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Näıve Bayes is one of the most efficient and effective inductive learning algorithms for
machine learning and data mining. Its competitive performance in classification is sur-
prising, because the conditional independence assumption on which it is based is rarely
true in real-world applications. An open question is: what is the true reason for the
surprisingly good performance of Näıve Bayes in classification?

In this paper, we propose a novel explanation for the good classification performance
of Näıve Bayes. We show that, essentially, dependence distribution plays a crucial role.
Here dependence distribution means how the local dependence of an attribute distributes
in each class, evenly or unevenly, and how the local dependences of all attributes work
together, consistently (supporting a certain classification) or inconsistently (canceling
each other out). Specifically, we show that no matter how strong the dependences among
attributes are, Näıve Bayes can still be optimal if the dependences distribute evenly in
classes, or if the dependences cancel each other out. We propose and prove a sufficient
and necessary condition for the optimality of Näıve Bayes. Further, we investigate the
optimality of Näıve Bayes under the Gaussian distribution. We present and prove a
sufficient condition for the optimality of Näıve Bayes, in which the dependences among

attributes exist. This provides evidence that dependences may cancel each other out.
Our theoretic analysis can be used in designing learning algorithms. In fact, a

major class of learning algorithms for Bayesian networks are conditional independence-
based (or CI-based), which are essentially based on dependence. We design a depen-
dence distribution-based algorithm by extending the ChowLiu algorithm, a widely
used CI based algorithm. Our experiments show that the new algorithm outperforms
the ChowLiu algorithm, which also provides empirical evidence to support our new
explanation.

Keywords: Näıve Bayes; optimality; classification.

1. Introduction

Classification is a fundamental issue in machine learning and data mining. In clas-

sification, the goal of a learning algorithm is to construct a classifier given a set of

training examples with class labels. Typically, an example E is represented by a

tuple of attribute values (x1, x2, . . . , xn), where xi is the value of attribute Xi. Let

C represent the class variable, and let c be the value of C. In this paper, we assume

that there are only two classes: + (the positive class) and − (the negative class).
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A classifier is a function that assigns a class label to an example. From the

probability perspective, according to the Bayes rule, the probability of an example

E = (x1, x2, . . . , xn) being class c is

p(c|E) =
p(E|c)p(c)

p(E)
.

E is classified as the class C = + if and only if

fb(E) =
p(C = +|E)

p(C = −|E)
≥ 1, (1)

where fb(E) is called a Bayesian classifier.

Assume that all attributes are independent given the class; that is,

p(E|c) = p(x1, x2, . . . , xn|c) =
n

∏

i=1

p(xi|c).

The resulting classifier is then:

fnb(E) =
p(C = +)

p(C = −)

n
∏

i=1

p(xi|C = +)

p(xi|C = −)
. (2)

The function fnb(E) is called a Näıve Bayesian classifier, or simply Näıve Bayes

(NB). Figure 1 shows graphically the structure of Näıve Bayes. In Näıve Bayes,

each attribute node has no parent except the class node.

Näıve Bayes is the simplest form of a Bayesian network. In Näıve Bayes, all

attributes are independent of each other given the class. This assumption is called

the conditional independence assumption. It is obvious that the conditional inde-

pendence assumption is rarely true in most real-world applications. A straightfor-

ward approach to overcome the limitation of Näıve Bayes is to extend its structure

to represent explicitly the dependences among attributes. Tree augmented Näıve

Bayes (TAN) is an extended tree-like Näıve Bayes,8 in which the class node points

directly to all attribute nodes and an attribute node can have only one parent from

another attribute node (in addition to the class node). Figure 2 shows an example

of TAN. TAN is a specific case of general augmented Näıve Bayesian networks or
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Fig. 1. An example of Näıve Bayes.
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Fig. 2. An example of TAN.
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Fig. 3. An example of ANB.

simply augmented Näıve Bayes (ANB), in which the class node also points directly

to all attribute nodes, but there is no limitation on the links among attribute nodes

(except that they do not form any directed cycle). Figure 3 shows an example

of ANB. From the view of probability, an ANB G represents a joint probability

distribution, below.

pG(X1, . . . , Xn, C) = p(C)

n
∏

i=1

p(Xi|pai, C), (3)

where pai denotes the parents of Xi from attribute nodes. ANB is a special form of

Bayesian networks in which no node is specified as a class node. It has been shown

that any Bayesian network can be represented by an ANB.19 Therefore, any joint

probability distribution can be represented by an ANB.

