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A graph G is called a pairwise compatibility graph (PCG) if there exists a positive
edge weighted tree T and two non-negative real numbers dmin and dmax such that each
leaf lu of T corresponds to a node u ∈ V and there is an edge (u, v) ∈ E if and only
if dmin ≤ dT (lu, lv) ≤ dmax, where dT (lu, lv) is the sum of the weights of the edges
on the unique path from lu to lv in T . In this paper we study the relations between
the pairwise compatibility property and superclasses of threshold graphs, i.e. graphs
where the neighborhoods of any couple of nodes either coincide or are included one into
the other. Namely, we prove that some of these superclasses belong to the PCG class.
Moreover, we tackle the problem of characterizing the class of graphs that are PCGs of
a star, deducing that also these graphs are a generalization of threshold graphs.
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1. Introduction

Given an edge weighted tree T , let dmin and dmax be two nonnegative real numbers

with dmin ≤ dmax. For any two leaves l1 and l2 of the tree T , we denote by dT (l1, l2)

the sum of the weights of the edges on the unique path from l1 to l2 in T . Starting

from T , dmin and dmax, it is possible to construct a pairwise compatibility graph

of T , i.e. a graph G(V,E) where each node u ∈ V corresponds to a leaf lu of T
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and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (lu, lv) ≤ dmax. We will

denote such a graph G by PCG(T, dmin, dmax). Consequently, we say that a graph

G is a pairwise compatibility graph (PCG) if there exists an edge weighted tree

T (called a pairwise compatibility tree ) and two nonnegative real numbers dmin

and dmax such that G = PCG(T, dmin, dmax). In Figure 1 an example of pairwise

compatibility tree and the corresponding pairwise compatibility graph are depicted.
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Fig. 1: (a) A pairwise compatibility tree; (b) the corresponding pairwise compatibility graph.

The pairwise compatibility graph recognition problem consists in determining

whether a given graph is PCG or not. This problem seems in general difficult to

tackle, and even more after the paper by Yanhaona et al. [19] disproving the con-

jecture that every graph is PCG [13].

Althought the pairwise compatibility graph recognition problem arose in a com-

putational biology context [13] and its main application remains in phylogenetics, it

has captured the interest of researchers belonging to other fields such as computa-

tional complexity and graph theory. In particular people working in computational

complexity theory are fascinated from the fact that the clique problem is polyno-

mially solvable for PCGs [13].

Due to the apparent difficulty of the pairwise compatibility recognition problem

for arbitrary graphs, the research is focussed on the study of this problem for specific

classes of graphs. Following this line of research many classes of graphs are proved

to be in PCG, such as: cliques and disjoint union of cliques [1], chordless cycles and

single chord cycles [20], ladder graphs [18], some particular subclasses of bipartite

graphs [19], graphs with Dilworth number two [8]. Moreover, is proved that all

graphs with 7 nodes or less are PCGs [17,6], whereas the smallest example of a

graph that is not PCG has 8 nodes [10]. Finally, in [7], the closure properties of the

PCG class under some common graph operations are also studied.

In this paper we present two different contributions: one oriented to increase the

number of specific classes of graphs that are PCGs and the other one going toward

the direction of characterizing subclasses of PCGs derived from a specific topology

of the pairwise compatibility tree. Both these results are related to generalizations
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of threshold graphs, i.e. graphs where the neighborhoods of any couple of nodes

either coincide or are included one into the other.

These graphs, introduced in 1977 independently by Chavatal and Hammer [9]

and Henderson and Zalcstein [12] , have then found application in many fields, such

as computer science, scheduling theory, modern systems biology, social sciences

and psychology [15]. So, in this paper, after a section recalling terminologies and

concepts useful in the forthcoming work, we present the main results in Section

3 and 4. In particular, in Section 3 we prove that a wide superclass of threshold

graphs is inside the PCG class. Then, in Section 4, the structure of the graphs that

are PCGs of stars is presented, proving that the stars are pairwise compatibility

trees of a new class of graphs, that we call nearly three-threshold, that extends the

class of threshold graphs At the end, some open problems derived from this work

are summarized in the last section of the paper.

