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Bi-Chromatic Minimum Spanning Trees
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Abstract

Let G be a set of disjoint bi-chromatic straight line
segments and H be a set of red and blue points in
the plane, no three points are collinear. We give tight
upper bounds on the maximum degree of a node in
the color conforming minimum weight spanning tree
(MST) formed by G and H. We also consider bounds
on the total length of the edges of 1) the planar MST
and the unrestricted MST, 2) the greedy planar span-
ning tree and the unrestricted MST, 3) the greedy
planar spanning tree and the planar MST.

1 Introduction

Let G be a set of disjoint bi-chromatic straight line
segments, and H a set of red and blue points in the
plane, no three points are collinear. We obtain a span-
ning tree T of G (resp. H) by finding a set of |G| − 1
(resp. |H| − 1) edges, which connect vertices of differ-
ent colors (“color conforming”) and form an acyclic
connected component. (For the spanning tree of G,
input edges and non-input edges alternate, non-input
edges may intersect, but are not allowed to intersect
input edges.) If T must not contain intersections we
call it a planar spanning tree,1 otherwise we simply
call T an (unrestricted) spanning tree.
A color conforming minimum weight spanning tree

(MST) of G or H is a spanning tree of minimum total
length of the added edges. Variants of this problem
include finding the MST of a set of (mono-chromatic)
points or line segments in the plane [2, 3, 1]. For
these variants a greedy algorithm like Kruskal’s [8] is
known to yield the optimal solution [4, 3]. In [2, 3, 9]
it is shown that in these cases the maximum degree
of a node in the MST is bounded by five and seven,
respectively.
Little is known about the MSTs of G or H. [6]

gives a survey on geometry graphs of H. Recently, it
was shown that a color conforming spanning tree of
G or H is always obtainable [5]. It was also shown
by illustration that the MST of a given G may con-
tain intersections if one uses a greedy algorithm like
Kruskal’s [4]. (Kruskal’s algorithm adds edges in in-
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1Note that the MST of the set of points or line segments in
the plane can not contain intersections [3, 5]. For bi-chromatic
straight line segments, however, intersections may occur.
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Table 1: An overview of some of our results.

creasing length order, and discards edges creating a
cycle in the graph built so far [8].) We show by illus-
tration that Kruskal’s algorithm may also introduce
intersections, when H is given as input. Modifying
Kruskal’s algorithm to check for such intersections
and eliminating them, leads to a greedy algorithm
which we will refer to as greedy planar algorithm.
See [1, 7] for different flavors on non-crossing span-
ning trees.

Definition 1 Given a set G (resp. H) as defined
above, we denote by: Ls the total length of the in-
put straight line edges/segments, Lou (resp. Pou) the
total length of the edges of the unrestricted MST,
Lop (resp. Pop) the total length of the edges of the
MST and Lgp (resp. Pgp) the total length of the edges
of the greedy planar spanning tree.

Summary of our results:
1) We show a bound for the maximum node degree in
a color conforming MST.
2) We show the given bounds in Table 1.

2 Maximum Node Degree

Lemma 1 The maximum degree of a node in a color
conforming MST of a set G of n bi-chromatic disjoint
line segments is not upper bounded by a fixed number,
but only by the size of the input.

Proof. Trivially the maximum degree of a node of the
MST of a set of bi-chromatic disjoint line segments is
bounded by n, because every vertex of one color can
be connected to at most n vertices of the other color.
This upper bound is tight, because an example achiev-
ing this bound is shown in Figure 1. For the set G
of line segments in Figure 1, suppose the vertex v is
red in color and the vertices {a, b, c, d, e, f, w} are all
blue in color and are at a distance r1 from v. We
refer to these vertices as lying on an inner circle Ci
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Figure 1: Any spanning tree
where the vertex v has a
smaller degree than the num-
ber of line segments does not
have minimum total length.

of radius r1 with v as its center. Suppose the vertices
{g, h, i, j, k, l} are red in color and are each at a dis-
tance r2 = 2r1 from v. We refer to these vertices as
lying on an outer circle Co of radius r2 = 2r1 s.t. v is
its center. We make the following observations:
1) There are exactly n − 1 color conforming
edges, each of which has length r1, namely
{(v, a), (v, b), (v, c), (v, d), (v, e), (v, f)}. Selecting
these n− 1 edges gives a spanning tree.
2) All red vertices visible from an arbitrary blue ver-
tex on the inner circle are r1+ε away from this vertex,
with the exception of v, which is r1 away.
3) All blue vertices visible from an arbitrary red ver-
tex on the outer circle are r1+ε away from this vertex.
4) All vertices on the inner circle (outer circle) have
the same color, hence it is impossible for an edge to be
placed between any pair, since the color conforming
characteristics would be violated if we did so.
From the above listed observations, selecting any

subset of n−1 edges other than the edges from v to the
vertices on the inner circle must include at least one
edge with a length greater than r1. Therefore no such
subset of edges can be a minimum weight spanning
tree. Consequently, the spanning tree formed by the
above edges in Figure 1 is of minimum length. �

Lemma 2 The maximum degree of a node in a color
conforming MST of a set of n red and n blue points is
not upper bounded by a fixed number, but only by n.

