

by . The vector
is a WSS process with psd matrix . The subband

variance vector associated with is defined as the vector
. Given the analysis polyphase

matrix of a PUFB and , the subband variance
vector can be computed as [21]

(51)

The optimization search space corresponding to the objective
function in (50) is defined to be the set of all subband variance
vectors corresponding to all filter banks in the class of PUFBs.
A filter bank in is said to be a PCFB for and if its
subband variance vector majorizes the subband variance vector
of every other filter bank in [21].

A. Optimality

The optimality of PCFBs for a variety of band-parti-
tioning applications is derived from an important property
referred to as majorization. Consider two sets and ,
each with real numbers: and

. The set is said to majorize the
set if the elements of these sets, when ordered such that

and , obey the
property

(52)

for all , with equality holding when
. Given two real-valued vectors and , is said

to majorize when the set of components of majorizes that
of . Any permutation of will also majorize any permutation
of . The majorization property of PCFBs can be used to prove

the following claim, which is a central contribution of this
paper.
1) Claim 1: Among all paraunitary filter banks, the filter

bank which minimizes the objective function given in (50)
is a PCFB.

Proof: Label the filter bank channels such that
. Next allocate the quantization

bits to each channel such that . In
essence, more bits and greater resolution are allocated to the
channels with greater signal energy. Observe that the objective
function can be rewritten as

(53)

The last term is constant for all filter banks and can be ignored.
Since

(54)

is minimized by a PCFB, which by the majorization property
maximizes all the partial sums

(55)

for .

B. Minimum Mean Square Error Filter Bank Approximation

The band partitioning strategy proposed in this paper is to
design a filter bank approximation to the ideal PCFB which
is adapted to the spectrum of a particular transmit signal. To
begin, the polyphase matrix of the desired PCFB must be com-
puted. Given a scalar transmit signal and the corresponding
-fold blocked vector process , let diagonalize the

power spectral density matrix of for each ; that
is

(56)

where is a diagonal matrix for all with diagonal
entries equal to in
order of descending magnitude. The polyphase matrix
constructed by performing an eigendecomposition to diago-
nalize and then setting equal to the unitary
matrix of eigenvectors corresponding to the eigenvalues in
descending order at each is the desired polyphase matrix of
the ideal PCFB [21]. represents an unrealizable filter
bank of infinite order within the class of paraunitary filter
banks. The class may be thought of as the set of all
polynomial matrices that are unitary for all . Recall
that for causal and stable systems this condition also implies
(27). An algorithm for approximating the unrealizable filter
bank using a realizable FIR PUFB will be described in
this section. The next section presents an algorithm for deriving
a PRFB approximation.
Given , a FIR PUFB approximation may be

designed by minimizing the mean square error

(57)
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To solve this problem using unconstrained minimization
techniques the paraunitary condition may be embedded into
the objective function by decomposing . Specifically,
any -by- causal FIR paraunitary system with real filter
coefficients may be written as (see [15, p. 729])

(58)

where is equal to the McMillan degree of , the
are orthogonal matrices, and is the degree-one delay

chain matrix

(59)

The McMillan degree of a multi-input and multi-output causal
system refers to the minimum number of delay units (i.e.,
elements) required to implement it. The filters described by
(58) have length .
Using the decomposition in (58) a PUFB may be designed

by writing each orthogonal matrix as a product of Givens
rotation matrices so that the control variables in the optimiza-
tion problem become rotation angles. Any -by- orthogonal
matrix can be decomposed into the product sequence of

Givens rotation matrices as in

(60)
Each matrix parameterized by the th rotation angle has a
form

for or ;
for or ;
for and ;
for and ;
otherwise

(61)

where the row and column numbers are indexed starting from
zero.

C. Gradient Computation

The gradient vector of the objective function can be com-
puted in a straightforward manner using the product rule. For
example, if the orthogonal matrix depends on the parameter
through the factor , then

(62)

where

(63)

and

(64)

The entries of the matrix are equal to

for and ;
for and ;
for or ;
otherwise.

(65)

Once the gradient vector is computed, an optimization rou-
tine similar to the conjugate gradient algorithm described in
Section II, Algorithm 1 can be used to find a local optimum. The
number of free parameters for a PUFB with McMillan degree

would be . Since the objective function
is not convex the algorithm may converge to a local optimum
which depends somewhat on the initial values of the rotation
angles. Furthermore, since the phase of the eigenvectors which
comprise the desired PCFB polyphase matrix is ambiguous, a
phase feedback technique described in [22] should also be em-
ployed to further improve approximation performance.