When we apply a logarithm to fb(E) in Eq. (1), the resulting classifier log fb(E)

is the same as fb(E), in the sense that an example E belongs to the positive class,

if and only if log fb(E) ≥ 0. fnb in Eq. (2) is similar. In this paper, we assume

that, given a classifier f , an example E belongs to the positive class, if and only if

f(E) ≥ 0.
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It has been observed that Näıve Bayes works well in classification.11,12,15 The

reason, however, is unknown. This paper is motivated by exploring the underlying

reason. The remainder of this paper is organized as follows. Section 2 introduces the

related work. In Sec. 3, we propose a new explanation for the good performance of

Näıve Bayes. In Sec. 4, we investigate the optimality of Näıve Bayes under the Gaus-

sian distribution. Section 5 presents a new algorithm for learning TAN based on the

idea in Sec. 3. This paper concludes with discussion and directions for future work.

2. Related Work

Many empirical comparisons between Näıve Bayes and modern decision-tree algo-

rithms such as C4.516 have shown that Näıve Bayes predicts equally well as

C4.5.11,12,15 The good performance of Näıve Bayes is surprising because it makes

an assumption that is almost always violated in real-world applications: given the

class, all attributes are independent.

An open question is, what is the true reason for the surprisingly good perfor-

mance of Näıve Bayes on most classification tasks? Intuitively, since the conditional

independence assumption on which it is based almost never holds, its performance

should be poor. It has been observed, however, that its classification accuracy does

not depend on the dependences among attributes; i.e. Näıve Bayes may still have

high accuracy on the datasets in which strong dependences exist.4

Domingos and Pazzani4 present an explanation that Näıve Bayes owes its good

performance to the zero-one loss function. This function defines the error as the

number of incorrect classifications.7 Unlike other loss functions, such as the squared

error, the zero-one loss function does not penalize inaccurate probability estimation

as long as the maximum probability is assigned to the correct class. That means that

Näıve Bayes may change the posterior probabilities of each class, but the class with

the maximum posterior probability is often unchanged. Thus, the classification is

still correct, although the probability estimation is poor. For example, let us assume

that the true probabilities p(+|E) and p(−|E) are 0.9 and 0.1, respectively, and that

the probability estimates p′(+|E) and p′(−|E) produced by Näıve Bayes are 0.6 and

0.4. Obviously, the probability estimates are poor, but the classification (positive)

is not affected.

Domingos and Pazzani’s explanation4 is verified by the work of Frank et al.,6

which shows that the performance of Näıve Bayes is much worse when it is used

for regression (predicting a continuous value). Moreover, evidence exists that Näıve

Bayes produces poor probability estimates.1,14

In our opinion, however, Domingos and Pazzani’s4 explanation does not uncover

why the strong dependences among attributes could not flip the classification. For

the preceding example, why could the dependences not make the probability esti-

mates p′(+|E) and p′(−|E) produced by Näıve Bayes be 0.4 and 0.6? The key point

here is that we need to know how dependence affects classification, and under what

conditions dependence does not affect classification.
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Some other related works explore the properties of Näıve Bayes,9,10,17,18 but

none of them give an explicit condition for the optimality of Näıve Bayes. Cooper3

suggests a strategy to avoid the need of the conditional independence assumption.

In the case of only two classes, the usual conditional independence assumption can

be replaced by the weaker “linked dependence” assumption below:

p(x1, x2, . . . , xn|+)

p(x1, x2, . . . , xn|−)
=

n
∏

i=1

p(xi|+)

p(xi|−)
.

