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Abstract

Utilities are currently deploying smart electricity meters in millions of house-
holds worldwide to collect fine-grained electricity consumption data. We present
an approach to automatically analyzing this data to enable personalized and
scalable energy efficiency programs for private households. In particular, we de-
velop and evaluate a system that uses supervised machine learning techniques to
automatically estimate specific “characteristics” of a household from its electric-
ity consumption. The characteristics are related to a household’s socio-economic
status, its dwelling, or its appliance stock. We evaluate our approach by analyz-
ing smart meter data collected from 4,232 households in Ireland at a 30-minute
granularity over a period of 1.5 years. Our analysis shows that revealing charac-
teristics from smart meter data is feasible, as our method achieves an accuracy
of more than 70% over all households for many of the characteristics and even
exceeds 80% for some of the characteristics. The findings are applicable to all
smart metering systems without making changes to the measurement infras-
tructure. The inferred knowledge paves the way for targeted energy efficiency
programs and other services that benefit from improved customer insights. On
the basis of these promising results, the paper discusses the potential for utilities
as well as policy and privacy implications.
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1. Introduction

Customer insights help utilities to optimize their energy efficiency programs
in many ways [1, 2]. With knowledge of the socio-economic characteristics of
individual households, for instance, utilities can automatically tailor savings
advice to specific addressees (e.g., to families with children, or to retirees). Fur-
ther, they can offer consumption feedback that includes references to similar
households or consider the financial reach of their customers when suggesting
improvements in the appliance stock. Many studies have shown that such spe-
cific approaches improve the performance of efficiency campaigns [3, 4, 5]. Yet,
such targeted measures require detailed information on individual customers,
which might be gathered for research studies and local saving campaigns, but
which is often not available for large-scale, cost sensitive efficiency programs
that are directed to millions of households.

In fact, utilities’ knowledge about their customers is often limited to their
address and billing information. This is particularly true in Europe, where
open information repositories like public tax registers do not exist or cannot
be easily accessed. On the other hand, conducting surveys to acquire customer
information is typically time-consuming and expensive, and often only a small
fraction of customers participate [6]. We argue that utilities can instead utilize
the electricity consumption data of a household to reveal customer information
that is relevant to optimizing their energy efficiency programs. This is valuable
for utilities, because they are already deploying millions of smart electricity
meters in private households along with infrastructure to collect, process, and
store their electricity consumption data. [7, 8, 9]. Currently, utilities use this
data mainly to improve their meter-to-cash processes, to enable advanced tariff
schemes, and to provide customers with detailed information on their electricity
consumption. Analyzing smart meter data that is collected anyway can therefore
contribute to the value of the metering infrastructure without requiring any
changes to the smart meters that have already been deployed.

In this paper, we develop and evaluate a system to automatically infer house-
hold characteristics from smart meter data. Examples of such characteristics
include the household’s socio-economic status, its dwelling properties, and in-
formation on the appliance stock. Our analysis takes as input the electricity
consumption of a household and estimates the value of several characteristics
of interest. Depending on the characteristic, this value is either the class to
which the household most likely belongs to (e.g., employment status) or a nu-
merical value (e.g., the number of persons living in the household). To infer
the value of household characteristics from consumption data, we extract fea-
tures from the data itself and pass them as input to a classifier or regression
model. An example of such a feature is the average consumption of a household
between 10 a.m. and 2 p.m. divided by its daily average consumption. This
particular feature helps to reveal household occupancy during lunch time and
thus contributes to the estimation of characteristics such as the employment
status of the inhabitants. We investigate 18 different characteristics which we
have selected because they are relevant to utilities [10]. We have evaluated our
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system according to these characteristics using smart meter data available at
a 30-minute granularity from 4,232 Irish households over a period of 1.5 years.
This data set is publicly available and has been collected in the context of a
smart metering trial conducted by the Irish Commission for Energy Regulation
(CER)1. In the following, we refer to this data set as the CER data set. Along
with smart meter data, the data set contains information on the characteristics
of each household collected through questionnaires before and after the study.
This information is crucial for our work, because it represents ground truth data
we can use to validate our findings.

The contribution of this paper is a comprehensive system for automatically
revealing household characteristics from smart meter data and an elaborate
evaluation of our approach. In our previous work [11], we presented a prelimi-
nary study to demonstrate the feasibility of revealing household properties from
smart meter data. In this paper, we improve upon our previous work in multi-
ple respects: First, we present new components of our system. We extend the
feature set, replace the feature selection method, and add a classifier. Second,
we perform a detailed analysis to evaluate the applicability of our results. In
particular, we advocate and discuss new performance measures (e.g., to handle
imbalanced classes), we investigate six additional characteristics that are of in-
terest to utilities, and we propose and evaluate the utilization of the classifier
confidence to identify small groups of customers with improved performance.
We also propose a regression model in order to estimate characteristics with
continuous values (e.g., the number of persons in a household). Finally, we
show the stability of the results over all 75 weeks included in the data set, and
we show significant performance gains that can be achieved when performing
the analysis on the whole measurement period instead of a single week of data
only, as it was done in [11].

The results provided in this paper show that revealing household character-
istics from smart meter data is feasible with sufficient accuracy. This holds in
particular for characteristics related to the number of persons living in a house-
hold and for characteristics related to the occupancy of the household (which
also includes information on the employment status of the chief income earner).
We show that it is possible to infer 8 of the 18 characteristics with an accuracy
between 72% and 82%. Overall, our approach performs roughly 30 percentage
points better than assigning characteristics to the households at random. Some
applications require identifying households that feature a specific characteristic
with high accuracy. This is for instance necessary when a group of households
(e.g., those inhabited by a single person) are the target of a marketing cam-
paign. Here, reducing the number of false positives (i.e., of the cases in which
a household is erroneously estimated to belong to the target class) is crucial.
We show that by exploiting the confidence of the estimation obtained from the
classifiers, it is possible to reduce the number of false positives significantly.

According to the results reported in this paper, utilities can reliably esti-

1www.ucd.ie/issda/data/commissionforenergyregulationcer/
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mate household characteristics from smart meter data. Thus, they will be able
to improve their energy efficiency campaigns and make them applicable to the
mass market as they scale to thousands or millions of customers with little ad-
ditional effort. Ultimately, creating these services to help their customers use
energy more efficiently is crucial for utilities’ attempts to comply with regula-
tory targets [12]. In addition, the system provided in this paper allows utilities
to improve customer retention, which is becoming more relevant in a liberalized
energy market [13]. To the best of our knowledge, this is the first study that
provides a quantitative analysis of the possibility of revealing household charac-
teristics from electricity consumption data on such a large data set and at such
a high accuracy.

The remainder of this paper is structured as follows. Section 2 reviews
related work. We then present the data set we use in our study in section 3
and our methodology in section 4. Next, we describe our evaluation setup and
performance measures in section 5. Section 6 presents the results of the analysis
followed by a discussion of the results in section 7. Finally, section 8 concludes
the paper and gives an outlook on future work.

2. Related Work

Over the past years, an increasing number of researchers have applied ma-
chine learning and data mining techniques to model and analyze residential elec-
tricity consumption data. This has been made possible thanks to the increasing
availability of electricity consumption data. A popular line of research in this
context is one focusing on non-intrusive load monitoring (NILM). Using aggre-
gated electricity consumption data of individual households (e.g., measured at 1
reading per second or millisecond), researchers have tackled the problem of dis-
aggregating the consumption of individual appliances. This information allows
in turn to provide detailed consumption feedback to the households [14, 15, 16].
The work we present in this paper is considerably different from NILM, be-
cause we aim to infer high-level household characteristics from the electricity
consumption instead of disaggregating it into its individual end use.