2. Preliminaries

In this section we introduce some definitions and some concepts that we use in the

rest of this paper.

An edge weighted tree, simply a weighted tree, is a tree with a non negative weight

assigned to each edge. In this paper we consider only weighted trees and connected

graphs, so in the following we will omit these adjectives.

Given a connected graph G whose distinct node degrees are δ1 > . . . > δr, we

define Bi = {v ∈ V (G) : deg(v) = δi}, for any i = 1, . . . , r. The sets Bi are usually

referred as boxes and the sequence B1, . . . , Br is called the degree partition of G into

boxes. Notice that B1 contains all the nodes of maximum degree while Br contains

all the nodes of minimum degree and that r does not represent the maximum degree

but it is the number of different degrees in the graph.

An n-leaf star is a tree with n+1 nodes with distinct degrees δ1 = n and δ2 = 1,

and the cardinality of the two boxes B1 and B2 are 1 and n − 1, respectively. We

usually denote by c the unique node of degree n.

Given a graph G with degree partition B1, . . . , Br, G is a threshold graph if and

only if for all u ∈ Bi, v ∈ Bj , u 6= v, we have (u, v) ∈ E(G) if and only if i+j ≤ r+1.

As an example, see the graph in Figure 2(a).

A caterpillar is a tree in which all the nodes are within distance one of a central

path which is called the spine.

A graph G = (K,S,E) is said to be split if there is a node partition V = K ∪ S

such that the subgraphs induced by K and S are complete and stable, respectively.

Given two split graphs G1 = (K1, S1, E1) and G2 = (K2, S2, E2) their composi-

tion G1 ◦ G2 is formed by taking the disjoint union of G1 and G2 and adding all

the edges {u, v} such that u ∈ K1 and v ∈ V (G2). Observe that G1 ◦G2 is again a

split graph.

A set M of edges is a perfect matching of dimension n of A onto B if and only

if A and B are disjoint subsets of nodes of cardinality n and each node in A is
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adjacent to exactly one node in B. We say that a split graph G = (K,S,E) is a

split matching if the subset of edges in E not belonging to the clique forms a perfect

matching.

An antimatching of dimension n of A onto B is a set of edges such that its

complement is a perfect matching of dimension n of A onto B. We say that a split

graph G = (K,S,E) is a split antimatching if the subset of edges in E not belonging

to the clique forms an antimatching.

A split matrogenic graph [15] is the composition of t split graphs Gi =

(Ki, Si, Ei) with i = 1, . . . , t such that: either Gi is a split matching or Gi is a

split antimatching or Ki = ∅ (and Gi is called stable graph) or Si = ∅ (and Gi is

called clique graph).

It is not difficult to see that split matrogenic graphs are a super class of thresh-

old graphs and that also split matchings and split antimatchings graphs are split

matrogenic.

Before concluding this section, we introduce the definitions of two subclasses of

PCGs, namely LPGs and mLPGs:

Definition 1. [16] A graph G = (V,E) is an LPG if there exists a tree T and

an integer dmax such that there is an edge (u, v) in E if and only if for their

corresponding leaves lu, lv in T we have dT (lu, lv) ≤ dmax.

Definition 2. A graph G = (V,E) is an mLPG if there exists a tree T and an inte-

ger dmin such that there is an edge (u, v) in E if and only if for their corresponding

leaves lu, lv in T we have dT (lu, lv) ≥ dmin.

Proposition 1. Let G be a graph that does not belong to some class L from

{PCG,LPG,mLPG} then every graph H that contains G as an induced subgraph,

does not belong to L either.

3. Split Matrogenic Graphs

This section is devoted to study the relation between the class of split matrogenic

graphs and PCGs.In order to prove that subclasses of split matrogenic graphs belong

to the PCG class, we proceed step by step enlarging, at each step, the considered

class. Let us start by proving that threshold graphs are both LPG and mLPG

graphs.