D. Global vs Local Optimum

The PCFB design algorithms proposed in this paper do
not guarantee a globally optimal solution. The problem of
designing globally optimal PCFBs has been previously studied
in the literature and two well known algorithms are presented
by Moulin [23] and Tuqan [24]. Moulin proposes calculating
an energy compaction filter for the first filter bank channel and
then completing the rest of the filter bank via an appropriate
covariance matrix eigendecomposition. The desired energy
compaction filter is obtained by spectral factorization of an
optimized product filter which is the local (and global)
solution to a linear semi-infinite programming problem. The
compaction filter is nonunique since each of the spectral fac-
tors of correspond to a global maximum of the energy
compaction function.
Tuqan derives a state-space description of the product filter

corresponding to an energy compaction filter. The globally op-
timal product filter is calculated using a semi-definite program-
ming method. An energy compaction filter is obtained from the
globally optimal product filter after a spectral factorization step
and will not be unique in terms of its spectral factors. Different
compaction filter spectral factors will lead to varying filter banks
with different performances [25], [26]. To arrive at the filter
bank with the best performance, an exhaustive search of all the
compaction filter spectral factors is necessary and each resulting
filter bank must be evaluated independently. This process be-
comes exponentially computationally expensive with respect to
the order of the compaction filter.

E. No-Gain Scenarios

For general input power spectra and an arbitrary number of
channels , PCFBs are known to exist only for two special
classes of filter banks [26]. The first is the class of all transform
coders in which the synthesis polyphase matrix is a constant uni-
tary matrix. The second is the class of all infinite order PUFBs.
If the PCFB exists for a particular filter bank class, then it is op-
timal for energy compaction. However, there are certain types
of input power spectra for which the maximum compaction gain
will be unity. Compaction gain is defined as the ratio of the peak
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subband variance to the total input signal variance. Specifically,
if the zero-mean WSS input process has a power spectral den-
sity of the form then all the decimated
subband signals have identical power spectra and the maximum
compaction gain is unity [20]. In this case, there will be no im-
provement in transmit nulling performance in the presence of
quantization errors with a PCFB. Similarly, if the locally op-
timal FIR approximation to an ideal PCFB results in a parti-
tion of the frequency spectrum into uniform regions of width

, then there will be no improvement in quantization per-
formance as compared to a filter bank such as the DFTFB.

VI. PRFB APPROXIMATION TO IDEAL PCFB

There is no requirement to restrict the filter bank approxima-
tions of ideal PCFBs solely to the class of PUFBs. A more gen-
eral class of filter banks available to the designer which includes
PUFBs as a special case is the class of PRFBs. By increasing the
optimization search space to include PRFBs it may be possible
to find a realizable PCFB approximation with lower errors or
better performance. The proposed approach for deriving a pa-
rameterized representation of PRFBs suitable for numerical op-
timization is to find a decomposition of the paraunitary building
block equal to the form .
One such decomposition which exists for any matrix over a field
is the rational canonical form decomposition. If this decomposi-
tion exists for polyphase matrices, a building block for PRFBs
may be derived by parameterizing the change of basis matrix

and the rational canonical form matrix inde-
pendently; as in .

A. Rational Canonical Form of Arbitrary Polyphase Matrices

Definition: Any -by- matrix over a field is similar
to a unique matrix in rational canonical form [27]. More
precisely, there is an invertible -by- matrix over
such that is a block diagonal matrix whose
diagonal blocks are the companion matrices for monic poly-
nomials of degree at least one with

. The polynomials are called
the invariant factors of . The invariant factors are made
unique by stipulating that they be monic. The product of the
invariant factors of is equal to the characteristic polynomial

of . The companion matrix associated with the
monic polynomial
is the -by- matrix with 1’s down the first subdiagonal,

down the last column, and zeros else-
where,

. . .
...

...
...

. . .
...