Other authors have focused on the analysis of coarse-grained consumption
data (i.e., data sampled at a granularity of several minutes or higher). Here,
we distinguish between (1) analyzing consumption data only and (2) relating
it to side-information such as the geographic location of the dwelling or the
socio-economic status of the household. Since the first approach imposes less
requirements on the collected data, many authors have investigated unsuper-
vised techniques such as clustering to detect patterns and usage categories in the
consumption profiles [17, 18, 19, 20]. Chicco, for instance, provides an overview
of clustering techniques used to group residential or commercial customers ac-
cording to their electricity consumption pattern [19]. Grouping consumers by
their load profile enables utilities to formulate tariffs for specific customer cat-
egories, check the effect of tariff modifications, and ultimately optimize their
supply management. Using similar techniques, both Kwac et al. [18] and Cao
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et al. [17] have focused identifying the “right” customers for demand-side man-
agement campaigns. Whereas Kwac et al. aim at detecting stable profiles over
a certain time period, Cao et al. focus on identifying households with a similar
time of peak usage. Finally, De Silva et al. aim at predicting future electricity
usage of private households using a data mining framework and an incremen-
tal learning algorithm [20]. In contrast to all these approaches, our work goes
beyond detecting consumption patterns or usage categories. We utilize such
patterns to estimate specific characteristics of the socio-economic status, the
dwelling, or appliance stock of the households.

In recent studies, researchers increasingly investigated the combination of
electricity consumption with side-information [11, 21, 22, 23, 24, 25, 26, 27].
Sanchez et al. add information about the households gathered through ques-
tionnaires to features they derive from electricity consumption data [22]. They
then cluster 625 Spanish households using a well-known technique called self-
organizing maps (SOMs) [28]. Räsänen et al. also use SOMs to cluster house-
holds [23]. However, for input the authors rely on dwelling characteristics only,
with the goal of providing personalized electricity use information to households
within the same cluster. Kolter et al. apply a regression model to estimate
monthly consumption data from household characteristics derived from public
databases in the United States [24]. Comparing this estimation with the actual
consumption of a household enables personalized feedback to be provided to the
inhabitants of the household. Relying on a similar regression model, Kavousian
et al. analyze the effect of so-called determinants on the household electricity
consumption [27]. In particular, the authors define four major categories of de-
terminants that affect the overall consumption: (1) Weather and location, (2)
dwelling characteristics, (3) appliance and electronics stock, and (4) occupancy
and behavior. After applying their model on 1,628 households in the United
States, the authors come to the conclusion that weather and dwelling charac-
teristics have a larger influence on residential electricity consumption compared
to the appliance stock and occupancy behavior. It is important to note, how-
ever, that the data used in their study also accounts for electricity consumed
by heating and cooling, which represent a large portion of the overall electricity
consumption.

McLoughlin et al. also investigated the correlation between electricity con-
sumption data and household characteristics [25]. Like Kavousian et al., the
authors used a multiple linear regression analysis to model the electricity con-
sumption of households on the basis of their characteristics. Relying on the
same data as the present study does – which does not account for thermal loads
– the authors found a strong relationship between four electricity consump-
tion parameters (total consumption, maximum demand, load factor, and time
of use) and different dwelling, household, and appliance stock characteristics.
In his dissertation, McLoughlin further investigated methods to automatically
cluster households in order to segment them into profile groups according to
their electricity consumption [26]. McLoughlin then investigates the distribu-
tion of household characteristics over the clusters with the goal of characterizing
electricity use depending on the customer characteristics. In contrast to both
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Kavousian et al. and McLoughlin et al., we propose a method that utilizes the
correlation between electricity consumption data and household characteristics
to estimate the characteristics from the consumption data. Albert et al. recently
presented an approach that has similar goals as ours [21]. The authors first re-
move the impact of weather on a household’s electricity consumption using a
linear regression model. On the residuals they utilize a Hidden Markov Model
to infer specific occupancy states per household. All parameters gained from
this analysis then serve as input to an AdaBoost classifier in order to estimate
specific household characteristics. To evaluate their work, the authors rely on
the same data set as Kavousian et al., which consists of smart meter data and
household characteristics of 950 Google employees. In contrast to Albert et al.,
our system relies on a different set of features and it integrates a feature selec-
tion method as well as multiple classifiers in addition to the AdaBoost classifier.
Furthermore, we use more performance measures and a data set that is much
larger than the Google data set to evaluate our work.

The approaches presented above either include household characteristics as
a part of a regression model or they rely on a relatively small set of households.
In our study we present a system that relies on supervised machine learning
techniques to estimate household characteristics from electricity consumption
data. We further utilize consumption data and household characteristics of
4,232 households to train our classifiers and evaluate our approach.

3. The CER data set

Our study relies on the CER data set, which was collected during a smart
metering trial conducted in Ireland by the Irish Commission for Energy Reg-
ulation (CER). It contains measurements of electricity consumption gathered
from 4,232 households every 30 minutes between July 2009 and December 2010
(75 weeks in total). The purpose of the study was to investigate the effect of
consumption feedback on household electricity consumption. Each participating
household was asked to fill out a questionnaire before and after the study. The
questionnaire contained questions about the household’s socio-economic status,
appliance stock, properties of the dwelling, and the consumption behavior of
the occupants.

In contrast to other studies that investigated large-scale electricity consump-
tion data (such as [21, 24, 27]), the CER data set to the best of our knowledge
does not account for energy that is consumed by heating and cooling systems.
The heating systems of the participating households either use oil or gas as their
source of energy or their consumption is measured by a separate electricity me-
ter. The households involved in the study were reported to have no cooling
system installed.

4. System design

Our analysis relies on supervised machine learning techniques to infer a
household’s characteristics from its electricity consumption data. Figure 1 de-
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Figure 1: Overview of the household characteristic estimation presented in this paper.

picts the household characteristic estimation process. First, we compute a set of
features on the electricity consumption records of a household. This is a typical
step performed in supervised machine learning to obtain a set of discriminative
values for each sample (i.e., household). The features then serve as input to a
classifier or regression model, depending on the characteristic. As output, our
system provides an estimate of the class or the value of each characteristic.

4.1. Features

Table 1 lists the features we compute on the electricity consumption data.
We divide the features into five groups: consumption figures (10 features), ra-
tios of consumption figures (7 features), features related to temporal dynamics
(4 features), statistical properties (3 features), and the first ten principal com-
ponents [29]. Our system assumes the data to be available at a granularity of
one measurement every 30 minutes and it computes each feature on one week
of data. However, it can be easily adapted to cope with other data granularities
and time periods. Part of the features have been used in previous work on the
analysis of electricity consumption data [10, 11, 22].

Many statistical methods assume the input data to follow a normal distribu-
tion [30]. For this reason, researchers often apply a non-linear transformation
(e.g., a logarithmic or square root transformation) to each of the features if it
improves normality [30]. To find the right transformation, we (visually) compare
the distribution of the transformed feature with the normal distribution using a
normal quantile plot [31]. Figure 2 shows the normal quantile plot for features
c total and r morning/noon transformed by a logarithmic and a square root
transformation, respectively. The linearity of the sample quantiles of the fea-
tures (x-axis) versus the theoretical quantiles of a normal distribution (y-axis)
implies that the transformed features are (roughly) normally distributed. Af-
ter the transformation, we normalize each feature such that it has zero mean
and unit variance. Data normalization is required by some of the classifiers we
consider in our study, for example when their objective function calculates a
distance between two samples based on their features.
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Table 1: List of features that form the input vectors of the classifiers. P̄ denotes the 30-minute
mean power samples provided by the data set. Where not otherwise stated, the feature is
computed over the weekdays only. The last column shows if a logarithmic (log) or square root
(sqrt) transformation has been applied to the feature.

