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Abstract

This paper's main result is to show that under the conditions imposed by the Maloney-

Wandell color constancy algorithm, color constancy can in fact be expressed in terms of a

simple independent adjustment of the sensor responses|in other words as a von Kries adap-

tation type of coe�cient rule algorithm|so long as the sensor space is �rst transformed to a

new basis. Our overall goal is to present a theoretical analysis connecting many established

theories of color constancy. For the case where surface re
ectances are 2-dimensional and illu-

minants are 3-dimensional, we prove that perfect colour constancy can always be solved for by

an independent adjustment of sensor responses, which means that the colour constancy trans-

form can be expressed as a diagonal matrix. This result requires a prior transformation of

the sensor basis and to support it we show in particular that there exists a transformation of

the original sensor basis under which the non-diagonal methods of Maloney-Wandell, Forsyth's

MWEXT and Funt and Drew's lightness algorithm all reduce to simpler, diagonal-matrix the-

ories of colour constancy. Our results are strong in the sense that no constraint is placed on

the initial sensor spectral sensitivities. In addition to purely theoretical arguments, the paper

contains results from simulations of diagonal-matrix-based color constancy in which the spectra

of real illuminants and re
ectances along with the human cone sensitivity functions are used.

The simulations demonstrate that when the cone sensor space is transformed to its new basis

in the appropriate manner, a diagonal matrix supports close to optimal colour constancy.

Keywords: Color, color constancy, computer vision, Maloney{Wandell, von Kries adapta-

tion, coe�cient rule, Finite{Dimensional Models
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1 Introduction

We present a theoretical analysis connecting several well-known color constancy theories|von Kries

adaptation[32], Land's retinex[20], the Maloney-Wandell algorithm[23], Funt and Drew's lightness

algorithm[10], Forsyth's MWEXT and CRULE[8]|in which we prove that under an appropriate

change of basis for the sensor space, for illuminants and re
ectances that are well-approximated by

low-dimensional �nite-dimensional models every one of these methods results in a simple indepen-

dent adjustment of coe�cients in this new space.

Color has a long history in machine vision and has proved to be of great use in object recognition

[29, 12], image segmentation [16, 1] and a host of other visual tasks [27, 11, 30, 5]. For many of

these algorithms, their performance degrades to the extent to which colors change with changing

illumination. We need colors to be stable descriptors for object surface properties|the same object

seen under a blue sky or under a tungsten lamp should have approximately the same perceived

color. The ability to discount the e�ect of the illuminant is called color constancy.

A color camera, like the human eye, has 3 color sensors; hence in a color image each pixel is a

3-vector, one component per sensor channel. A color constancy algorithm maps each color vector p

to a descriptor vector d which is independent of the illuminant. This mapping is usually considered

linear|a matrix transform is applied to color vectors. Indeed, under Forsyth's formulation [8] of

the color constancy problem, the transform must be linear. In this paper we provide a theoretical

analysis along with simulation results demonstrating that if the transform is linear, then it need only

be diagonal. In other words, a diagonal matrix transform su�ces as a vehicle for color constancy.

Our results are strong in the sense that they place no constraints on the spectral sensitivities of

the visual system.

Competing computational schemes for simulating color constancy apply di�erent structural

constraints to the form of the matrix transform. Many authors assume that the transform is a

diagonal matrix, and in the model of Maloney and Wandell [23] the transform is a 2� 3 projection.

Only Forsyth's MWEXT [8] algorithm places no constraints on the form of the transform. In

studying color constancy algorithms, therefore, we must ask two questions:

1. Independent of the computational scheme for computing the matrix, how well in principle

can a particular matrix form discount the e�ect of the illuminant?

2. How successful is a given color constancy algorithm in solving for the correct (or best) trans-

form?

Our main focus in this paper is on the �rst of these questions. In answer to it we show that for

cases in which a �nite-dimensional linear model of su�ciently low dimension captures the shapes of

both the spectral power distribution for illumination and the spectral re
ectance function, then the

form of the matrix required in order to support perfect color constancy is just diagonal. Since the

o�-diagonal terms are all zero, this is equivalent to the simple application of a coe�cient rule[8, 32].
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From the von Kries adaptation model (see [33]) through Land's retinex scheme [20] to Forsyth's

recent CRULE theory, the diagonal matrix transform has long been proposed as a viable mech-

anism for color constancy. Unfortunately many authors [32] have graphically demonstrated that,

except for the case of narrow-band sensors, a diagonal matrix often performs poorly in discount-

ing illumination change. Consequently the majority of recent color constancy theories discard the

computational simplicity of the diagonal matrix transform for more complex matrix forms which

supposedly can model illuminant change better.