However, it still does not explain why Näıve Bayes works well when the conditional

independence assumption is violated.

In this paper, we propose a new explanation, that the classification of Näıve

Bayes is essentially affected by dependence distribution, instead of dependence.

In addition, we present a sufficient condition for the optimality of Näıve Bayes

under the Gaussian distribution. Further, we present a new learning algorithm for

TAN based on dependence distribution, which slightly outperforms the traditional

dependence-based learning algorithm.

3. A New Explanation of the Good Classification Performance

of Näıve Bayes

In this section, we propose a new explanation of the good classification perfor-

mance of Näıve Bayes. The basic idea comes from the following observation. In

a given dataset, two attributes may depend on each other, but the dependence

may distribute evenly in each class. Clearly, in that case, the conditional indepen-

dence assumption is violated, but Näıve Bayes is still the optimal classifier. Further,

what eventually affects classification is the combination of dependences among all

attributes. If we look at just two attributes, there may exist strong dependence

between them that affects classification. When the dependences among all attributes

work together, however, they may cancel each other out and no longer affect clas-

sification. Therefore, we argue that it is the distribution of dependences among all

attributes that affects classification, not merely the dependences themselves.

Before discussing the details, we introduce the formal definition of the equiva-

lence of two classifiers under zero-one loss, which is used as a basic concept.

Definition 1. Given an example E, two classifiers f1 and f2 are said to be equal

under zero-one loss on E, denoted by f1(E)
.
= f2(E), if f1(E) ≥ 0 if and only if

f2(E) ≥ 0. If for every example E in the example space, f1(E)
.
= f2(E), f1 and f2

are said to be equal under zero-one loss, denoted by f1
.
= f2.

3.1. Local dependence distribution

As discussed in Sec. 1, ANB can represent any joint probability distribution. Thus

we choose an ANB as the underlying probability distribution. Our motivation is
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to find out under what conditions Näıve Bayes classifies identically as the underly-

ing ANB.

Assume that the underlying probability distribution is an ANB G with two

classes {+, −}, and the dependences among attributes are represented by the arcs

among attribute nodes. For each node, the influence of its parents is quantified

by the correspondent conditional probabilities. We call the dependence between

a node and its parents local dependence of this node. How do we measure the

local dependence of a node in each class? Naturally, the ratio of the conditional

probability of the node given its parents over the conditional probability of the

node without its parents, reflects how strong its parents affect the node in each

class. Thus we have the following definition.

Definition 2. For a node X on ANB G, the local dependence derivatives of X at

X = x in classes + and − are defined as below.

dd+
G(x|pa(x)) =

p(x|pa(x), +)

p(x|+)
, (4)

dd−G(x|pa(x)) =
p(x|pa(x),−)

p(x|−)
. (5)

Essentially, dd+
G(x|pa(x)) reflects the strength of the local dependence of node

X in class +, which measures the influence of X ’s local dependence on classification

in class +. dd−
G(x|pa(x)) is similar. Further, we have the following observations.

(1) When X has no parent, then

dd+
G(x|pa(x)) = dd−

G(x|pa(x)) = 1.

(2) When dd+
G(x|pa(x)) ≥ 1, X ’s local dependence in class + supports the classifi-

cation of C = +. Otherwise, it supports the classification of C = −. Similarly,

when dd−G(x|pa(x)) ≥ 1, X ’s local dependence in class − supports the classifi-

cation of C = −. Otherwise, it supports the classification of C = +.

Intuitively, when the local dependences in two classes support different classi-

fications, they partially cancel each other out, and the final classification that the

local dependence supports is the class with the greater local dependence derivative.

A different case is that of the local dependences in two classes supporting the same

classification. Then, they work together to support that classification.

The preceding discussion shows that the ratio of the local dependence derivatives

in both classes ultimately determines which classification the local dependence of

a node supports. Thus we have the following definition.