Description Name Transformation

(1) Consumption figures

P̄ (daily, week) c total sqrt(x)
P̄ (daily, weekdays) c weekday sqrt(x)
P̄ (daily, weekend) c weekend sqrt(x)
P̄ for (6 a.m. – 10 p.m.) c day sqrt(x)
P̄ for (6 p.m. – 10 p.m.) c evening sqrt(x)
P̄ for (6 a.m. – 10 a.m.) c morning sqrt(x)
P̄ for (1 a.m. – 5 a.m.) c night log(x)
P̄ for (10 a.m. – 2 p.m.) c noon sqrt(x)
Maximum of P̄ , week c max x
Minimum of P̄ , week c min log(x)

(2) Ratios

Mean P̄ over maximum P̄ r mean/max log(x)
Minimum P̄ over mean P̄ r min/mean sqrt(sqrt(x))
c morning / c noon r morning/noon log(x)
c evening / c noon r evening/noon log(x)
c noon / c total r noon/day sqrt(x)
c night / c day r night/day log(x)
c weekday / c weekend r weekday/weekend log(x)

(3) Temporal properties

Proportion of time with P̄ > 0.5kW t above 0.5kw x
Proportion of time with P̄ > 1kW t above 1kw x
Proportion of time with P̄ > 2kW t above 2kw x
Proportion of time with P̄ > mean t above mean x

(4) Statistical properties

Variance s variance sqrt(sqrt(x))∑
(|P̄t − P̄t−1|) for all t s diff sqrt(x)

Cross-correlation of subsequent days s x-corr x
#P̄ with (P̄t − P̄t±1 > 0.2 kW) s num peaks x

(5) Principal components

First 10 principal components pca i (i = 1..10) x
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Figure 2: Normal quantile plots showing that features c total (left) and r morning/noon

(right) are (roughly) normally distributed after applying the log and square root transforma-
tions, respectively.

4.2. Household characteristics and class labels

A classifier estimates a characteristic of a household by assigning the house-
hold to a specific class out of a set of classes. Table 2 shows the 18 characteristics
we evaluate in this study along with the corresponding classes and class defi-
nitions for each characteristic. The characteristics capture socio-economic sta-
tus of the household (e.g., age person, employment), dwelling properties (e.g.,
#bedrooms, floor area), or characteristics related to the behavior or appliance
stock (e.g., #appliances, unoccupied). #adults and #children represent the
number of adults and children in the household, respectively. The table also
shows the number of samples for each class, where each sample corresponds to
one household in the CER data set.

In a previous study, we identified the characteristics that are interesting for
utilities by conducting interviews with four energy consultants [10]. The in-
terviews revealed, for instance, that knowing the composition of a household
(e.g., single, family) is particularly relevant to energy consultants, because
families are potentially more interested than singles in receiving information
about energy consulting services. Furthermore, we selected characteristics with
well-separable classes, which means that the samples from different classes have
(on average) a high distance in the feature space. As an example, figure 3 illus-
trates class separability of the characteristic single for features c total and
r evening noon based on the empirical cumulative distribution (ECD) for each
of the two features. The left plot shows that the ECD of the first class (Single)
significantly differs from the ECD of the second class (No single) for feature
c total. This means that the classes Single and No single are well separable
with respect to feature c total. On the other side, the right plot shows that
the ECD of the two classes are almost the same for feature r noon/day. As a
consequence, we say that single is well-separable because there is at least one
feature that properly separates the classes.

In terms of class labels, there are natural definitions of class labels for some
of the characteristics (e.g., Single/No single, or Family/No family). For other
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characteristics (e.g., age person, #bedrooms, floor area), we define the class
labels (1) according to qualitative considerations gathered during the aforemen-
tioned interviews and (2) by adjusting the number and definition of class labels
such that each class contains a similar number of households.
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Figure 3: Empirical cumulative distributions of the (unscaled) features c total (left) and
r noon/day (right) for characteristic single.

4.3. Classifiers

There exist several classifiers that can be used to perform supervised ma-
chine learning tasks [32, 33, 34, 35]. These classifiers typically differ in terms
of implementation and computational complexity, or in the assumptions they
make on the distribution of the data. For the study described in this paper, we
have selected five well-known classifiers: the k-Nearest Neighbors (kNN) classi-
fier [32], the Linear Discriminant Analysis (LDA) classifier [32], the Mahalanobis
distance classifier [33], the Support Vector Machine (SVM) classifier [34], and
the AdaBoost classifier [35].

The right column in table 2 shows that some of the characteristics are imbal-
anced in the CER data set. This means that some classes have a significantly
higher number of samples than other classes. For example, there are 859 house-
holds for which the characteristic single takes value Single and 3,373 for which
it takes value No single. As we have already outlined in our previous work, this
bias affects the performance of some of the classifiers. Since the trained model
of these classifiers is biased towards the class with the majority of samples, they
often assign samples of the underrepresented classes to the majority class [11].
An effective method to deal with class imbalance consists in undersampling the
data during the training process [36, 37]. By randomly removing samples from
the overrepresented classes, undersampling creates evenly distributed classes
(i.e., classes having the same number of samples equal to the number of samples
in the smallest class). In order to support applications that rely on identifying
samples of underrepresented classes, our system can thus also perform under-
sampling.
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Table 2: List of household characteristics, their class labels, and the number of samples per
class in the CER data set. The characteristics eligible for regression are marked with (∗).

Characteristic Description Classes No. of samples

age person(∗) Age of chief income earner
Young (age person < 35) 436
Medium (35 < age person ≤ 65) 2,819
High (65 < age person) 953

all employed All adults work for pay
Yes 1,013
No 2,409

#appliances(∗) Number of appliances
Low (#appliances ≤ 8) 1,421
Medium (8 < #appliances ≤ 11) 1,479
High (11 < #appliances) 1,332

#bedrooms(∗) Number of bedrooms

Very low (#bedrooms ≤ 2) 404
Low (#bedrooms = 3) 1,884
High (#bedrooms = 4) 1,470
Very high (4 < #bedrooms) 465

cooking Type of cooking facility
Electrical 2,960
Not electrical 1,272

employment
Employment of chief income
earner

Employed 2,536
Not employed 1,696

family Family
Family (#adults > 1

1,118
and #children > 0)

No family 3,114

floor area(∗) Floor area

Small (floor area ≤ 100 m2) 232
Medium (100 m2 < floor area

1,198
and floor area ≤ 200 m2)

Big (200 m2 < floor area) 351

house type Type of house
Free (detached or bungalow) 2,189
Connected (semi-detached or terraced) 1,964

income(∗) Yearly household income
Low (income < 50, 000) 940
High (50, 000 ≤ income) 997

lightbulbs
Proportion of energy efficient
light bulbs

Up to a half 2,041
About three quarters or more 2,191

children Children
Yes (#children ≥ 1) 1,229
No (#children = 0) 3,003

age house Age of building
Old (30 < age house) 2,151
New (age house ≤ 30) 2,077

#residents(∗) Number of residents
Few (#residents ≤ 2) 2,199
Many (3 ≤ #residents) 2,033

retirement
Retirement status of
chief income earner

Retired 1,285
Not retired 2,947

single Single
Single (#adults = 1 and #children = 0) 859
No single 3,373

social class

Social class of chief income
earner according to NRS
social grades

A or B 642
C1 or C2 1,840
D or E 1,593

unoccupied
Is the house unoccupied for
more than 6 hours per day?

Yes 885
No 3,347
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4.4. Multiple linear regression

Some of the characteristics in table 2 – namely age person, #bedrooms,
#appliances, floor area, income, and #residents – take values in a contin-
uous interval. For these characteristics we train a regression model in order to
estimate the value of the characteristic. We model each of the characteristics
individually and use a multiple linear regression model for its simplicity and
interpretability of the parameters. The model is expressed as follows:

fR : yj = β0 + βTxj + ε, ε ∼ N(0, σ2), (1)

where yj represents the j-th household’s observed value in the training set and
xj denotes the feature vector computed for household j. The coefficients β are
then estimated using Ordinary Least Squares regression (OLS) [38].