In contrast to this trend Finlayson et al. [7] have recently proved that diagonal matrix transforms

can support perfect color constancy under weak model constraints|the illuminant space linearly

spanned by a 2-dimensional basis and the re
ectance space by a 3-dimensional basis. We term this

set of constraints a 2-3 model. That analysis employs a generalization, which we will use here, of

the concept of a diagonal matrix transform in which a sensor transformation T is allowed prior to

the application of a diagonal matrix:

d = Dp (1 simple diagonal matrix constancy)

T d = DT p (2 generalized diagonal matrix constancy)

In the 2-3 case, given a known reference patch in each scene, the correct diagonal matrix transform

can be computed to yield perfect color constancy. The elegant color constancy algorithm of Mal-

oney et. al. does not require a reference patch, but it operates under a di�erent set of restrictions.

These restrictions, which we will call the 3-2 restrictions, require a 3-dimensional illuminant space

and a 2-dimensional re
ectance space.

The main result of this paper is to show that, in a world in which illuminants and re
ectances

are governed by Maloney's 3-2 restrictions, color constancy can always be formulated as a diagonal

matrix transform independent of the spectral characteristics of the sensors. In a world in which

these restrictions hold only approximately, a diagonal matrix transform theory of color constancy

will still do a good job.

The rami�cations of this result for theories of color constancy are widespread. The most im-

mediate implication is that the 3-2 version of Maloney's theory of color constancy is a diagonal-

matrix-based theory of color constancy. Finite-dimensional restrictions are also at the foundation

of Funt and Drew's [10] color constancy algorithm. Their computational method simpli�es, via our

analysis, to diagonal matrix operations in the 3-2 case and as such reduces to Blake's version of

the Lightness algorithm [2]. Finally, our work plays a unifying role in connecting the theories of

Maloney and Forsyth.

Forsyth's work on color constancy consists of two algorithms: MWEXT and the simpler CRULE.

In MWEXT, color constancy proceeds by parameterizing all the possible matrices mapping the

gamut of image colors into the gamut of descriptors. The more colorful the image, the smaller the

set of possible mappings becomes. Unfortunately this algorithm is extraordinarily complex and, as

Forsyth suggests, may not be suitable for machine vision. Restricting color constancy transforms to
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diagonal matrices results in Forsyth's simpler CRULE algorithm. This algorithm can be e�ciently

implemented and is a suitable candidate for a machine vision implementation of color constancy.

Our results prove that Maloney's theory of color constancy is a sub{theory of the computationally

tractable CRULE.

Our work also has application in the allied problem of color balancing. Video cameras cannot

account for changing illumination. Consequently, images taken under di�erent illuminants must

be balanced before display to a human observer. This balancing usually takes the form of a simple

scaling in each color channel|the color video image is transformed by a diagonal matrix. To

ensure illumination change is successfully corrected, video cameras are normally equipped with

narrow band sensors. The results in this paper indicate that a diagonal matrix transform is a

suitable balancing technique independent of the sensor sensitivities used|broad-band sensors are

as suitable a choice as narrow-band sensors.

In section 2 we provide the necessary de�nitions required to develop a mathematical model

for color image formation and color constancy. In section 3 we develop techniques for �nding the

sensor transform T which a�ords perfect diagonal matrix color constancy under 3-2 restrictions. It

should be noted that this analysis does not place restrictions on the possible form of the initial set

of sensors. In section 4 we formally connect our results with other computational theories of color

constancy. Finally in section 5 we present simulation results which evaluate the performance of

generalized diagonal matrix color constancy. The appendix discusses the role of complex numbers

in theories of color constancy.