Proof. Let the set H contain all the vertices in Fig-
ure 1, but none of the line segments. Using similar
arguments as in the proof of Lemma 1, we observe
that there are exactly 2n − 1 color conforming edges
having length r1. Selecting these 2n − 1 edges gives
a MST, since all other edges apart from those has
length r1 + ε, ε > 0. �

3 Bounds on Variants of the MST Problem

In [5] it was shown by illustration that the MST of bi-
chromatic line segments may introduce intersections
using a greedy algorithm like Kruskal’s [4]. We show
by illustration in Figure 2 (second diagram) that such
intersections may occur when given a set of red and
blue points in the plane. Such intersections can how-
ever be avoided by modifying, for example, Kruskal’s
greedy algorithm, so that at each step we rather add
the non-crossing edge with the least weight, which
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Figure 2: A set of
bi-chromatic points for
which the greedy span-
ning tree is by a factor
of 2 worse than the pla-
nar MST and the unre-
stricted MST (top: set
of points; second: un-
restricted MST; third:
planar MST; bottom:
greedy planar spanning
tree).

does not introduce cycles. Examples in this section
clearly show that the modified algorithm may not give
the optimal solution. The question then is whether
there is a bound on the greedy planar solution in the
worst case. We investigate such questions and more.
Our results are collected in Table 1.

Observation 1 If the solution may contain edge in-
tersections, then a greedy approach (e.g. Kruskal’s al-
gorithm) always yields the optimal solution.

Given is a graph G = (V,E) (resp. H = (V,E)), such
that V is the set of bi-chromatic line segment end-
points (resp. red and blue points) and E is the set of
lines of sight between red and blue points. The proof
that Kruskal’s algorithm finds a minimum spanning
tree of G (resp. H) follows from the proof [4] that
Kruskal’s algorithm finds a minimum spanning tree
of any weighted, connected, undirected graph.

3.1 Input is a Set of Red and Blue Points

Theorem 3 Let H be any set of red and blue points

in the plane. Then supH

[
Pgp

Pop

]
≥2 and supH

[
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]
≥2.

Proof. Choose m ∈ IN, m≥ 1, and let φ= arctan 1
m2 .

Then define the points (see Figure 2):

red blue
am = (0, 0), bm = (m2, 1),
ak =

(
k2

m2 −m2, 1 + k
m

)
, bk =

(
cos(kφ

m ),− sin(
kφ
m )

)
.

∀k; 0 ≤ k < m. To show the ratios, let m→∞. Then
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= 2. �
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Figure 3: Left: set of bi-chromatic line segments; mid-
dle: planar MST; right: greedy planar spanning tree.

Theorem 4 Let H be any set of red and blue points

in the plane. Then supH

[
Pop
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]
≥ 3

2 .

Proof. We consider the set of points

red blue
a11 = (0, 0), a12 = (ε, 0),
b11 = (−1, ε), b12 = (1, ε).

Then

lim
ε→0
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Pou
= lim

ε→0
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2
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�

3.2 Input is a Set of Bi-chromatic Line Edges

Theorem 5 Let G be any set of bi-chromatic
straight line segments in the plane. Then

supG

[
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]
=∞ and supG
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]
=∞.

Proof. We consider the set of bi-chromatic line seg-
ments in Figure 3 left: a1 = (−2,−2), a2 = (−5,−2),
b1 = (−5, 2), b2 = (−2, 1), c1 = (0, 0), c2 = (3, x),
d1 = (3, 0), and d2 = (x, 1) with x ≥ 10. The pla-
nar MST consists of the edges (a2, b1), (b2, c1), and
(a2, d1) and has a total length of ≈ 13.98, indepen-
dent of the value of x (see Figure 3 middle).
The modified Kruskal algorithm, however, consid-

ers the edge (a1, b2) before the edge (a2, d1). As
a consequence it finds the spanning tree shown in
Figure 3 right, which consists of the edges (a1, b2),
(c1, b2), and (d1, c2) and thus has a total length of
3 +
√
3 + x > 14.73 for x ≥ 10. Therefore we have
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3+x

4+
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68
, which goes to infinity as x goes

to infinity. Trivially it follows that supG
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since Lop ≥ Lou. �

Theorem 6 Let G be any set of bi-chromatic
straight line segments in the plane. Then

supG

[
Lop−Ls

Lou−Ls

]
=∞.