(66)

For an arbitrary polyphase matrix in the ring
, the characteristic polynomial is a polyno-

mial in the indeterminate with coefficients from the Laurent
polynomial ring ; i.e., [28],
[29]. The rational canonical form of is guaranteed to

exist as a matrix over the field of rational functions (see
[29, p. 477–8]). The elements in are functions of the form

; with the coefficients of and
equal to scalars in . The field is the smallest field con-
taining the entries of . The following claim shows that
none of the entries in the rational canonical form matrix of

are rational functions (which have an infinite impulse
response) and in fact that the rational canonical form matrix is
itself a FIR polyphase matrix also in the ring .
The proof relies on Gauss’s Lemma (stated in [29]) to show
that the invariant factors of are Laurent polynomials.
1) Claim 2: The rational canonical form of the polyphase

matrix is a matrix in the ring .
Proof: Since is a field, the ring is a Unique

Factorization Domain. The field of rational functions is the
field of fractions of . The characteristic polynomial

of is in the ring and is reducible in .
By Gauss’s Lemma, if can be factored in , then it is
reducible in . Consequently, the invariant factors
of are polynomials in the ring and the rational
canonical form is a matrix in the ring .

B. Computation of Rational Canonical Form for Polyphase
Matrices

In this section, a systematic procedure is presented for com-
puting the rational canonical form of an arbitrary polyphase
matrix. To compute the rational canonical form of the -by-
matrix , one approach is to diagonalize the matrix

[29]. Then the invariant factors of will
appear on the diagonal. The direct sum of the companion
matrices associated with each invariant factor yields the ma-
trix in rational canonical form. By keeping track of
the row operations used to diagonalize , one can
also construct the change of basis matrix such that

.
The following three elementary row and column operations

can be used to diagonalize ;
1) interchange two rows or columns,
2) add a multiple in the ring of one row or column to
another, e.g., add times the th row to the th row,

3) multiply any row or column by a unit in , i.e., by a
nonzero element in .

The matrix can be computed systematically using the
following procedure [29]. Let denote the degrees
of the monic nonconstant polynomials ap-
pearing on the diagonal. Start with a matrix = , the identity
matrix. For each row operation used to diagonalize ,
change the matrix as follows;
1) if the th and th rows were interchanged, then interchange
the th and th columns of ,

2) if + then subtract the product of
the matrix times the th column of from the th
column of , i.e., ,

3) if the th row is multiplied by a unit , then divide the th
column of by .

Once the matrix has been diagonalized, the
first columns of will be zero. Then for each

multiply the th nonzero column of succes-
sively by , where
is the degree of . Use the resulting column vectors in
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TABLE I
COMPUTATION OF RATIONAL CANONICAL FORM

this order as the next columns of a matrix . Then
.

C. Parameterized Representation of PRFBs

Set equal to the 2-by-2 paraunitary building block
taken from (58)

(67)

By applying the steps listed in Table I to compute the rational
canonical form of and the change of basis matrix

, one obtains

(68)

and

(69)

with

(70)

As desired . Also,
is invertible since is invertible.
A building block for PRFBs may be constructed from the ra-

tional canonical form decomposition of the paraunitary building
block by parameterizing the matrix and the

conjugationmatrices and independently. The
result after rearranging terms is

(71)

A PRFB satisfies the property that ,
where is the analysis polyphase matrix and is the
synthesis polyphase matrix, with and an integer. Thus
the system with analysis polyphase matrix and
synthesis polyphase matrix equal to

(72)

is perfect reconstruction since .
Notice that for the special case when , is
paraunitary. Therefore, the set of PRFBs constructed using this
decomposition includes the set of all PUFBs as a proper subset.
However, there may exist PRFBs which cannot be represented
in the form (71) and (72) so this factorization of PRFBs is
not necessarily complete. The number of free parameters for
a PRFB with McMillan degree would be no more than

.

VII. APPLICATION TO PCFB APPROXIMATION

It is possible to accurately approximate an ideal PCFB by
searching over the space of PRFBs which includes the set of
all PUFBs as a subset. The objective function is similar to
(57), with set equal to the parameterized decompo-
sition of a PRFB. The solution can be found using gradient
descent nonlinear minimization techniques. Using the perfect
reconstruction building block proposed in (71), the -by-
analysis polyphase matrix of a PRFB may be written as

(73)

where is equal to the McMillan degree of and
is the degree-one delay chain matrix. The matrices

are equal to

(74)
where

(75)

with

for or ;
for ;
for ;
for and ;
for and ;
otherwise.