2 The Model

The light re
ected from a surface depends not only on the spectral properties of illumination

and surface re
ectance, but also on other confounding factors such as specularities and mutual

illumination. To simplify our analysis we will, in line with many other authors, develop our theory

for the simpli�ed Mondrian world; a Mondrian is a planar surface composed of several, overlapping,

matte (Lambertian) patches. We assume that the light striking the Mondrian is of uniform intensity

and is spectrally unchanging. In this world the only factor confounding the retrieval of surface

descriptors is illumination.

Light re
ected from a Mondrian falls onto a planar array of sensors and at each location X in

the sensor array there are three di�erent classes of sensors. The value registered by the kth sensor,

p
X
k (a scalar), is equal to the integral of its response function multiplied by the incoming color

signal. For convenience, we arrange the index X such that each pXk corresponds to a unique surface

re
ectance:

p
X
k =

Z
!

C
X(�)Rk(�) d� (3 Color appearance)

where � is wavelength, Rk(�) is the response function of the kth sensor, CX(�) is the color signal
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at X and the integral is taken over the visible spectrum !. The color signal is the product of a

single surface re
ectance S(�) multiplied by the ambient illumination E(�): C(�) = E(�)S(�).

Henceforth we drop the index X .

2.1 Finite-Dimensional Models

Illuminant spectral power distribution functions and surface spectral re
ectance functions are well

described by �nite-dimensional models. A surface re
ectance vector S(�) can be approximated as:

S(�) �

dSX
i=1

Si(�)�i (4)

where Si(�) is a basis function and � is a dS-component column vector of weights. Maloney [21]

presents evidence which suggests surface re
ectances can be well modelled by a set of between 3

and 6 basis vectors. Similarly we can model illuminants with a low{dimension basis set:

E(�) �

dEX
j=1

Ej(�)�j (5)

Ej(�) is a basis function and � is a dE dimensional vector of weights. Judd [17] measured 605

daylight illuminants and showed they are well modelled by a set of 3 basis functions.

Basis functions are generally chosen by performing a principal component analysis of each data

set (re
ectances and illuminants) in isolation [4, 25, 22]. This type of analysis is weak in the sense

that it does not take into account how illuminant, re
ectance and sensor interact in forming a color

vector (eqn. (3)). Recently Marimont and Wandell [24] developed a method for deriving re
ectance

and illuminant basis functions which best model color appearance|Eqn. (3) is the foundation

for their method. They conclude that a 2{dimensional basis set for surface re
ectance and a 3{

dimensional basis set for illumination is su�cient to model the appearance of the 462 Munsell chips

[25] under a wide range of black-body radiator illuminants. This is precisely the 3-2 case.

2.2 Lighting and Surface Matrices

Given �nite-dimensional approximations to surface re
ectance, the color appearance eqn. (3) can

be rewritten as a matrix transform. A lighting matrix �(�) maps re
ectances, de�ned by the �

vector, onto a corresponding color vector:

p = �(�)� (6)

where �(�)ij =
R
! Ri(�)E(�)Sj(�)d�. The lighting matrix is dependent on the illuminant weighting

vector �, with E(�) given by eqn. (5). The roles of illumination and re
ectance are symmetric; we
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can rewrite the color appearance matrix of eqn. (6) as a surface matrix transforming an epsilon

vector:

p = 
(�)� (7)

where 
(�)ij =
R
! Ri(�)Ej(�)S(�)d�, with S(�) de�ned in eqn. (4). This symmetry is a key part

of the analysis presented in section 3.

2.3 The Color Constancy Problem

The aim of any color constancy algorithm is to transform the color vector p to its corresponding

illuminant independent descriptor d.

d = Qp (8)

where Q is a linear transform. However, there is no consistent de�nition for a descriptor. For

example Maloney [23] uses the surface weight vector � for the descriptor (eqn. (9)); in contrast

Forsyth de�nes a descriptor to be the appearance of a surface seen under a canonical illuminant,

de�ned by the weight vector c (eqn. (10)).

d
M = [�(�)]�1�(�)� (9 Maloney's descriptor)

d
F = �(c)[�(�)]�1�(�)� (10 Forsyth's descriptor)

Because each color constancy algorithm applies a linear transform to color vectors, di�erent

descriptor de�nitions di�er only by a �xed linear transform, for example dF = �(c)dM . Therefore,

demonstrating the adequacy of a diagonal matrix for one descriptor form demonstrates its adequacy

for color constancy in general. In the analysis of section 3 we use Forsyth's descriptor form.