Theorem 1. Let G be a threshold graph, then G ∈ LPG ∩mLPG. In both of the

cases a tree T and a value dmin or dmax associated to G can be found in polynomial

time.

Proof. Let G be a threshold graph on n nodes (see Figure 2(a)) and let B1, . . . , Br

be the degree partition of G. As tree T , we consider an n-leaf star with center at

node c.
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To prove that G ∈ LPG, for each node v of G, assign weight i to the edge (lv, c)

in T if v ∈ Bi. Define dmax = r + 1. As for each u ∈ Bi, v ∈ Bj , u 6= v, we have

(u, v) ∈ E(G) if and only if i+ j ≤ r+1; hence, it follows that G = LPG(T, dmax).

(see Figure 2(b)).

On the other hand, to prove G ∈ mLPG for any v ∈ V (G) assign r + 1 − i

to the edge (lv, c) in T if v ∈ Bi. Note that, as i ≤ r we assign nonnegative

weights to the edges of the star. Define dmin = r + 1. For any two nodes v ∈ Bi

and u ∈ Bj , we have that if i + j ≤ r + 1 (meaning that (u, v) ∈ E(G)) then

dT (lu, lv) = 2(r + 1)− (i+ j) ≥ r + 1 = dmin. Otherwise, if i+ j > r + 1 (meaning

that (u, v) 6∈ E(G)) then dT (lu, lv) = 2(r + 1)− (i+ j) < r + 1 = dmin. (see Figure

2(c)). This concludes the proof.
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Fig. 2: (a) A threshold graph; (b) the corresponding pairwise compatibility tree that makes it a
LPG; (c) the corresponding pairwise compatibility tree that makes it a mLPG.

Theorem 2. Let G be a split matching graph, then G ∈ LPG. A tree T and a

value dmax associated to G can be found in polynomial time.

Proof. Given a split matching graph G = (K,S,E) with |K| = |S| = n (see Figure

3(a)), we associate a caterpillar tree T as in Figure 3(b). The leaves ai, corresponding

to the nodes ki of K, are connected to the spine with edges of weight 1 and the

leaves bi, corresponding to nodes si ∈ S, with edges of weight n. It is clear that

G = LPG(T, n+ 1). Indeed, for any two ai, aj it holds that 3 ≤ dT (ai, aj) ≤ n+ 1,

for any two bi, bj we have dT (bi, bj) ≥ 2n+1, for any ai, bi we have dT (ai, bi) = n+1

(hence the edge (ki, si) ∈ E) and for any ai, bj with i 6= j we have dT (ai, bj) ≥ n+2

(hence the edge (ki, sj) 6∈ E).

Note that the pairwise compatibility tree provided for the split matching graph

by the previous proof is not unique. Indeed, one can easily check that the binary

tree T in Figure 3(c) also is a pairwise compatibility tree of a split matching graph

when dmax = 4.

Analogously, we can show that split antimatching graphs are in mLPG.
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Fig. 3: (a) A split matching graph; (b) a pairwise compatibility caterpillar tree for a split matching
graph; (c) a pairwise compatibility tree for a split matching graph.

Theorem 3. Let G be a split antimatching graph, then G ∈ mLPG. A tree T and

a value dmin associated to G can be found in polynomial time.

We omit the proof of this theorem, as it immediately follows using arguments similar

to those in the proof of Theorem 2. In Figure 4(b) and (c) two possible pairwise

compatibility trees associated to a split antimatching graph (4(a)) are depicted.
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Fig. 4: (a) A split antimatching graph; (b) a pairwise compatibility caterpillar tree for a split
antimatching graph; (c) a pairwise compatibility tree for a split antimatching graph.

We now introduce two further subclasses of split matrogenic graphs and prove

that they are inside the PCG class.

Definition 3. Given a sequence of t split graphs Gi = (Ki, Si, Ei) with i = 1, . . . , t,

we say the graph H = G1 ◦ . . . ◦Gt is a split matching (antimatching) sequence if

each of the graphs Gi is either a split matching (antimatching), or a stable graph

or a clique graph.