5. Evaluation process

This section describes how we use the features and classifiers described above
to derive quantitative results on the potential to reveal household characteristics
from electricity consumption data.

5.1. Performance measures

The first step in determining the performance of a classification outcome is to
count the number of correct classifications and the number of misclassifications
for each class and thus derive the so-called confusion matrix CM . Consider
a classification with K classes (1, ...,K) and S samples. The confusion matrix
consists of K rows and K columns. The element (i, j) of the confusion matrix
represents the number of samples of class i that have been classified as class
j. Therefore, the elements on the main diagonal of the matrix CM , indicated
as CMii (i = 1, ...,K), represent the number of correctly classified samples
for each class. If K = 2, the entries CM11, CM22, CM21, CM12 denote the
number of true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), respectively.

Sokolova and Lapalme provide an extensive overview of different performance
measures for classification tasks [39]. A commonly used performance measure is
the accuracy of a classifier, which is defined as the total number of the correctly
classified samples divided by the total number of samples:

ACC =

∑K
k=1 CMkk

S
. (2)

We compare the accuracy achieved by the five classifiers considered in this
study with the accuracy of two random classifiers. The first is a random guess
classifier (RG), which randomly selects a class assuming equiprobable classes.
This classifier achieves an accuracy of

ACCRG =
1

K
. (3)
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To account for the fact that classes are not always equiprobable, we also consider
a biased random guess classifier (BRG). The BRG classifier uses knowledge of
the proportion of samples of each class in the training data to perform a biased
random decision. The accuracy obtained by the BRG classifier is

ACCBRG =

K∑
k=1

(
Sk

S
)2, (4)

where Sk denotes the number of samples of class k.
The accuracy measure treats all classes equally and is often a weak measure

when dealing with imbalanced classes [39, 40]. For this reason, we also utilize
the Matthews Correlation Coefficient (MCC) to quantify the performance of
the considered classifiers [40]. The MCC ranges between −1 and 1, whereas 1
represents a perfect classification, 0 denotes a classification that is no better than
a random classification, and −1 shows a disagreement between classification and
observation. In case K = 2, the MCC is computed as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

For K > 2, we use the generalization of the MCC to multi-class classifications
as presented by Gorodkin in [41].

While accuracy and MCC allow one to describe the overall performance of a
classifier, utilities are often interested in selecting a specific group of customers,
which we call the target group, such as the group of households belonging to the
class Single. To this end, we compute the true positive rate (TPR) and false pos-
itive rate (FPR), which are defined as TPR = TP

TP+FN and FPR = FP
TN+FP [41].

In the example above, the TPR (or recall) indicates the number of correctly es-
timated Single households out of all households that belong to the class Single.
The FPR indicates how many samples were incorrectly classified as Single. The
receiver operating characteristic (ROC) curve relates these two metrics to each
other, illustrating the trade-off between the benefits (true positives) and costs
(false positives) of a classification. We implement the method described by
Fawcett [42] to create the ROC curve for each target group, or target class, C.
The method requires as input the posterior probability P (C|x) for each sample,
which is the probability that a sample belongs to the class C given the feature
vector x. For K > 2, we combine all households that do not belong to the
target group into a single group.

To evaluate the performance of the multiple linear regression, we first obtain
the estimate ŷj for each household j as

ŷj = β0 + βTxj , (6)

using the parameters β and the feature vector xj . We then compare the estima-
tion with the ground truth data yj by computing the coefficient of determination
(R2) as a performance measure [38]:

R2 = 1− SSres

SStot
. (7)
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R2 ranges between 0 and 1 and denotes the proportion of the variance of the
estimation error

SSres =
∑
j

(yj − ŷj)2 (8)

to the variance of the ground truth data

SStot =
∑
j

(yj − ȳj)2. (9)

We further compute the out-of-sample root-mean-square error (RMSE) to eval-
uate the deviation of the estimation ŷj to the ground truth data yj for each of
the household characteristics [38].

5.2. Training, evaluation, and feature selection

Listing 1 illustrates the training and evaluation procedure we apply to reveal
household characteristics from electricity consumption data. As input, we use
a single week of consumption data for all households, which we divide into four
disjoint subsets. One subset is used for training the classifiers, the others to
validate their performance using a 4-fold cross validation. The performance
metrics of interest (accuracy, MCC and ROC curves) are thus computed for
each week of the data. In each fold of the cross-validation, a feature selection
algorithm determines a subset of the features defined in section 4.1, which is
then used by the classifiers. The output of the classifiers is used along with
ground truth data to compute the confusion matrix for each classifier. The
matrix is then in turn used to compute the performance measures described
above. The performance measures are the only difference in this process when
performing regression instead of classification.

As line 12 in listing 1 indicates, we rely on the feature selection method
SFFS (sequential floating forward selection [43]) to determine a suitable set

of features F̄ ⊆ F, F̄ = ∪|F |i=1cifi, ci = {0, 1}, where fi is the i-th feature in
F , |F | denotes the size of F , and ci = 1 indicates membership of fi in F̄ .
There is an optimal set of features Fopt, with which a classifier achieves the
best value for a specific performance measure (e.g., the highest accuracy). Since
Fopt typically differs from F [44], feature selection methods approximate Fopt

by iteratively running the classification (or regression) using different subsets of
features. After each run these methods compute a figure of merit, which can
be any of the performance measures described in the previous section. There
are different strategies to maximize the figure of merit and thus optimize the
feature set. SFFS is a method that starts with an empty set and consecutively
adds the feature to the set that allows one to achieve the highest improvement
of the figure of merit. In each step, SFFS also considers removing one or more
features from the set, since removing a feature that has been added previously
and adding a different one might lead to an increase of the figure of merit.
We perform feature selection on the training set as described above. Since the
feature selection itself requires both training and test data, we perform another
cross-validation on the three subsets of the training set D \Di in listing 1.
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Our implementation of SFFS relies on the code provided by the authors
of [45]. As an improvement to this existing implementation, we also make the
SFFS maintain a logbook of the states it reaches – where a state is represented
by a (sub)set of features – in order to prevent it entering infinite loops. To limit
the number of iterations and to avoid overfitting, we restrict the removal of
features as follows: Assume feature f is added to state s and state s′ = s ∩ f is
reached. A feature f ′ 6= f is them removed from s′ only if the figure of merit of
s′′ = s′ \ f ′ is more than a threshold T higher than the figure of merit of s. We
set T = 0.005 because, based on our experiments, differences of less than 0.005
in the figure of merit of two states are often due to random effects and thus do
not necessarily imply a significant improvement of s′′ over s. In this way we
avoid overfitting, which could lead to reduced performance when finally using F̄
on a new set of data (which we do in lines 13 and 14 of listing 1). Similarly, we
limit the number of features selected by SFFS to |F̄ | <= 8, because adding more
than 8 features to F̄ often leads to overfitting the feature set to the training
data in our experiments.