2.4 Illuminant Invariance

Color constancy seeks illuminant invariant color descriptors. A closely related problem is to �nd

illuminant invariant relationships between color vectors instead. One candidate relationship, which

we will call diagonal invariance, is the diagonal matrix mapping between the color vectors of the

two surfaces:

D
ij
p
i;x = p

j;x
: (11)

Here i and j index two di�erent surface re
ectances, x refers to a particular (single) illuminant

indexed by x, and Dij is the diagonal invariant matrix. 1 2

1Note that Dij means the entire 3� 3 diagonal matrix relating p
i;x and p

j;x, not the ij component of a matrix D.
2Diagonal invariance is sometimes referred to as ratio invariance, because the diagonal elements of Dij equal the

ratios of the components of p
j;x over p

i;x.
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In this diagonal model, for all illuminants x, Dij maps the color vector for surface i to the color

vector for surface j. Diagonal invariance plays a key role in the lightness computations of Horn [14]

and Blake [2], the image segmentation work of Hurlbert [15] and in the object recognition work of

Funt and Finlayson [12]. Brill [3] develops a more general theory of illuminant invariance, where

the relationship between surfaces can be a general linear transform.

3 Diagonal Matrix Transform and the 3-2 Case

Finlayson et al. [7] proved that assuming illumination is 2-dimensional and re
ectance 3-dimensional

(the 2-3 case), there exists a transformed sensor basis in which a diagonal matrix supports perfect

color constancy. In this section we prove the equivalent result for the 3-2 case.

Theorem 1 If illumination is 3-dimensional and surface re
ectance 2-dimensional then there ex-

ists a sensor transform T for which a diagonal matrix supports perfect color constancy.

We prove Theorem 1 in two stages. First we demonstrate a symmetry between diagonal in-

variance and diagonal matrix color constancy. Then we prove the existence of a sensor transform

which supports diagonal invariance.

Lemma 1 A diagonal matrix supports perfect color constancy if and only if there is diagonal

invariance.

Proof. When a diagonal matrix supports perfect color constancy, illumination change is exactly

modelled by a diagonal matrix.

p
i;c = Dec

p
i;e ; pj;c = Dec

p
j;e (12)

where i; j index surface re
ectance and the diagonal matrix Dec maps the appearance of surfaces

under an arbitrary illuminant e to their appearance with respect to the canonical illuminant c.

Clearly we can map p
i;e to pj;e by applying a diagonal matrix.

p
i;e = D

ij
p
j;e (13)

Applying the color constancy transform Dec to both sides of equation (13) we see that:

D
ec
p
i;e = D

ec
D
ij
p
j;e (14)

Because transformation by diagonal matrices is commutative we can rewrite equation (14) as

D
ec
p
i;e = D

ij
D
ec
p
j;e (15)

7



Substituting equations (12) into equation (15) we see that

p
i;c = D

ij
p
j;c (16)

Equation (16) is a statement of diagonal invariance. The above argument is clearly symmetric|

given diagonal invariance, diagonal matrix color constancy must follow. For the proof, we need only

change the meaning of the superscripts in equations (12)-(16) so the �rst indexes the illuminant

and the second re
ectance (Dec becomes a diagonal invariant and Dij a color constancy transform).

Lemma 2 Given 3-2 restrictions, there exists a transformation of the sensor response functions

for which, independent of the illuminant, color vectors are diagonally invariant.

Proof. Under the 3-2 restrictions the appearance of a re
ectance � under an illuminant � can be

written in terms of two surface matrices. To see this, �rst note that matrix 
(�) in eqn. (7) can be

decomposed into two parts. If the 2{vector � has components (�
1
; �

2
)T , then de�ning two special


 matrices associated with the two basis directions in �{space,


(1) $ (1; 0)T ; 
(2) $ (0; 1)T ;

we have


(�) = �
1

(1) + �

2

(2) :

Therefore eqn. (7) becomes

p = �
1

(1)�+ �

2

(2)� (17)

Let us de�ne a canonical surface re
ectance, s, and examine its relationship to the color appearance

of other surfaces. Without loss of generality we choose the �rst surface basis function as the

canonical surface. The appearance of the second surface basis function is an illuminant-independent,

linear transform of the canonical surface appearance:


(2)� = M
(1)� (18)

M = 
(2)[
(1)]�1 (19)

Now we can rewrite eqn. (17), the general appearance of arbitrary surfaces, as a �xed transform

from the canonical surface appearance.

p = [�
1
I + �

2
M]
(1)� (20)

where I is the identity matrix. Therefore we have shown that the appearance of the canonical

surface can be mapped to the appearance of any other surface re
ectance by applying a linear com-

bination of the identity matrix I and the matrixM. We de�ne a generalized diagonal transform as
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a basis transformation followed by a diagonal matrix transform. That there exists a generalized di-

agonal transform mapping canonical surface appearance follows from the eigenvector decomposition

of M:

M = T
�1

DT (21)

We can also express the identity matrix I in terms of the eigenvectors of M:

I = T
�1

IT (22)

Consequently we can rewrite eqn. (17) as a generalized diagonal matrix transform.

T p = [�
1
I + �

2
D]T 
(1)� (23)

Equation (23) states that diagonal invariance holds between the canonical surface and all other

surfaces given the sensor transformation T . In fact eqn. (23) implies that diagonal invariance holds

between any two surfaces. Let i and j index two arbitrary surfaces with � 2{vectors �i and �
j .

From eqn. (23), under any illuminant, we can write T pi and T pj as �xed diagonal transforms of

T ps (the canonical surface appearance):

T p
i = [�i

1
I + �

i
2
D]T ps (24)

T p
j = [�

j
1
I + �

j
2
D]T ps (25)

Clearly we can write T pi as a diagonal matrix times T pj :

T p
i = D

ij
T p

j (26)

where

D
ij = [�i

1
I + �

i
2
D][�

j
1
I + �

j
2
D]�1 (27)

This completes the proof of Lemma (2). In the 3-2 case there exists a sensor transformation

T with respect to which there is diagonal invariance and this invariance implies that a diagonal

matrix is su�cient to support perfect color constancy (Lemma (1)). Therefore, this also completes

the proof of Theorem (1).

The crucial step in the above derivation is the eigenvector decomposition of the transformmatrix

M. To relate this analysis to traditional theories of diagonal matrix color constancy we would like

the eigenvalues of M to be real-valued. However, whether or not they are depends on the form of

the surface matrices (and hence the initial sensor spectral sensitivities).

On �rst consideration complex eigenvalues appear problematic|e.g., transforming the sensors

by a complex matrix of eigenvectors does not have a plausible physical interpretation. The prob-

lem lies in the fact that the new sensors would be partly imaginary; however, we show in the

Appendix that complex eigenvalues �t seamlessly into our generalized theory of diagonal matrix

color constancy.
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4 Implications for Other Theories of Color Constancy

Under the 3-2 conditions the lighting matrices �(�) are 3�2 surjective maps|color vectors are linear

combinations of the two column vectors of �(�)|and surfaces seen under a single illuminant span

a plane in the 3-dimensional receptor space. Maloney and Wandell[23] exploit this plane constraint

in their algorithm for color constancy. Maloney[21] proves that each illuminant corresponds to a

unique plane of response vectors. This uniqueness condition is su�cient to solve for the illuminant

weight vector � and hence the pseudo-inverse [�(�)]�1. Consequently the surface weight vector (or

Maloney descriptor) can be recovered via equation (9).

We present an alternative simpler color constancy algorithm for the 3-2 world. Our algorithm

solves for the diagonal matrix mapping the gamut of observed responses into the gamut of canonical

responses.

4.1 Simpler Color Constancy

In the 3-2 world the response vectors for surface re
ectances under the canonical illuminant lie on

the `canonical plane' Pc. The span of the canonical plane is de�ned by the column vectors, v
1
and

v
2
, of the 3� 2 spanning matrix V , and are calculated prior to the color constancy computation.

Under each other illuminant, response vectors for surfaces lie on the observed (or image) plane

Po. Assuming that there are at least 2 linearly independent surfaces in our image we can solve for

the spanning matrix W|the columns of W , w
1
and w

2
are simply the response vectors of any two

distinct surfaces.

Theorem 2 The diagonal transform mapping Po onto Pc is unique.

Lemma 3 The only diagonal matrix mapping a plane onto itself is the identity matrix I.