Definition 3. For a node X on ANB G, the local dependence derivative ratio of

X at X = x, denoted by ddrG(x), is defined below:

ddrG(x) =
dd+

G(x|pa(x))

dd−G(x|pa(x))
. (6)
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From Definition 3, ddrG(x) quantifies the influence of X ’s local dependence on

classification. Further, we have the following observations.

(1) If X has no parents, ddrG(x) = 1.

(2) If dd+
G(x|pa(x)) = dd−

G(x|pa(x)), ddrG(x) = 1. This means that X ’s local depen-

dence at X = x distributes evenly in class + and class −. Thus, the dependence

does not affect classification, no matter how strong is the dependence.

(3) If ddrG(x) > 1, X ’s local dependence at X = x in class + is stronger than that

in class −. ddrG(x) < 1 means the opposite.

3.2. Global dependence distribution

Now we investigate how the local dependences of all attributes work together, and

explore under what condition an ANB works exactly the same as its correspondent

Näıve Bayes. The following theorem establishes the relation of an ANB and its

correspondent Näıve Bayes.

Theorem 1. Given an ANB G and its correspondent Näıve Bayes Gnb (i.e.

remove all the arcs among attribute nodes from G) on attributes X1, X2, . . . , Xn,

assume that fb and fnb are the classifiers corresponding to G and Gnb, respectively.

For example E = (x1, x2, . . . , xn), the equation below is true.

fb(x1, x2, . . . , xn) = fnb(x1, x2, . . . , xn)

n
∏

i=1

ddrG(xi), (7)

where
∏n

i=1 ddrG(xi) is called the dependence distribution factor at example E,

denoted by DFG(E).

Proof. According to Eq. (3), we have:

fb(x1, . . . , xn) =
p(+)

p(−)

n
∏

i=1

p(xi|pa(xi), +)

p(xi|pa(xi),−)

=
p(+)

p(−)

n
∏

i=1

p(xi|+)

p(xi|−)

n
∏

i=1

p(xi|pa(xi), +)p(xi|−)

p(xi|pa(xi),−)p(xi|+)

= fnb(E)

n
∏

i=1

ddr+
G(xi|pa(xi))

ddr−G(xi|pa(xi))

= fnb(E)

n
∏

i=1

ddrG(xi)

= DFG(E)fnb(E). (8)

From Theorem 1, we know that, in fact, it is the dependence distribution fac-

tor DFG(E) that determines the difference between an ANB and its correspondent
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Näıve Bayes in classification. Further, DFG(E) is the product of local dependence

derivative ratios of all nodes. Therefore, it reflects the global dependence distri-

bution (how each local dependence distributes in each class, and how all local

dependences work together). For example, when DFG(E) = 1, G has the same

classification as Gnb on E. However, it is not a necessary condition. The theorem

below presents a sufficient and necessary condition.

Theorem 2. Given an example E = (x1, x2, . . . , xn), an ANB G is equal to its

correspondent Näıve Bayes Gnb under zero-one loss; i.e. fb(E)
.
= fnb(E), if and

only if fb(E) ≥ 1, DFG(E) ≤ fb(E); or when fb(E) < 1, DFG(E) > fb(E).

Proof. The proof is straightforward from Definition 1 and Theorem 1.

From Theorem 2, if the distribution of dependences among attributes satisfies

certain conditions, Näıve Bayes classifies exactly the same as the underlying ANB,

even though there may exist strong dependences among attributes. Moreover, we

have the following observations:

(1) When DFG(E) = 1, the dependences in ANB G has no influence on classifi-

cation. That is, the classification of G is exactly the same as its correspondent

Näıve Bayes Gnb. There exist three cases for DFG(E) = 1:

• no dependence exists among attributes,

• for each attribute X on G, ddrG(x) = 1; that is, the local dependence of each

node distributes evenly in two classes,

• the influence that some local dependences support classifying E into C = +

is fully canceled out by the influence that other local dependences support

classifying E into C = −.