(76)
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Fig. 5. PRFB lattice structure.

for or ;
for ;
for ;
for and ;
for and ;
otherwise.

(77)

for or ;
for ;
for ;
for and ;
for and ;
otherwise.

(78)

The synthesis polyphase matrix is

(79)

where

(80)
and

(81)

with

for or ;
for ;
for ;
for and ;
for and ;
otherwise.

(82)

A. Overall Implementation Complexity

The primary advantage of the band partitioned array archi-
tecture is that the filter banks allow TDL processing to be per-
formed within the subbands at a sampling rate times lower
than the non-band partitioned array. The TDL coefficients in
each subband are determined once for any combination of null
and main beam pointing directions. Once computed, the TDL
coefficients are stored and retrieved from digital memory as
needed. The computational throughput required for TDL pro-
cessing at each array element is the same with or without band
partitioning (since an -channel filterbank performs times
more TDL operations but at a rate times slower).
The design complexity of a PUFB or a PRFB is a computa-

tional cost also incurred once for a given input signal. A PRFB
will require more computations than a PUFB to implement as

Fig. 6. Filter 1—Ideal, PUFB, PRFB, Tkacenko.

the lattice structure corresponding to (71) and shown in Fig. 5
indicates. The input signals are in the th channel and in
the th channel. The corresponding output signals are and .
Define a flop to be one floating point operation, either multipli-
cation or addition. The real scalars shown on the branches of
the lattice diagram are precomputed and multiply the incoming
signal values. Negation does not count as a flop. Counting the
number of operations shown in the lattice diagram reveals that
the PRFB lattice requires 7 multiplies and 3 adds, or 10 flops.
A similar comparison to the lattice structure of a PUFB shows
that a PUFB building block requires 4 multiplies and 2 adds,
or 6 flops [15]. Thus the PRFB entails 67% more computations
than a PUFB. The total number of flops required to implement
the analysis and synthesis sections of an -channel PRFB with
McMillan degree is per output sample.
An -channel PUFB with McMillan degree requires

flops per output sample. These filter bank com-
putations incur an additional latency compared to the TDL array
architecture of Fig. 3 but do not otherwise affect array perfor-
mance.

VIII. FILTER BANK DESIGN RESULTS

Using the proposed parameterized decomposition for PRFBs
and a conjugate gradient algorithm to minimize the MSE in
(57), a PRFB approximation to an ideal brickwall PCFBwas de-
rived for andMcMillan degree . The length of the
channel filters is 8 taps. The results are plotted in Fig. 6 for the
first frequency subband which shows the magnitude squared re-
sponse of the PRFB analysis filters , synthesis filters

, and their composite response .
Also shown are the PUFB analysis filters constructed using the
Givens decomposition as well as a PUFB approximation with
the same McMillan degree designed using the recent algorithm
by Tkacenko [22]. The results show a close approximation of
the PRFB and PUFB channel filters to the ideal PCFB brick-
wall filters. The perfect reconstruction polyphase matrix is pa-
rameterized by rotation angles and the paraunitary polyphase
matrix is parameterized by 12 rotation angles.
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TABLE II
ERROR METRICS FOR PCFB APPROXIMATIONS

Table II details the approximation performance for the mag-
nitude response in each filter bank channel. The error metric

where is the
brickwall response of the ideal PCFB filter in the th subband.
The error metric .
For the case of the PRFB, the error metrics are shown sepa-
rately for each analysis filter (denoted by ), synthesis
filter (denoted by ) and their composite response

(denoted by ).
Fig. 7 illustrates the majorization property for the FIR ap-

proximations to the ideal PCFB. A real autoregressive process
was assumed for the input signal with poles at ,

, , and . The plot overlays the cumulative
sum of subband variances (51), expressed as percentages of the
total input signal energy, for the PUFB, DFTFB, Tkacenko filter
bank and the ideal PCFB. For the PRFB, the cumulative sum
of subband cross-covariances is shown which was obtained by
replacing in (51) with the synthesis polyphase ma-
trix . Fig. 7 confirms that the FIR PCFB approxima-
tions pack more signal energy into the lower subbands than the
DFTFB.

IX. WIDEBAND TRANSMIT NULLING RESULTS

A. In the Absence of Quantization Errors

Fig. 8 illustrates the optimized transmit pattern for a point
null at 19.57 over a fractional bandwidth of 40% for an ideal

Fig. 7. Majorization property of approximated PCFB.