Proof of Lemma 3. If S is a 3� 2 matrix de�ning the span of a plane, n denotes the plane normal,

and D is a diagonal matrix then [Dn]tS = 0. This is true only when D = I.

Proof of Theorem 2. Let us assume that there are two diagonal matrices, D
1
and D

2
, which di�er

by more than a simple scaling, mapping Po onto Pc:

D
1
W = V A

1
(28)

D
2
W = V A

2
(29)

where A
1
and A

2
are 2 � 2 matrices transforming the span V . Solving for W in eqn. (28) and

substituting into eqn. (29) we see that

D
2
[D

1
]�1V A

1
= V A

2
(30)

10



By Lemma 3, only the identity matrix maps a plane onto itself (eqn. (30)). Hence D
1
= kD

2

(where k is a scalar), which contradicts our initial assumption; thus Theorem 2 follows.

The �rst spanning vector of W , w
1
, can be mapped onto Pc by applying a linear combination

of two diagonal matrices

[�D11 + �D
12]w

1
= �v

1
+ �v

2
(31)

Similarly w
2
can be mapped onto Pc by applying linear combinations of the diagonal matrices D21

and D22. Because the diagonal matrix mapping Po to Pc is unique, the set of diagonal matrices

de�ned by D11 and D12 must intersect those de�ned by D21 and D22 in a unique diagonal matrix.

We can use this property to develop a simple algorithm for color constancy. The algorithm

requires two distinct colors in the image. It proceeds in 3 stages:

1. Find the set D
1
of diagonal matrices mapping the �rst image color to the set of all canonical

colors.

2. Find the set D
2
of diagonal matrices mapping a second image color to the set of all canonical

colors.

3. The unique diagonal matrix mapping all image colors to their canonical appearance is equal to

D
1

T
D
2
.

This algorithm is closely related to Forsyth's CRULE[8]. One di�erence, however is that through

our analysis we can solve for the unique diagonal matrix by examining the color appearance of only

two surfaces. In contrast CRULE would examine all observed response vectors. This is a simple

incarnation of Forsyth's CRULE algorithm. Consequently Maloney's computational method is

equivalent to CRULE under a sensor transformation. However, CRULE is less restrictive than

Maloney's algorithm and can achieve color constancy even when the 3-2 conditions are relaxed.

This is not true for Maloney's algorithm. Therefore, for trichromatic color constancy Maloney's

theory is a sub-theory of Forsyth's CRULE. Previously Forsyth had cast 3-2 color constancy as a

subtheory of his more complex MWEXT theory.

4.2 Other Theories

The color constancy problem is made more di�cult if the illuminant intensity varies across the im-

age. Horn[14] presented an algorithm for removing intensity gradients from images of a Mondrian

world. Unfortunately his approach imposed strong constraints on the form of the Mondrian bound-

ary. Later Blake[2] extended this algorithm to allow less restrictive boundary constraints. Key

to their algorithms is diagonal invariance, and hence diagonal matrix color constancy. Therefore

lightness recovery was thought to be applicable only for visual systems with narrow band sensors.

Funt and Drew[10] presented a non-diagonal lightness algorithm for illuminants and re
ectances

that are well-approximated by �nite-dimensional models. Their method is independent of the

sensor spectral sensitivities. However through our analysis of diagonal invariance and diagonal

color constancy in section 3 holds for arbitrary spectral sensitivity functions under an appropriate

sensor transformation. Our analysis therefore circumvents the need for a non-diagonal lightness
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theory|Funt and Drew's algorithm reduces to Blake's algorithm under a sensor transformation in

the case of 3-2 world conditions.

Land's Retinex theory[19] and its precursor, von Kries adaptation[32], assume that color con-

stancy is achieved if each image contains a known reference patch. By assuming diagonal invariance

between the appearance of arbitrary surfaces with the appearance of the reference patch, implies

that a diagonal matrix supports color constancy. Our analysis demonstrates that diagonal invari-

ance holds for all sensor sets given only weak constraints.

Color balancing is equivalent to reference patch color constancy. The colors in a video image

are adjusted such that a known reference patch appears to have its correct color. Our analysis

demonstrates that a simple diagonal matrix balancing is su�cient for color correction|even when

the sensors are broad-band. In the next section we evaluate reference patch color constancy (and

hence color balancing) before and after a sensor transformation.