(2) DFG(E) = 1 is only a sufficient, not necessary, condition for fb(E)
.
= fnb(E).

Theorem 2 gives a sufficient and necessary condition, and explains why Näıve

Bayes still produces accurate classification even in the datasets with strong

dependences among attributes.

(3) The dependences in an ANB flip (change) the classification of its correspondent

Näıve Bayes, only if the condition given by Theorem 2 is not true.

Theorem 2 represents a sufficient and necessary condition for the optimality of

Näıve Bayes on example E. If for each example E in the example space, fb(E)
.
=

fnb(E); i.e. fb
.
= fnb, then Näıve Bayes is globally optimal.

4. Conditions for the Optimality of Näıve Bayes

In Sec. 3, we proposed that Näıve Bayes is optimal if the dependences among

attributes cancel each other out. That is, under the circumstance, Näıve Bayes is

still optimal even though dependences do exist. In this section, we investigate Näıve

Bayes under the multivariate Gaussian distribution and prove a sufficient condition
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for the optimality of Näıve Bayes, assuming the dependences among attributes exist.

That provides us with theoretic evidence that the dependences among attributes

may cancel each other out.

Let us restrict our discussion to two attributes X1 and X2, and assume that the

class density is a multivariate Gaussian in both the positive and negative classes.

That is,

p(x1, x2, +) =
1

2π|
∑

+ |1/2
e−

1
2
(x−µ+)T P

−1

+
(x−µ+),

p(x1, x2,−) =
1

2π|
∑

− |1/2
e−

1
2
(x−µ−)T

P

−1

−

(x−µ−),

where x = (x1, x2),
∑

+ and
∑

− are the covariance matrices in the positive and

negative classes respectively, |
∑

− | and |
∑

+ | are the determinants of
∑

− and
∑

+,
∑−1

+ and
∑−1

− are the inverses of
∑

− and
∑

+; µ+ = (µ+
1 , µ+

2 ) and µ− = (µ−
1 , µ−

2 ),

µ+
i and µ−

i are the means of attribute Xi in the positive and negative classes

respectively, i = 1, 2, and (x − µ+)T and (x − µ−)T are the transposes of (x − µ+)

and (x − µ−).

We assume that two classes have a common covariance matrix
∑

+ =
∑

− =
∑

,

and X1 and X2 have the same variance σ in both classes. Then, when applying a

logarithm to the Bayesian classifier, defined in Eq. (1), we obtain the classifier fb

below.

fb(x1, x2) = log
p(x1, x2, +)

p(x1, x2,−)

= −
1

σ2
(µ+ + µ−)

∑−1
(µ+ − µ−) + xT

∑−1
(µ+ − µ−).

Then, because of the conditional independence assumption, we have the corre-

spondent Näıve Bayes fnb below.

fnb(x1, x2) =
1

σ2
(µ+

1 − µ−
1 )x1 +

1

σ2
(µ+

2 − µ−
2 )x2.

Assume that

∑

=

(

σ σ12

σ12 σ

)

.

X1 and X2 are independent if σ12 = 0. If σ 6= σ12, we have

∑−1
=





−σ
σ2
12

−σ2

σ12

σ2
12

−σ2

σ12

σ2
12

−σ2

−σ
σ2
12

−σ2



 .

Note that an example E is classified into the positive class by fb, if and only

if fb ≥ 0. fnb is similar. Thus, when fb or fnb is divided by a nonzero positive

constant, the resulting classifier is the same as fb or fnb. Then,

fnb(x1, x2) = (µ+
1 − µ−

1 )x1 + (µ+
2 − µ−

2 )x2, (9)
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and

fb(x1, x2) =
1

σ2
12 − σ2

(σ12(µ
+
2 − µ−

2 ) − σ(µ+
1 − µ−

1 ))x1

+
1

σ2
12 − σ2

(σ12(µ
+
1 − µ−

1 ) − σ(µ+
2 − µ−

2 ))x2 + a, (10)

where a = − 1
σ2 (µ+ + µ−)

∑−1
(µ+ − µ−), a constant independent of x.

