PRKCQ

Protein-coding gene in the species Homo sapiens From Wikipedia, the free encyclopedia

PRKCQ

Protein kinase C theta (PKC-θ) is an enzyme that in humans is encoded by the PRKCQ gene.[5] PKC-θ, a member of serine/threonine kinases, is mainly expressed in hematopoietic cells[5] with high levels in platelets and T lymphocytes, where plays a role in signal transduction. Different subpopulations of T cells vary in their requirements of PKC-θ, therefore PKC-θ is considered as a potential target for inhibitors in the context of immunotherapy.[6]

Quick Facts Available structures, PDB ...
PRKCQ
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesPRKCQ, PRKCT, nPKC-theta, protein kinase C theta
External IDsOMIM: 600448; MGI: 97601; HomoloGene: 21263; GeneCards: PRKCQ; OMA:PRKCQ - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_008859
NM_178075

RefSeq (protein)

NP_032885

Location (UCSC)Chr 10: 6.43 – 6.58 MbChr 2: 11.18 – 11.31 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Close

Function

Summarize
Perspective

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role. The protein encoded by this gene is one of the PKC family members. It is a calcium-independent and phospholipid-dependent protein kinase. This kinase is important for T-cell activation. It is required for the activation of the transcription factors NF-kappaB and AP-1, and may link the T cell receptor (TCR) signaling complex to the activation of the transcription factors.[7] PKC-θ also play a role in the apoptosis of lymphoid cells where it negatively influence and delay the aggregation of spectrin in an early phase of apoptosis.[8]

The role of PKC-θ in T cells

PKC-θ has a role in the transduction of signals in T cells, the kinase influences their activation, survival and growth. PKC-θ is important in the signal pathway integrating signals from TCR and CD28 receptors. A junction between an APC (an antigen presenting cell) and a T cell through their TCR and MHC receptors forms an immunological synapse. The active PKC-θ is localized in immunological synapse of T cells between the cSMAC (central supramolecular activation cluster containing TCR) and pSMAC (peripheral supramolecular activation cluster containing LFA-1 and ICAM-1). In regulatory T cells, PKC-θ is depleted from the region of immunological synapse, whereas in effector T cells, PKC-θ is present.[6] As a result of co-stimulation by CD28 and TCR, PKC-θ is sumoylated by SUMO1 predominantly on the sites Lys325 and Lys506. Sumoylation is important because of forming of the immunological synapse.[9] Subsequently, PKC-θ phosphorylates SPAK (STE20/SPS1-related, proline alanine-rich kinase) that activates the transcription factor AP-1 (activating protein-1). PKC-θ also initiates the assembly of proteins Carma-1, Bcl-10 and Malt-1 by phosphorylation of Carma-1. This complex of three proteins activates the transcription factor NF-κB (nuclear factor-κB). Furthermore, PKC-θ plays a role in the activation of transcription factor NF-AT (nuclear factor of activated T cells).[10] Thus, PKC-θ promotes inflammation in effector T cells.[6] PKC-θ plays a role in the activation of ILC2 and contribute to the proliferation of Th2 cells.[11] The kinase PKC-θ is crucial for function of Th2 and Th17.[6] Moreover, PKC-θ can translocate itself to the nucleus and by phosphorylation of histones increases the accessibility of transcriptional-memory-responsive genes in memory T cells.[12] PKC-θ plays a role in anti-tumor activity of NK cells. It was observed that in mice without PKC-θ, MHCI-deficient tumors are more often.[13]

The possible application of its inhibitors

Properties of PKC-θ make PKC-θ a good target for therapy in order to reduce harmful inflammation mediated by Th17 (mediating autoimmune diseases) or by Th2 (causing allergies)[11] without diminishing the ability of T cells to get rid of viral-infected cells. Inhibitors could be used in T-cell mediated adaptive immune responses. Inhibition of PKC-θ downregulates transcription factors (NF-κB, NF-AT) and cause lower production of IL-2. It was observed that animals without PKC-θ are resistant to some autoimmune diseases.[6] PKC-θ could be a target of inhibitors in the therapy of allergies.

The problem is that inhibitors of PKC-θ targeting catalytic sites may have toxic effects because of low specificity (catalytic sites among PKCs are very similar). Allosteric inhibitors have to be more specific to concrete isoforms of PKC.[6] s.

Interactions

PRKCQ has been shown to interact with:

PRKCQ has been shown to phosphorylate CARD11 as part of the NF-κB signaling pathway.[18]

Inhibitors

  • (R)-2-((S)-4-(3-Chloro-5-fluoro-6-(1H-pyrazolo[3,4-b]pyridin- 3-yl)pyridin-2-yl)piperazin-2-yl)-3-methylbutan-2-ol[19]

See also

References

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.