1 In : Consumption data D
2 C l a s s i f i e r Cl
3 C h a r a c t e r i s t i c P , c l a s s e s C = {C1, ..., Cn} , n : #c l a s s e s in P
4 Out : Accuracy ACCP,Cl

5 Matthew Cor r e l a t i on C o e f f i c i e n t MCCP,Cl

6 P o s t e r i o r p r o b a b i l i t i e s P (Cj |D)P,Cl ∀ Cj ∈ C
7 begin
8 Divide D i n t o d i s j o i n t subse t s : D = {D1, D2, D3, D4}
9 for each f o l d i = 1, ..., 4 do

10 t e s t s e t = Di

11 t r a i n i n g s e t = D \Di

12 F̄ = s f f s ( t r a i n i n g s e t )
13 model = t r a i n ( t r a i n i n g s e t , F̄ , Cl)
14 P (C|Di) = t e s t ( model , t e s t s e t , F̄ , Cl)
15 CMi = compute con fus i on matrix from P (C|Di) and Di

16 end for
17 P (C|D)P,Cl = {P (C|D1), ..., P (C|D4)}
18 ACCP,Cl = ACC(CM1, CM2, CM3, CM4)
19 MCCP,Cl = MCC(CM1, CM2, CM3, CM4)
20 end

Listing 1: Evaluation process that is performed for each classifier and characteristic.

5.3. Implementation details

We implemented our system in MATLAB. All results presented in the fol-
lowing section are obtained by performing independent experiments for each
of the characteristics listed in table 2, each of the five classifiers (kNN, LDA,
Mahalanobis, SVM, and AdaBoost) described in section 4.3, and two different
performance measures (accuracy and MCC). For regression, we employ multi-
ple linear regression and use the adjusted R2 score as a figure of merit. We
use the kNN, LDA, Mahalanobis, and AdaBoost classifiers from MATLAB’s
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Statistics toolbox2. For kNN, we choose k = 5 and use the Euclidian distance
as the distance metric. In case of AdaBoost, we use the AdaBoostM1 and
AdaBoostM2 learners to classify characteristics with two and more than two
classes, respectively. As for the SVM classifier, we rely on the publicly available
implementation LIBSVM 3 with a radial basis function kernel.

6. Results

To quantify the performance of our system, we first consider a single week of
data in the CER data set separately (week 26). We then repeat our analysis for
each week of data, showing that these results are consistent irrespective of which
week of data is used. Week 26 was chosen as an “exemplary” week since (1)
there is no holiday during this week, (2) the week is not during vacation, and (3)
it includes data from households that joined the trial in early 2010. As we show
later in this section, experiments on all other weeks of the trial have shown no
significant impact (2% standard deviation per characteristic on average) on the
performance of our approach. However, by combining the classification results
over multiple weeks, the accuracy and the MCC can be improved on average by
3 and 6 percentage points, respectively, compared to a single week analysis.

6.1. Accuracy

Figure 4 shows the accuracy achieved by our system and the two baseline
classifiers BG and BRG when estimating the 18 household characteristics of
interest. For each characteristic, ACCC∗ denotes the highest accuracy value
among each of the five classifiers kNN, LDA, Mahalanobis, SVM, and AdaBoost.
Showing the accuracy of the best performing classifier allows us to outline the
accuracy that can be obtained in principle when using our system for estimating
household properties. We leave it to our future work to explore solutions that
allow us to maximize the performance of our system in practical scenarios. The
results in figure 4 are obtained using the accuracy as a figure of merit during
feature selection and without undersampling (i.e., the classifiers have knowl-
edge of the class distribution from the training data). The graph compares
the accuracy of our system (ACCC∗ , left bars) with the accuracy of the bi-
ased random guess classifier (BRG, center bars) and the random guess classifier
(RG, right bars). The characteristics on the x-axis are those listed in table 2 in
section 4.2. Among the 18 characteristics, there are four three-class characteris-
tics (age house, #appliances, social class, floor area) and one four-class
characteristic (#bedrooms). The remaining characteristics are two-class char-
acteristics. For these characteristics, the accuracy of the RG classifier is 33%,
25%, and 50%, respectively. The accuracy of the BRG classifier is computed
using equation 4 and the number of samples per class as listed in table 2. If the
classes are balanced, ACCBRG is equal to ACCRG. Figure 4 shows that ACCC∗

2www.mathworks.de/products/statistics
3www.csie.ntu.edu.tw/˜cjlin/libsvm
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exceeds both ACCRG and ACCBRG for all of the 18 characteristics. ACCC∗ is
4.0 to 33.8 percentage points higher than ACCRG and 4.0 to 22.3 percentage
points higher than ACCBRG. Our system thus outperforms RG and BRG by
22.0 percentage points and 14.2 percentage points, respectively. In terms of
individual characteristics, our approach achieves more than 80% accuracy for
characteristics single, all employed, and unoccupied. The worst accuracy of
ACCC∗ compared to ACCBRG is achieved when estimating the proportion of
energy-efficient light bulbs (lightbulbs) in a household. In this case, ACCC∗

exceeds ACCBRG by only 4.0 percentage points. We believe this results from
the fact that the mere number of lightbulbs is not reflected in the electricity
consumption. We expect this result to improve when classifying the actual us-
age of energy-efficient light bulbs. However, this data is not available in the
CER data set.
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Figure 4: Accuracy of our system (ACCC∗ ) compared to the random guess (ACCRG) and
biased random guess (ACCBRG) classifiers based on week 26 of the trial.

Figure 5 illustrates the accuracy of all five classifiers. For most of the charac-
teristics, the difference between the highest and lowest accuracy is 10 percentage
points or less. The SVM classifier achieves the highest accuracy for 13 of the 18
characteristics. The AdaBoost classifier performs 1 percentage point worse than
the SVM classifier on average. The LDA and Mahalanobis classifiers show sim-
ilar performance for some of the characteristics but have a low accuracy for the
characteristics with imbalanced classes (e.g., floor area, #bedrooms). Among
the considered classifiers, SVM is thus the one providing the overall best per-
formance in terms of accuracy. If our system were to be used to maximize the
estimation accuracy, we would thus use SVM as the default classifier. We leave
it to our future work to verify whether this consideration can be generalized to
other data sets.
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Figure 5: Accuracy of different classifiers for all household characteristics. The classifiers are
trained using data from week 26 of the CER data set.

6.2. Matthews Correlation Coefficient

As described in section 5.1, the Matthews Correlation Coefficient (MCC) is
typically a more suitable performance measure than accuracy when classes are
imbalanced. The MCC “rewards” true positives of the underrepresented classes
and thus “punishes” classifiers that bias their model too strongly towards the
overrepresented classes. It is a performance measure that ranges between -1 (i.e.,
total disagreement between the ground truth data and the estimation) and 1
(total agreement), whereas the MCC is 0 for random estimations [46]. Figure 6
shows the MCC for each of the classifiers considered in our system. In these
experiments, we used the MCC as a figure of merit during feature selection and
use undersampling to prevent classifiers from biasing their model towards the
overrepresented classes. The plot shows that for characteristics related to the
number of people in a household (i.e., single, #residents, family, children),
the considered classifiers achieve high values of MCCC (up to 0.459). Figure 6
further shows that the MCC is also high (up to 0.346) for characteristics related
to occupancy (i.e., employment, all employed, unoccupied, retirement). Fi-
nally, classifying characteristic #appliances provides an MCC of 0.31. The
results indicate that for these characteristics, classification is feasible. Whether
the results are good enough to provide energy efficiency services must be decided
on a per-application basis and is left to future work.

With respect to the individual classifier performance, the kNN classifier per-
forms worse than the LDA, Mahalanobis, SVM, and AdaBoost classifiers across
(almost) all of the characteristics. Among the other four classifiers, neither of
the four classifiers’ performances dominates over all characteristics, which makes
the choice of classifier dependent on the characteristic to be classified. We thus
argue for the use of a comprehensive system that uses a particular classifier
depending on the specific characteristic to be estimated.
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Figure 6: Matthews Correlation Coefficient (MCC) of different classifiers for all household
characteristics. The classifiers are trained using data from week 26 of the CER data set.