For any x1 and x2, Näıve Bayes has the same classification as the Bayesian

classifier if

fb(x1, x2)fnb(x1, x2) ≥ 0. (11)

That is,

1

σ2
12 − σ2

((σ12(µ
+
1 − µ−

1 )(µ+
2 − µ−

2 ) − σ(µ+
1 − µ−

1 )2)x2
1

+ (σ12(µ
+
1 − µ−

1 )(µ+
2 − µ−

2 ) − σ(µ+
2 − µ−

2 )2)x2
2

+ (2σ12(µ
+
1 − µ−

1 )(µ+
2 − µ−

2 ) − σ((µ+
1 − µ−

1 )2 + (µ+
2 − µ−

2 )2))x1x2)

+ a(µ+
1 − µ−

1 )x1 + a(µ+
2 − µ−

2 )x2 ≥ 0. (12)

Equation (12) represents a sufficient and necessary condition for fnb(x1, x2)
.
=

fb(x1, x2). But it is too complicated. Let (µ+
1 − µ−

1 ) = (µ+
2 − µ−

2 ). Equation (12) is

simplified as below.

w1(x1 + x2)
2 + w2(x1 + x2) ≥ 0, (13)

where w1 =
(µ+

1
−µ−

1
)2

σ12+σ , and w2 = a(µ+
1 − µ−

1 ). Let x = x1 + x2, and y = w1(x1 +

x2)
2+w2(x1+x2). Figure 4 shows the area in which Näıve Bayes classifies identically

as the Bayesian classifier.

The following theorem presents a sufficient condition that Näıve Bayes works

identically as the Bayesian classifier.

y=w1x+w2


x


y


Fig. 4. Näıve Bayes classifies identically as the Bayesian classifier in the shaded areas.
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Theorem 3. fb
.
= fnb, if one of the following two conditions is true:

(1) µ+
1 = −µ−

2 , µ−
1 = −µ+

2 , and σ12 + σ > 0.

(2) µ+
1 = µ−

2 , µ+
2 = µ−

1 , and σ12 − σ > 0.

Proof. (1) If µ+
1 = −µ−

2 , µ−
1 = −µ+

2 , then (µ+
1 − µ−

1 ) = (µ+
2 − µ−

2 ). It is straight-

forward to verify that − 1
σ2 (µ++µ−)

∑−1(µ+−µ−) = 0. That is, for the constant a

in Eq. (10), we have a = 0. Since σ12 + σ > 0, Eq. 13 is always true for any x1 and

x2. Therefore, fb
.
= fnb.

(2) If µ+
1 = µ−

2 , µ+
2 = µ−

1 , then (µ+
1 −µ−

1 ) = −(µ+
2 −µ−

2 ), and a = 0. Thus, Eq. (12)

is simplified as below.

(µ+
1 − µ−

1 )2

σ12 − σ
(x1 + x2)

2 ≥ 0. (14)

It is obvious that Eq. 14 is true for any x1 and x2, if σ12 − σ > 0. Therefore,

fb
.
= fnb.

Theorem 3 represents an explicit condition that Näıve Bayes is globally optimal.

It shows that Näıve Bayes is still optimal under certain conditions, even though the

conditional independence assumption is violated. In other words, the conditional

independence assumption is not the necessary condition for the optimality of Näıve

Bayes. This provides evidence that the dependence distribution may play the crucial

role in classification.

5. Learning TAN Based on Dependence Distribution

Learning Bayesian networks from data has received considerable attention in recent

years, and many learning algorithms have been proposed. A major class of those

learning algorithms are based on conditional independence among attributes, called

CI-based algorithms. In other words, those algorithms are based on dependence. For

example, conditional mutual information, depicted in Eq. (15), has often been used

to measure the dependence between two attributes.