5 Experimental Results

Real illuminants are not 3-dimensional and real surfaces are not 2-dimensional|the 3-2 conditions

only provide an approximation of color appearance|and hence a diagonal matrix can achieve only

approximate color constancy. Here we perform simulations, using measured surface re
ectances

and measured illuminants, comparing the performance of diagonal matrix and generalized diagonal

matrix color constancy.

The color appearance of surfaces viewed under di�erent illuminants are generated using eqn. (3).

The human cone responses measured by Vos and Walraven[31] are used as our sensors, the 462

Munsell Spectra[25] for surfaces and the 5 Judd Daylight phases[17](D48, D55, D65, D75 and

D100) and CIE A[33] for illuminants. All spectra are sampled at 10nm (nanometer) intervals from

400 to 650nm. Consequently the integral of eqn. (3) is approximated as a summation.

The sensor transformation T was calculated via the technique outlined in section 3. Singular

value decompositions of the Munsell and illuminant spectra were performed to derive the required

surface and illuminant basis functions. Figure 1 displays the cone functions before and after the

sensor transformation T . Notice that the transformed sensors appear more narrowband|this is

consistent with the pragmatic observation that narrow-band sensors a�ord better diagonal matrix

color constancy. A similar narrowing has been observed in various psychophysical experiments[9,

13, 28, 18, 26, 6] involving the human visual system.

There are many algorithms for diagonal matrix color constancy; each di�ers in its strategy

for determining the diagonal matrix. Here we present simulation results for the simplest diagonal

matrix algorithm|the white patch normalization. The starting point for that algorithm is diagonal

invariance. A color vector p
i
is assumed to be diagonally invariant to the appearance of a white

patch p
w
.
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p
i = D

iw
p
w (32)

Hence it is the diagonal matrix Diw which is independent of the illuminant, and consequently

can be used as a descriptor. Usually Diw is written in vector (or descriptor) form d
iw where

d
iw
k =

pi
k

pw
k

. By the symmetry between diagonal matrix color constancy and diagonal invariance we

can rewrite eqn. (32) as a color constancy transform.

d
iw = [diag(pw)]�1pi (33)

where the function diag converts the vector pw to a diagonal matrix (diagonal elements correspond

to the rows of pw). Arbitrarily we chose the white patch descriptor vectors calculated for D55 as

the canonical descriptor vectors|these provide a reference for determining color constancy perfor-

mance. Under each of the other 5 illuminants we calculate white patch descriptors. The Euclidean

distance between these descriptors and their canonical counterparts, normalized with respect to

the canonical descriptor's length, provides a measurement of constancy performance. The percent

normalized �tted distance (NFD) metric is de�ned as:

NFD = 100 �
k d

iw;e
� d

iw;c
k

k d
iw;c

k
(34)

where diw;c denotes a canonical descriptor and d
iw;e a descriptor for some other illuminant e. For

each illuminant we calculated the following 3 cumulative NFD histograms:

1. the NFD error of white patch normalized responses for the cone functions.

2. the NFD error of generalized white patch normalized responses. (Generalized in the sense of

d
iw;e = T �1[diag(T pw)]�1T pi;e 3

3. the optimal color constancy performance for a general linear transform.

We de�ne optimal color constancy performance to be a least-squares �t relating the responses

of all surfaces under an illuminant e to their appearance under the canonical illuminant c. This

optimal case, serves as a control for evaluating the color constancy performance a�orded by a

diagonal matrix.

Figure 2 displays these 3 cumulative histograms for the test illuminants CIE A, D48, D65, D75

and D100 (dashed lines for simple white patch normalization, dotted lines for generalized white

patch normalization and solid lines for the optimal constancy performance). In all cases generalized

diagonal matrix color constancy constancy outperforms, by a large margin, simple diagonal matrix

3The descriptors for all 3 cumulative histograms are with respect to the same sensor basis.

13



constancy. Generalized diagonal matrix constancy also compares favorably with optimal color

constancy. Only for the extremes in test illuminants, CIE A and to a lesser extent D100, is there

a signi�cant performance di�erence.