We first prove that split matching sequences and split antimatching sequences

are in PCG. In both of these proofs, in the construction of the pairwise compatibility

tree, we will make use of the constructions depicted in Figure 3(c) and Figure 4(c),

respectively. Finally, we want to point out that a clique graph (a stable graph) can
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be considered both as a split matching and as a split antimatching graph and in

each case the pairwise compatibility tree is constructed in the same way, where

only leaves ai (respectively bi) appear. In Figure 5, a pairwise compatibility tree is

given for an n node stable graph G when it is considered as a split matching graph

(Figure 5(a)) or as a split antimatching graph (Figure 5(b)).
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Fig. 5: The pairwise compatibility tree for a stable graph G with n nodes when it is considered
as: (a) a split matching graph; (b) a split antimatching graph.

Theorem 4. Let H be a split matching sequence, then H ∈ LPG. A tree T and a

value dmax associated to H can be found in polynomial time.

Proof. Let H = G1 ◦ . . . ◦Gt be a split matching sequence. For each graph Gi we

define a tree Ti as shown in Figure 6(a) (where the leaves ai (bi) could be missing

if Gi is a stable (clique) graph). It holds that Gi = LPG(Ti, dmax) where dmax is

a value to be defined later, but surely greater than or equal to 2(i+ 1). Indeed, let

a1, . . . an be the leaves of Ti corresponding to nodes of Ki and let b1, . . . , bn be those

corresponding to nodes of Si. For any two leaves ar, as it holds that dTi
(ar, as) =

2 + 2i ≤ dmax and for any two bs, br we have dTi
(br, bs) = 2dmax − 2i ≥ dmax +

2i + 2 − 2i > dmax. Finally, for any two leaves as, bs that correspond to an edge

of the matching their distance is dmax − 2i + 1 ≤ dmax and for any two leaves

corresponding to a non edge ar, bs their distance is dmax + 1.
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Fig. 6: (a) The pairwise compatibility tree for the split matching graph Gi.; (b) the pairwise
compatibility tree for the split matching sequence H.
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In order to prove that H ∈ LPG, we define a new tree T starting from the

trees T1, . . . , Tt, simply by contracting all their roots into a single node as shown

in Figure 6(b). We claim that H = LPG(T, dmax) where we set dmax = 2(t + 1).

In order to prove it, consider two graphs Gi and Gj with i < j. Let a, a′, b and

b′ be four distinct leaves corresponding to nodes in Ki,Kj , Si and Sj respectively.

Observe that the nodes in Ki are connected to all the other nodes in Kj ∪ Sj as

the distances in T are dT (a, a
′) = 1 + i + j + 1 ≤ 2(j + 1) ≤ dmax and dT (a, b

′) =

1 + i + j + dmax − 2j = dmax + (i − j + 1) ≤ dmax (as j ≥ i + 1). Finally, any

node in Si is not connected to any node Kj and to any node Sj as in these cases

the distances are dT (b, a
′) = dmax − 2i + i + j + 1 > dmax (as j ≥ i + 1) and

dT (b, b
′) = dmax − 2i+ i+ j + dmax − 2j ≥ 2dmax − 2j > dmax.

Theorem 5. Let H be a split antimatching sequence, then H ∈ mPCG. A tree T

and a value dmin associated to H can be found in polynomial time.

We omit the details of this proof as it follows the same lines of the proof of

Theorem 4, where the tree Ti associated to each split antimatching graph Gi is

depicted in Figure 7 and dmin = 2(t+ 1) + 1.
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Fig. 7: The pairwise compatibility tree for the split antimatching graph Gi.

Now, we furtherly enlarge the subclass of split matrogenic graphs that is inside

the PCG class.

Theorem 6. Let H = G1 ◦ . . . ◦ Gt be a split matrogenic graph. If for each split

matching graph Gi and for each split antimatching graph Gj it holds that i < j,

then H ∈ PCG. A tree T and two values dmin, dmax associated to H can be found

in polynomial time.