I(Xi, Xj |C) =
∑

xi,xj ,c

p(xi, xj , c)ln
p(xi, xj |c)

p(xi|c)p(xj |c)
. (15)

Those dependence-based algorithms, however, emphasize the strength of depen-

dences among attributes, not the influence of dependences on classification. For

example, the conditional mutual information in Eq. (15) reflects actually the depen-

dence between two attributes, not the influence of dependence on classification. To

make this point clear, we transform Eq. (15) into an equivalent equation below.

I(Xi, Xj |C) =
∑

xi,xj

(

p(xi, xj , +)ln
p(xi|xj , +)

p(xi|+)
+ p(xi, xj ,−)ln

p(xi|xj ,−)

p(xi|−)

)

. (16)
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A question arises when one thinks of the meaning of I(Xi, Xj |C). When

p(xi|xj , +)

p(xi|+)
> 1

and

p(xi|xj ,−)

p(xi|−)
< 1,

intuitively, the dependences between Xi and Xj at Xi = xi and Xj = xj in both

class + and − support classifying E into class +. Thus, in both cases, evidence

supports classifying E into class +. Therefore, from the viewpoint of classification,

the information association between Xi and Xj should be the sum of them, but

they actually cancel out each other in Eq. (16). Similarly, when

p(xi|xj , +)

p(xi|+)
> 1

and

p(xi|xj ,−)

P (xi|−)
> 1,

in both cases, evidence supports different classifications. Thus, in terms of classifi-

cation, they should cancel each other out, but Eq. (16) reflects the opposite fact.

When we consider the influence of dependences on classification, as discussed

in Sec.3, dependence distribution plays a crucial role. We modify I(Xi, Xj |C) and

obtain a conditional mutual information ID(Xi, Xj |C) to reflect the dependence

distribution as below.

ID(Xi, Xj |C) =
∑

xi,xj

p(xi, xj)

(

ln
p(xi|xj , +)

p(xi|+)
− ln

p(xi|xj ,−)

p(xi|−)

)2

. (17)

Actually, ID(Xi, Xj |C) reflects the dependence derivative ratio (see Definition 3)

of Xi or Xj ; i.e. the influence of dependence between Xi and Xj on classification.

From the preceding discussion, it is reasonable to use dependence derivative ratio

to construct a classifier, rather than dependence.

To verify that dependence distribution plays a more important role in classifi-

cation, we extend the ChowLiu algorithm8 that is based on Eq. (15) to a depen-

dence distribution-based algorithm using Eq. (17). Our new algorithm is identical

to ChowLiu, except I(Xi, Xj |C) is replaced by ID(Xi, Xj |C). We call this algorithm

ddr-ChowLiu, depicted below.

Algorithm ddr-ChowLiu

(1) Compute ID(Xi, Xj |C) between each pair of attributes, i 6= j.

(2) Build a complete undirected graph in which the nodes are the attributes

X1, . . . , Xn. Annotate the weight of an edge connecting Xi to Xj by

ID(Xi, Xj |C).

(3) Build a maximum weighted spanning tree.



FA 1
January 26, 2005 9:52 WSPC/115-IJPRAI SPI-J068 00398

Exploring Conditions for the Optimality of Näıve Bayes 195

Table 1. Description of the datasets used in
the experiments of comparing the ddr-ChowLiu

algorithm to the Chowliu algorithm.

Dataset Attributes Class Instances

Australia 14 2 690
breast 10 10 683
cars 7 2 700
dermatology 34 6 366
ecoli 7 8 336
hepatitis 4 2 320
import 24 2 204
iris 5 3 150
pima 8 2 392
segment 19 7 2310
vehicle 18 4 846
vote 16 2 232

(4) Transform the resulting undirected tree to a directed one by choosing a root

attribute and setting the direction of all edges to be outward from it.

(5) Construct a TAN model by adding a node labeled by C and adding an arc

from C to each Xi.