Fig. 8. Point null—DFTFB solution.

linear array of 32 elements with a DFTFB behind each array el-
ement and . Fractional bandwidth is defined as the trans-
mitted signal bandwidth divided by the array center frequency.
The TDL in each frequency subband has 3 tap coefficients repre-
sented as double precision floating point numbers. The average
null depth over the entire signal bandwidth is as de-
fined in (10). There is some minor ripple in the peak main beam
gain as a function of frequency but otherwise only benign distor-
tions appear in the main beam pattern. A PUFB array architec-
ture yielded an average null depth of in the absence
of coefficient quantization errors and the PRFB array architec-
ture resulted in an average null depth of . An array
architecture with ideal brickwall PCFB filters resulted in an av-
erage null depth of .

B. In the Presence of Quantization Errors

To compare nulling performance for different filter bank
schemes accurately in the presence of TDL quantization errors
the chosen performance metric is the average ERP of the array
over the signal bandwidth in the null direction . This metric
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Fig. 9. Cumulative probability of ERP in null direction.

accounts for the cases where signal energy is not uniformly dis-
tributed over the instantaneous transmit bandwidth. Assuming
an -element linear array with isotropic elements, the average
ERP over the signal bandwidth is computed as

(83)

where is the spectrum of the filter bank output behind
the th array element,

(84)

and

(85)
In the above equations is the spectrum of the input
signal to each filter bank, is the spectrum of the TDL
in the th subband of the th array element, is the fre-
quency response of the th analysis filter, is the fre-
quency response of the th synthesis filter, is the number of
frequency samples taken within the transmit signal bandwidth,
and , , , are as defined in (2) and (4).
The nulling performance of each array architecture was de-

termined by superimposing random quantization errors on the
ideal TDL coefficients in each subband and computing the av-
erage ERP over the signal bandwidth as defined by (83) for 2048
frequency samples taken over a 40% fractional bandwidth for a
linear array of 32 elements. The TDL coefficients were com-
puted for each array architecture by maximizing (33) to yield a
null at 19.57 with the main beam pointed at boresight. If
denotes the number of bits allocated to the th subband then the
quantization errors applied to the th TDL in each filter bank
were uniformly distributed in the interval with

and as defined in (41). The variance of the quan-
tization errors applied to each TDL coefficient in the th sub-

TABLE III
ERP (dB) FOR DIFFERENT BIT ALLOCATION SCHEMES

band of each filterbank is therefore [17].
Fig. 9 illustrates the cumulative distribution of ERP for all 3
FIR filterbanks and the ideal PCFB with brickwall filters for the
bit allocation scheme . This
plot is typical for all the cases considered and shows that the
FIR approximations to the ideal PCFB yielded the best nulling
performance (i.e., lowest ERP in the null direction) as compared
to the DFTFB.
One would expect that by partitioning the signal spectrum

using an approximated PCFB and then assigning more quanti-
zation bits to the subbands with greater signal energy, the ERP
in the null direction will be reduced. In fact, Monte Carlo re-
sults shown in Table III confirm this hypothesis. Each row in
Table III shows the average ERP (top value) and the peak ERP
(bottom) in dB for the null direction 19.57 computed using (83)
for different bit allocation schemes over 1000
Monte Carlo iterations. Also listed as a bound on performance
are the average and peak ERP values obtained using the ideal
brickwall PCFB filters. In each row of the table the lowest ERP
between the PUFB, PRFB, and the DFTFB is shown in bold
type. Table III shows that for every bit allocation scheme con-
sidered, the numerically optimized PRFB or PUFB approxima-
tion to an ideal PCFB resulted in the lowest average and peak
ERP at the null location as compared to a DFTFB.

X. CONCLUSION

In this paper, a wideband transmit nulling approach robust
to quantization errors was introduced. The proposed array ar-
chitecture consists of a filter bank inserted behind each array
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element that partitions the transmit signal into independent sub-
bands. A numerical algorithm was derived for computing the
optimal TDLweights in each subband such that a wideband spa-
tial null is created in the antenna transmit pattern. If the coeffi-
cients of the TDLs are subject to quantization errors, a band par-
titioning scheme which approximates an ideal PCFB yields su-
perior performance compared to more conventional filter banks,
such as the DFTFB.
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