6.3. ROC curves

We compute the ROC curves on the basis of the experiments that include
undersampling and use the MCC as a figure of merit during feature selection.
We chose this particular configuration over the one that optimizes for accuracy,
because based on our experiments the latter one results in poor performance
when targeting the underrepresented class of a characteristic. Figure 7 shows
ROC curves for different characteristics and target classes. The title of each
subplot indicates the characteristic and the target class as defined in table 2. In
case of multi-class characteristics, we combine the non-target classes to achieve
a two-class setting. The diagonal, dashed line denotes the ROC curve of the RG
classifier. The other lines show the ROC curves of the kNN, LDA, Mahalanobis,
SVM, and AdaBoost classifiers. For each class and classifier, the graphs show
the true positive rate (TPR, y-axis) that can be achieved at a given false positive
rate (FPR, x-axis) and vice versa. Each point on the ROC curve represents a
household h with a posterior probability P = P (Ci|xh), which indicates the
confidence that h belongs to class Ci given its feature vector xh. All points on
the ROC curve on the right side of this point correspond to households with a
higher posterior probability compared to P .

In practice, the ROC curves enable utilities to choose an FPR (or TPR)
λ when selecting customers of a certain class. Depending on λ, the point
p = ROC(λ) on the curve implicitly defines a subset of households that ex-
hibits an FPR (or TPR) of λ. These are all households that have a higher
posterior probability than the household at p. The number of households in the
subset depends on the selection of λ. Figure 7 shows that when selecting single-
person households (subplot with title “single: yes”), for instance, a utility can
identify 50% of all single-person households with only 10% false positives in the
selected set using the LDA classifier (blue line with ’*’ markers). Thus, if 50%
of false positives is acceptable for the application envisioned by the utility (e.g.,
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a marketing campaign), it can select a threshold such that the resulting subset
of households contains 90% of the single-person households. Overall, for 11 of
the 18 groups, it is possible to identify 50% of the households of a specific group
with a false positive rate lower than 20%. However, the plot also illustrates that
selecting households with high incomes or households that have a large share
of non-energy-saving lightbulbs are difficult to identify, as their ROC curve is
close to the diagonal curve in the plot.

6.4. Regression

The regression model described in section 4.4 allows us to estimate con-
tinuous values of selected characteristics instead of assigning the household
to pre-defined, discrete classes. Figure 8 shows the results for characteristics
age person, #bedrooms, #appliances, floor area, income, #residents. The
x-axis of each plot shows the ground truth values for the characteristics. The
reason for choosing a box plot instead of a scatter plot for some of the charac-
teristics is that the ground truth data is binned (e.g., age person, income) or
provides only a few discrete values (e.g., #bedrooms, #residents). The y-axis
shows the estimation obtained by applying fR from equation 1 to the features
of the test data. The subplot at the bottom right, for instance, shows one box
per group of households with 1, 2, 3, 4, or 5+ (5 or more) residents. The red
lines denote the median of the estimated number of residents for each of the
five groups, and the top and bottom ends of the boxes denote the 25th and
75th percentiles, respectively. For the characteristic floor area, each value is
plotted individually in a scatter plot.

For each of the characteristics, the figure shows the root-mean-square er-
ror (RMSE) and the coefficient of determination (R2). The latter one ranges
between -1 and 1, whereas 0 shows no correlation between the estimated and
the ground truth data and 1 indicates a perfect estimation. The characteris-
tics #residents and #appliances achieve the highest R2 with 0.30 and 0.29,
respectively. The characteristics #bedrooms, age person, and floor area fol-
low suit with 0.14, 0.17, and 0.14, respectively. Finally, income is hardest to
reveal with a very low R2 of 0.083. Although the plots show a clear correlation
between the estimated and the actual values, the R2 score is overall relatively
low. We assume this is due to the fact that the linear regression model is very
sensitive to outliers. Examples of such outliers are households that have their
ground truth incorrectly specified in the questionnaires. These results suggest
that utilities should rely on the estimated class rather than striving for exact,
continuous values. As a part of our future work, we aim at improving the R2

scores and thus the applicability of the regression analysis for utilities by auto-
matically identifying households or groups of households that negatively affect
the performance of the analysis.

6.5. Stability of the results

The results presented thus far are based on the analysis of a single week of
consumption data (week 26). We then extended the experiments to the whole
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the random guess (dashed line). The title of each subplot describes the characteristic and the
target class.

21



26-35

36-45

46-55

56-65

>65

18-25 26-35 36-45 46-55 56-65 >65

age_person

(RMSE=1.2, R
2
=0.17)

2

3

4

5

1 2 3 4 5+

#bedrooms

(RMSE=0.78, R
2
=0.14)

0 5 10 15 20 25 30
0

5

10

15

20

#appliances

(RMSE=2.8, R
2
=0.29)

0 100 200 300 400 500 600
0

100

200

300

floor_area

(RMSE=59, R
2
=0.14)

<15

15-30

30-50

50-75

>75

<15 15-30 30-50 50-75 >75

income

(RMSE=1.2, R
2
=0.083)

0
1
2
3
4
5
6

1 2 3 4 5+

#residents

(RMSE=1.2, R
2
=0.3)

Figure 8: Regression analysis for selected characteristics and consumption data of week 26.
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data set by classifying all of the characteristics on each week of the study, fol-
lowing the procedure described in listing 1. This means we evaluate each week
separately by computing the features on this particular week and (as before)
using different households for training and testing. For these experiments, we
relied on the LDA classifier only, because it is the fastest of the five classifiers
evaluated in this paper. We assume the results can be generalized to the other
classifiers, which is subject to future testing. Figure 9 shows the results of these
experiments. The left plot illustrates the accuracy for each characteristic on
each week encoded with colors ranging from dark blue (30% accuracy) to dark
red (80% accuracy). Similarly, the right plot shows the MCC ranging from dark
blue (0) to dark red (0.5). The plots show that the difference between weeks
is relatively low for most of the characteristics: In terms of accuracy, the aver-
age standard deviation for all characteristics is 0.017. Only the characteristics
floor area and #appliances exhibit large variations with a standard devia-
tion of 0.034 and 0.033, respectively. For these two characteristics, for instance,
the difference between minimum and maximum accuracy is 13.7% and 18%, re-
spectively, whereas for all other characteristics this difference is 6% on average.
For the MCC, the standard deviation is below 0.04 for all characteristics. An
interesting observation can be made for weeks 50 to 57 of the trial, where the
classification performs slightly worse than for the rest of the weeks. This is
particularly true for characteristics that are related to the number of persons in
the household (e.g., single, #residents) or related to the presence of people
(e.g., retirement, employment). We believe that this loss in performance is
due to the fact that these weeks represent summer vacation in Ireland. Thus,
in these weeks we observe non-usual consumption patterns, which cause the
classification to perform less reliably than in other weeks.

The experimental results reported above show that it is possible to reliably
extract household characteristics from electricity consumption data irrespective
of the specific week of data used for the analysis. This implies that utilities might
need to collect as little as one week of fine-grained data (i.e., one sample every
30 minutes) to be able to extract household characteristics. In future work, we
plan to investigate whether the results are also promising when we train the
classifiers using a specific week of data and classify (different) households using
a different week of data. This would allow utilities to include new households
in the analysis (e.g., households with a newly installed smart meter) without
retraining the classifiers. Next, the stability of the results shows that utilities
can build weekly customer profiles using our approach. For each customer, such
a profile can for instance show when a family grows or goes on vacation. The
fact that results are stable across multiple weeks further enables us to identify
“atypical” weeks for individual households as outliers (e.g., when the house is
unoccupied because the family is on vacation). In the following section, we show
that running our analysis on multiple weeks allows us to compensate for such
outliers and improve the performance of the classification.
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the LDA classifier – accuracy (left), MCC (right).