We have conducted empirical experiments to compare our ddr-ChowLiu algo-

rithm to the ChowLiu algorithm. We use twelve datasets from the UCI repository13

to conduct our experiments. Table 1 lists the properties of the datasets that we use

in our experiments. For the datasets with more than two classes, we extend Eq. (17)

to the following:

ID(Xi, Xj |C) =
∑

xi,xj ,c

p(xi, xj)

(

ln
p(xi|xj , c)

p(xi|c)
− Avg(Xi, Xj , C)

)2

, (18)

where Avg(Xi, Xj , C) is defined below.

Avg(Xi, Xj , C) =
∑

xi,xj ,c

ln
p(xi|xj ,c)

p(xi|c)

|c|
, (19)

where |C| is the number of classes.

Our experiments follow the procedure below:

(1) The continuous attributes in the dataset are discretized by Fayyad and Irani’s

entropy-based method.5

(2) For each dataset, run ChowLiu and ddr-ChowLiu with the five-fold cross-

validation, and obtain the classification accuracy on the testing set unused

in the training.

(3) Repeat Step 2 twenty times and calculate the average classification accuracy

on the testing data.
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Table 2. Experimental results of the accu-
racies of ChowLiu and ddr-ChowLiu.

Dataset ChowLiu ddr-ChowLiu

Australia 76.7± 0.32 76.1 ± 0.33
breast 73.3 ± 0.37 73.3 ± 0.33
cars 85.4 ± 0.37 87.1± 0.28

dermatology 97.7 ± 0.17 97.7 ± 0.17
ecoli 96.1± 0.23 95.8 ± 0.20
hepatitis 70.5 ± 0.42 70.5 ± 0.51
import 93.6 ± 0.37 95.6± 0.34

iris 91.2 ± 0.48 91.3 ± 0.50
pima 70.5 ± 0.46 71.8± 0.51

segment 82.3 ± 0.17 82.4± 0.16

vehicle 89.3± 0.23 85.7 ± 0.30
vote 78.6 ± 0.61 79.1± 0.53

Table 2 shows the experimental results of average classification accuracies of

ChowLiu and ddr-ChowLiu.

We conduct an unpaired two-tailed t-test using 95% as the confidence level

and the better one for a given dataset is reported in bold. Table 2 shows that

ddr-ChowLiu outperforms ChowLiu in five datasets, loses in three datasets, and

ties in four datasets. Overall, the experimental results show that ddr-ChowLiu

slightly outperforms ChowLiu. Therefore, if we use dependence distribution directly,

instead of using dependence, it will result in a better classifier. This experiment also

provides evidence that it is dependence distribution that affects classification, not

dependence merely.

6. Conclusions

In this paper, we proposed a new explanation of the classification performance of

Näıve Bayes. We showed that, essentially, dependence distribution, i.e. how the

local dependence of an attribute distributes in each class, evenly or unevenly, and

how the local dependences of all attributes work together, consistently (support a

certain classification) or inconsistently (cancel each other out), play a crucial role

in classification. This explains why, even with strong dependences, Näıve Bayes still

works well; i.e. when those dependences cancel each other out, there is no influence

on classification. In this case, Näıve Bayes is still the optimal classifier. In addition,

we investigated the optimality of Näıve Bayes under the Gaussian distribution,

and presented the explicit sufficient condition under which Näıve Bayes is globally

optimal, even though the conditional independence assumption is violated.

We extended the ChowLiu algorithm by using dependence distribution to con-

struct TAN, instead of using mutual information that only reflects the dependences

among attributes merely. The extended algorithm outperforms the ChowLiu algo-

rithm. This provides empirical evidence to support our explanation.
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Ideally, a simple, sufficient and necessary condition for the optimality of Näıve

Bayes is desirable. Our work is just a beginning toward this goal. Another interesting

direction for future work is how to incorporate dependence distribution into the

traditional dependence-based learning algorithms for Bayesian networks. As shown

in the paper, to study a classifier, it is more reasonable to consider the influence

of dependences (dependence distribution) on classification than it is to consider

merely dependences.
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