6 Conclusion

A diagonal matrix is the simplest possible vehicle for color constancy. Indeed, it is its inherent

simplicity which has motivated research into more complex matrix forms|if a diagonal matrix can

give good color constancy a non-diagonal matrix, which has 9 instead of 3 parameters, must be

able to support better color constancy, or so the reasoning goes. The analysis presented in this

paper concludes that this is in fact not the case. Under weak world constraints a diagonal matrix,

in conjunction with an appropriate transformation of the sensor basis, has been shown to su�ce

for the support of perfect color constancy. This result is strong in the sense that no constraints are

placed on the spectral sensitivities of the sensors.

Our simulation studies investigated whether the optimal sensors as expressed in the new sensor

basis derived for the 3-2 world would continue to support good color constancy when the 3-2

restrictions were relaxed. For many real re
ectances imaged under real illuminants, a diagonal

matrix continued to give close to optimal color constancy.

Our analysis establishes a relationship among several theories of color constancy. For a world

where illumination is 3-dimensional and surface re
ectance 2-dimensional, the Maloney-Wandell[23]

algorithm, Forsyth's MWEXT[8] and the lightness theory of Funt and Drew[10] all reduce to diag-

onal matrix color constancy, and diagonal transforms are already at the heart of Forsyth's CRULE

and von Kries adaptation. These non-diagonal algorithms are therefore more complex than neces-

sary and can all be simpli�ed by a �xed transformation of the sensor basis.

Appendix: Complex Eigenvalues

Complex eigenvalues may arise in the eigenvector decomposition of the transform matrix M, but

as we will show, they do not present a serious problem.

In traditional theories of diagonal matrix color constancy it is clear that each diagonal constancy

transform can be expressed as the sum of three basis transforms. Indeed it is this condition which

makes diagonal matrix color constancy so appealing. For example, suppose we observe the color

vector p and this corresponds to the descriptor d. This information is su�cient to solve for the

constancy transform:

d = Dp ; Dkk =
dk

pk

(35)
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This same uniqueness condition is clearly true in generalized diagonal matrix color constancy if the

sensor transformation T is real{valued. In fact, the uniqueness condition also holds in the general

case where the elements of T can have complex terms.

Theorem 3 Under any sensor transformation T (where T can have complex elements) there are

exactly 3 linearly independent diagonal matrices consistent with generalized diagonal matrix color

constancy. Consequently the mapping between a color vector and its descriptor is unique.

Proof. Our original statement of diagonal matrix color constancy, eqn. (2), can be written in the

following mathematically equivalent form.

d = T
�1

DT p (36)

Both d and p are real-valued vectors and hence T �1DT must be a real-valued matrix. Theorem 2

follows if we can demonstrate that there exist only 3 linearly independent, real-valued matrices with

the same eigenvectors|the columns of T �1.

A diagonal matrix D has 6 variable components, 3 reals and 3 imaginary numbers. Conse-

quently there are in general 6 linearly independent matrices sharing the same eigenvectors. The

matrices T �1IT , T �1DT and T �1D�1T are all linearly independent, real-valued matrices. Sim-

ilarly T �1IjT , T �1DjT and T �1D�1jT are all linearly independent, purely imaginary matrices

(j is the square root of �1). The sum of imaginary numbers is always imaginary and conversely

the sum of real numbers is always real; hence these 6 matrices span the set of all matrices with

eigenvectors T �1. Including complex numbers in the �eld over which we form a span, this means

that only 3 matrices form a basis for the span of all real valued matrices with eigenvectors T �1.

This completes the proof for Theorem 2.

Theorem 2 states that generalized diagonal matrix constancy holds equally well even when

the sensor transformation is complex. For any sensor transformation the diagonal color constancy

transform can be expressed as the sum of three diagonal basis matrices D, D�1 and I. The mapping

Dij , in equation (13), taking pi;e to pj;e is still unique and is independent of the illuminant.
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Figure Captions

Figure 1. Result of sensor transformation T . Solid lines: Vos{Walraven cone fundamentals;

dashed lines: transformed sensors.

Figure 2. Cumulative histograms showing improved performance of generalized diagonal color

constancy. Dashed lines: simple diagonal color constancy; dotted lines: generalized diagonal color

constancy; solid lines: optimal (non-diagonal) color constancy.
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