6.6. Multiple weeks

In this section, we combine the results of the classifiers over multiple weeks.
We train the classifiers for each week separately using the households in the
training set. Next, we estimate – for each household in the test set – the class of
the household for each week and then assign the household to the class C that
was estimated most often. We decided for this majority vote for its simplicity;
we leave alternative methods of performing the analysis on multiple weeks (e.g.,
computing the features over a longer time period) for future work. Ultimately,
we create a confusion matrix for each of the characteristics by comparing C with
the actual ground truth. As the number of households varies over the weeks due
to missing meter readings for some households, we only consider households in
the analysis for which data over more than 50 weeks is available. Table 3 lists
both accuracy and MCC of the classification using week 26 only (as described in
detail above) and the results obtained when running the analysis over the whole
period of the trial (75 weeks). The table shows that the accuracy increases by up
to 10 percentage points (3 percentage points on average) and the MCC by up to
10 percentage points (6 percentage points on average). The performance of the
classification only decreases for characteristic house type; however this change
is very low (1 percentage point for the MCC). We thus argue that, in practical
scenarios, utilities interested in maximizing classification performance should
utilize several weeks of data to estimate household characteristics. However,
the computational effort increases linearly with the number of weeks. It is a
part of our future work to investigate this trade-off in more detail.

6.7. Discussion and limitations

The experimental results presented thus far show that three types of char-
acteristics can be inferred particularly well from electricity consumption data.
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Table 3: Accuracy and MCC for each characteristic obtained by assigning to each household
in the test set the majority of classifications over the whole trial (”vote”). The results are
based on the LDA classifier.

Accuracy MCC
Characteristic Week 26 Vote Week 26 Vote
single 80% 82% 0.43 0.5
all employed 79% 79% 0.3 0.32
unoccupied 76% 76% 0.29 0.38
family 69% 74% 0.32 0.42
children 67% 73% 0.31 0.41
cooking 69% 71% 0.22 0.29
retirement 69% 73% 0.35 0.43
#residents 72% 76% 0.45 0.51
employment 67% 72% 0.34 0.44
floor area 45% 50% 0.15 0.21
age person 55% 59% 0.21 0.3
age house 60% 64% 0.19 0.28
house type 59% 59% 0.2 0.19
income 57% 61% 0.16 0.23
lightbulbs 52% 55% 0.062 0.098
social class 43% 53% 0.17 0.22
#appliances 53% 56% 0.29 0.34
#bedrooms 35% 39% 0.15 0.15

Mean 62% 65% 0.26 0.32

These are characteristics that reflect the occupancy state of the house (e.g.,
employment, unoccupied), the number of persons in the house (e.g., single,
#residents, family), and the appliance stock (#appliances). On the other
hand, characteristics related to the dwelling itself (e.g., floor area, #bedrooms)
are more difficult to extract from electricity consumption data. This is due to
the fact that heating and cooling, which is typically reflected in the consumption
data (see section 2), is not included in the consumption data available for this
study. The results show that the income of a household is also difficult to infer
from electricity consumption data.

It is in general important to note that the results presented in this paper
might be affected by inaccuracies in the ground truth data. Questionnaire an-
swers given by the participants in the CER study can be wrong, ambiguous,
or based on estimations. For characteristic all employed, for example, the
questionnaires do not specify full-time or half-time employment. Character-
istic unoccupied relies on the estimated absence rather than on actual mea-
surements. For characteristic income, the process of extracting well-separated
classes from the ground truth data was difficult due to the complex structure of
questions that captures the income of the respondents. For instance, they could
specify their income on a yearly or monthly basis as well as before or after tax
according to the questionnaire.

A major challenge to applying this work in practice is to collect reliable
ground truth data. This step typically requires surveys, which are costly and
cumbersome to perform. Yet, even if only a small percentage of customers
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reply [6], this small amount can be used to train the classifiers and estimate
the characteristics of the remaining households. There is also the possibility to
use ground truth data from a different data set (e.g., collected from a project
performed in a different geographic region), which we plan to evaluate in future
work.

At the moment, we evaluate each of the five classifiers and then decide which
one performs best. To implement the approach in real scenarios, however, we
must decide on the classifier on the basis of the training data only. Similarly
to what we do for feature selection, we propose dividing the training data into
two sets and using one of the sets to train the classifiers and the other set to
evaluate their performance. This process also allows for fine-tuning of each of
the classifiers for each of the characteristics. As this paper merely provides an
overview of the potential of large-scale electricity consumption data analysis,
we leave it for future work to optimize the classifiers accordingly.

7. Implications for households, utilities, and policy makers

The approach presented in this paper automatically reveals household char-
acteristics including the number of inhabitants, the size of the property, or the
number of appliances by analyzing households’ electricity consumption. It uti-
lizes data from smart electricity meters that capture consumption information
at 30-minute intervals and thus can be used in combination with almost all
smart meters that are currently being rolled out throughout the world. On the
basis of these findings, we see several (positive and negative) implications for
households, utilities, and policy makers, which are outlined below.

7.1. Households

Households can benefit from more informative and precise, more enjoyable,
and motivating energy efficiency campaigns: As the analysis provided in this pa-
per allows for identifying energy-relevant household characteristics, it becomes
possible for utilities to benchmark households based on similar demographics
and household type [4, 47]. It also enables assessing a household’s energy effi-
ciency using an energy-efficiency label that is easy to understand. Utilities can
further group similar households for engagement campaigns, summarize infor-
mation or provide tips and tricks that are relevant for each group, or define peer
households to realize concepts based on games to increase user engagement. It
has been shown in the past that efficiency campaigns benefit from tailoring ad-
vice and motivational cues to the recipient [3, 4, 5]. Overall, targeted campaigns
might help to make efficiency-related topics interesting and therefore win the
attention of more households. Ultimately, information can be directed in a way
that triggers savings in terms of both electricity and money.

At the same time, the findings have strong implications for consumer privacy
as well: Our system makes it possible to extract information that consumers
may prefer to keep private, including data related to income, employment status,
status of the relationship, or social class. Thus, households should engage in
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a discussion with those who capture and want to use the data, urging them
to make techniques for privacy protection an inherent feature of the emerging
smart metering infrastructure [48].

7.2. Utilities

Utilities benefit from insights into customers that they can reveal using the
proposed system to estimate household characteristics. The same information
that helps to make energy saving campaigns more effective can help to better
market products and services. The latter includes identifying target households
for specific offerings, e.g., promoting solar panels only to mid to high-income
customers who live in a house rather than in an apartment and offering green
tariffs preferentially to families with young children. The revealed household
characteristics might also help to lower the cost of efficiency campaigns by tar-
geting households with a high potential such as those that show a mismatch
between household characteristics and energy demand. Other actions that be-
come possible include tailoring behavioral campaigns to retired individuals or
young professionals, or to concentrate on behavioral campaigns rather than on
triggering investments in low-income households [2]. Utilities we have collab-
orated with [10] also hypothesize that more directed customer interaction and
better savings advice will improve customer satisfaction and ultimately cus-
tomer retention. The latter is relevant in particular in energy markets that
are liberalized or that face liberalization such that customers can freely choose
their utility [49]. In short, the customer insight gained by applying the proposed
techniques helps utilities to better allocate their budget, offer directed savings
advice, and ultimately boost the impact of their sales and efficiency campaigns.

7.3. Policy makers

Given the advent of the outlined approach, policy makers need to define
the rules that govern the use of metering data. It is crucial to promote the
beneficial effects including increased energy efficiency and more targeted energy
consulting services, and yet to limit the undesired uses of these techniques. As it
is at this stage still unclear what “undesired uses” comprises, the stakeholders
need to investigate the utilities’ and private individuals’ interests and find a
compromise [50]. Whereas the former probably have an interest in leveraging
the retrieved information for marketing campaigns of all sorts, private persons
may demand varying levels of privacy protection [48] – depending on the culture
they are embedded in.