Proof. We consider the set of bi-chromatic line seg-
ments in Figure 4 left. It is a1 = (4, 1), a2 = (x, 1),
b1 = (x, x), b2 = (1, 3), c1 = (0, x), c2 = (0, 5),
d1 = (−x, 0), d2 = (−4, 0), e1 = (−x,−x), e2 =
(−1,−2), f1 = (2,−6), f2 = (2,−x) with x ≥ 15. The
MST consists of the edges (b2, a1), (e2, f1), (e2, a1),
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Figure 4: Left: set of bi-chromatic line segments; mid-
dle: unrestricted MST; right: planar MST.

(d2, a1) and (c2, f1) and has a total length of ≈ 33.67,
independent of the value of x (see Figure 4 mid-
dle). The planar MST, however, consist of the edges
(b2, a1), (e2, f1), (e2, a1), (d2, a1) and (c1, b2), since
any other connection leads to an intersection (see Fig-
ure 4 right). As a consequence the planar MST has a
total length ≥ 34.54 for x ≥ 15. The ratio of the two
total lengths goes to infinity as x goes to infinity. �

Theorem 7 Let G be any set of bi-chromatic
straight line segments in the plane. Then,

supG
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]
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Proof. Choose m ∈ IN, m ≥ 3, s ∈ IR, s > 3, and

r ∈ [ 34 , 1) and let t(k) =
√
1− ( rk

m )
2. Then define the

line segments (see Figure 5):
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)
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(
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)
, a22 = (−s− 1, 1) ,
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∀k; 1 ≤ k ≤ m. To show the above ratios, we let
m → ∞ and s → ∞. To simplify the double limit
m→∞ and s→∞, choose s = m2. This yields

lim
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Theorem 8 Let G be any set of bi-chromatic
straight line segments in the plane. Then

supG

[
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Lop

]
≥ 2.

Proof. Choose m ∈ IN, m ≥ 3, s ∈ IR, s ≥ 6, and let
t(k) =

√
5− ( k

m )
2. Then define the line segments

red blue
a11 = ( 1, 1) , a12 = (1 + s, 1) ,
a21 = ( 0, 3) , a22 = ( − s, 3) ,
b11 = ( 2, 0) , b12 = ( 0, 0) ,
b21 = (−3, 2) , b22 = ( − 1, 2) ,
ck1 =

(
k
m , t(k)

)
, ck2 =

(
k
m , s+ t(k)

)
,
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Figure 5: Left: set of bi-chromatic line segments; mid-
dle: unrestricted MST; right: planar MST.
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Figure 6: Left: set of bi-chromatic line segments; mid-
dle: planar MST; right: greedy planar spanning tree.

∀k; 1 ≤ k ≤ m. To show the above ratios, we let
m → ∞ and s → ∞. To simplify the double limit
m→∞ and s→∞, choose s = m2. This yields

lim
m→∞

Lgp

Lop
= lim

m→∞
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≥ lim

m→∞

2m3 + 2m2

m3 + 2m2 + 40
= 2.

�

3.3 Lower Bounds

Trivially the lower bounds of all the ratios in Table 1
is 1, because the numerator in each ratio is never less
than the denominator. Moreover, instances, where
the numerator in each ratio equal to the denominator,
can be constructed.

3.4 Upper Bounds

Lemma 9 The upper bound of the ratios
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,
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,
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,
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,
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, and

Lop

Lou
is n.

Proof. Let d denote the length of the diagonal of
the box bounding a given set G of bi-chromatic line
segments or H of red and blue points in the plane.
Trivially, Lou ≥ d and Pou ≥ d. The total length of
edges TG of any tree of G is ≤ (2n−1)d. Similarly, the
total length of edges TH of any tree of H is ≤ (n−1)d
(see Figure 7). Hence we have Pgp

Pop
≤ n, Pgp

Pou
≤ n,

Pop

Pou
≤ n, Lgp
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≤ n, Lgp
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≤ n, and Lop
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≤ n. �

Figure 7: Set of bi-chromatic points for the upper
bounds of the ratios.

4 Open Problem

An algorithm to determine a color conforming planar
MST of a set of bi-chromatic line segments or red
and blue points within a factor k still remains open.
Moreover upper bounds other than n on the ratios:
Pgp

Pop
, Pgp

Pou
, Pop

Pou
, Lgp

Lop
, Lgp

Lou
, Lop

Lou
, also remains open.
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