Consequently, policy makers need to strike a balance between a regime that
allows the full materialization of the benefits of smart meter data analytics and
regulation that entirely protects privacy. Here, it is important to define who can
access the data and what it is used for. One viable approach is to let individual
households decide who has access and what they can do with the data [51].
Alternatively, it is technologically also feasible to design solutions in which data
is not sent to the utility but rather processed within the household. Households
that provide their data for training purposes can then be rewarded in such a
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model. However, applications that can be realized by such an approach are
still subject to research. Beyond technical solutions, it is also possible to ensure
that the information can be used at a large scale by designing an opt-out regime
that by default grants utilities access to the data unless an individual actively
decides against it. Experience shows that the number of customers who opt out
is relatively low, as would be the number of individuals who actively decided
for making their data available in an opt-in regime [52].

8. Conclusion and outlook

Alongside the adoption of smart metering systems, data analytic techniques
will emerge to make use of the data beyond the realization of dynamic tariffs,
consumption visualization, and efficient meter-to-cash processes. The work pre-
sented here can help experts to develop tools that allow them to gain important
insights into customers, to provide personalized and scalable energy-efficiency
programs and at the same time provide managers and policy makers with a
precise idea of what can be done with smart metering infrastructure in the near
future. From our perspective, the results are both fascinating from a technical
perspective and also raise concerns given their privacy implications. By showing
what will become possible at a very large scale and how it can be done, we aim to
trigger future research in the technical domain as well as intensify the discussion
on the rules and regulations that will be needed to govern the data analytics.
In particular, we see future technical work especially in the fields of utilizing
correlations between characteristics to further improve the performance of the
estimation, the increase of the number of household characteristics that can be
identified, and approaches to protect consumer privacy. Here it is particularly
interesting to evaluate what can be achieved with more finely grained data (e.g.,
one measurement per minute or even per second) and what the performance loss
is with daily, monthly, or even yearly measurements. We are also investigating
potential applications for utilities on the basis of the results provided in this
paper. Managers at utilities will have to answer the question how to exactly
use the newly-won customer insights for improved energy efficiency programs
to increase customer satisfaction and customer retention. For policy makers,
privacy issues will become more pressing, and the debate needs to be extended
given the very detailed information that can be retrieved when smart metering
systems are installed.
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segmentation according to their domestic energy consumption by the use
of self-organizing maps, in: 6th International Conference on the European
Energy Market (EEM), IEEE, 2009, pp. 1–6.

[23] T. Räsänen, J. Ruuskanen, M. Kolehmainen, Reducing energy consumption
by using self-organizing maps to create more personalized electricity use
information, Applied Energy 85 (9) (2008) 830–840.

[24] J. Kolter, J. Ferreira, A large-scale study on predicting and contextual-
izing building energy usage, in: 25th Conference on Artificial Intelligence
(AAAI), AAAI Press, 2011.

[25] F. McLoughlin, A. Duffy, M. Conlon, Characterising domestic electricity
consumption patterns by dwelling and occupant socio-economic variables:
An Irish case study, Energy and Buildings 48 (2012) 240–248.

30



[26] F. McLoughlin, Characterising domestic electricity demand for customer
load profile segmentation, Ph.D. thesis, Dublin Institute of Technology
(2013).

[27] A. Kavousian, R. Rajagopal, M. Fischer, Determinants of residential elec-
tricity consumption: Using smart meter data to examine the effect of cli-
mate, building characteristics, appliance stock, and occupants’ behavior,
Energy 55 (2013) 184–194.

[28] T. Kohonen, Self-organizing maps, 3rd Edition, Springer, 2001.

[29] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemo-
metrics and Intelligent Laboratory Systems 2 (1) (1987) 37–52.

[30] J. Osborne, Notes on the use of data transformations, Practical Assessment,
Research & Evaluation 8 (6) (2002) 1–8.

[31] M. C. Wang, B. J. Bushman, Using the normal quantile plot to explore
meta-analytic data sets, Psychological Methods 3 (1) (1998) 46–54.

[32] C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.

[33] T. W. Anderson, An introduction to multivariate statistical analysis, John
Wiley & Sons, 1984.

[34] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3)
(1995) 273–297.

[35] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line
learning and an application to boosting, in: 2nd European Conference on
Computational Learning Theory (EuroCOLT), Springer, 1995, pp. 23–37.

[36] N. Japkowicz, The class imbalance problem: Significance and strategies, in:
International Conference on Artificial Intelligence (ICAI), CSREA Press,
2000, pp. 111–117.

[37] H. He, E. A. Garcia, Learning from imbalanced data, IEEE Transactions
on Knowledge and Data Engineering 21 (9) (2009) 1263–1284.

[38] J. O. Rawlings, S. G. Pantula, D. A. Dickey, Applied regression analysis:
A research tool, Springer, 1998.

[39] M. Sokolova, G. Lapalme, A systematic analysis of performance measures
for classification tasks, Information Processing & Management 45 (4) (2009)
427–437.

[40] B. W. Matthews, Comparison of the predicted and observed secondary
structure of T4 phage lysozyme, Biochimica et Biophysica Acta (BBA)-
Protein Structure 405 (2) (1975) 442–451.

31



[41] J. Gorodkin, Comparing two K-category assignments by a K-category cor-
relation coefficient, Computational Biology and Chemistry 28 (5) (2004)
367–374.

[42] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters
27 (8) (2006) 861–874.

[43] P. Pudil, F. Ferri, J. Novovicova, J. Kittler, Floating search methods for
feature selection with nonmonotonic criterion functions, in: Pattern recog-
nition, 1994. Vol. 2 - Conference B: Proceedings of the 12th IAPR Interna-
tional Conference on Computer Vision & Image Processing, Vol. 2, IEEE,
1994, pp. 279–283.

[44] A. Whitney, A direct method of nonparametric measurement selection,
IEEE Transactions on Computers 100 (9) (1971) 1100–1103.

[45] S. Theodoridis, A. Pikrakis, K. Koutroumbas, D. Cavouras, Introduction
to pattern recognition: A matlab approach, Elsevier, 2010.

[46] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, H. Nielsen, Assessing the
accuracy of prediction algorithms for classification: An overview, Bioinfor-
matics 16 (5) (2000) 412–424.

[47] M. Chetty, D. Tran, R. E. Grinter, Getting to green: Understanding re-
source consumption in the home, in: 10th International Conference on
Ubiquitous Computing (UbiComp), ACM, 2008, pp. 242–251.

[48] E. McKenna, I. Richardson, M. Thomson, Smart meter data: Balancing
consumer privacy concerns with legitimate applications, Energy Policy 41
(2012) 807–814.

[49] A. Payne, P. Frow, Relationship marketing: Key issues for the utilities
sector, Journal of Marketing Management 13 (5) (1997) 463–477.

[50] S. R. Rajagopalan, L. Sankar, S. Mohajer, H. V. Poor, Smart meter privacy:
A utility-privacy framework, in: 2nd International Conference on Smart
Grid Communications (SmartGridComm), IEEE, 2011, pp. 190–195.

[51] E. L. Quinn, Smart metering and privacy: Existing laws and competing
policies. A report for the Colorado public utilities commission (2009).

[52] E. J. Johnson, D. Goldstein, Do defaults save lives?, Science 302 (5649)
(2003) 1338–1339.

32


	Introduction
	Related Work
	The CER data set
	System design
	Features
	Household characteristics and class labels
	Classifiers
	Multiple linear regression

	Evaluation process
	Performance measures
	Training, evaluation, and feature selection
	Implementation details

	Results
	Accuracy
	Matthews Correlation Coefficient
	ROC curves
	Regression
	Stability of the results
	Multiple weeks
	Discussion and limitations

	Implications for households, utilities, and policy makers
	Households
	Utilities
	Policy makers

	Conclusion and outlook