Proof. Let H = G1 ◦ . . . ◦ Gt. It is clear that if none of the graphs Gi is a split

matching (a split antimatching) the proof trivially follows from Theorem 4 (The-

orem 5). Hence, let Gq, 1 < q ≤ t, be the first occurrence of a split antimatching

graph. Then, the graphs H1 = G1 ◦ . . . ◦ Gq−1 and H2 = Gq ◦ . . . ◦ Gt are a

split matching sequence and a split antimatching sequence, respectively. Then, let

H1 = LPG(T1,M) where the tree is constructed in the same way as in the proof

of Theorem 4 and M = 2(t + 1) + 1 (recall that in the proof of Theorem 4 we
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only need M to be a value greater than 2q). Similarly, according to the Theorem 5,

H2 = mLPG(T2,m) and m = 2(t+ 1) + 1 (note that we choose to have m = M)).

We modify T2 in such a way that the weights of the edges out-coming from the

root start from value q and not from value 1; the other edges are modified accord-

ingly. This is not restrictive, as T2 results as if H2 was the composition of t split

antimatching graphs whose the first q − 1 are empty graphs.

We construct the pairwise compatibility tree T by joining the roots of T1 and

T2 with an edge of weight m/2. We set dmin = m and dmax = 2m. We modify

the weights of the resulting tree increasing by m/2 the weight of any edge incident

to a leaf in T1. Observe that in this way the distance of any two leaves in T1 is

increased by m. This means that two leaves correspond to nodes of an edge in H1

if and only if their distance is less than or equal to M +m = 2m. Furthermore, the

maximum distance of any two leaves in T2 is less than or equal to 2m − 2t < 2m

meaning that they correspond to nodes of an edge in H2 if and only if their distance

is greater than or equal to m. In Figure 8 the pairwise compatibility tree for the

split matrogenic graph H is depicted.

We claim that H = PCG(T, 2m,m) (recall that m = 2(t + 1) + 1). We have

already shown that the pairwise compatibility constraints hold for any two leaves

that correspond to two nodes of the same graph H1 or H2. It remains to show that

this constraint also holds for two leaves where one corresponds to a node in H1 and

the other one to a node in H2. To this purpose, let ai and bi be two distinct leaves in

T1, connected to the root with edges of weight i and corresponding to nodes of the

clique and the stable graph of H1, respectively. Similarly let a′j , b
′

j be two distinct

leaves in T2, connected to the root with edges of weight j and corresponding to

nodes in the clique and in the stable graph of H2, respectively. The followings hold:

a) dT (ai, a
′

j) = 2m+i−j and as i < j andm > j thenm ≤ 2m+1+i−j ≤ 2m.

Hence, the corresponding nodes of ai, a
′

j in H are connected.

b) dT (ai, b
′

j) = m + 1 + i + j + 1 and as m = 2t + 3 ≥ i + j + 2 then

m ≤ m+ i+ j+2 ≤ 2m. Hence, the corresponding nodes of ai, b
′

j in H are

connected.

c) dT (bi, a
′

j) = 2m − i + m − j − 1 and as m = 2t + 3 ≥ i + j + 2 then

2m+ (m− i− j − 1) > 2m. Hence, the corresponding nodes of bi, a
′

j in H

are not connected.

d) dT (bi, b
′

j) = 2m− i+ j+1 and as i < j then 2m+(i− j+1) > 2m. Hence,

the corresponding nodes of bi, b
′

j in H are not connected.

This, concludes the proof.

The next enlargement step would imply to prove that the composition of a split

antimatching sequence followed by a split matching sequence is a PCG. Unfortu-

nately, it does not seem possible to generalize our reasonings to this case, and we are

convinced that the order of appearance of a matching or an antimatching sequence

in a split matrogenic graph is somehow strictly related to the pairwise compatibility
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Fig. 8: The pairwise compatibility tree for the split matrogenic graph H as defined in Theorem
6.

property. Hence, we leave as an open problem determining whether split matrogenic

graphs belong to the PCG class or not.

4. Pairwise Compatibility Graphs of Stars

In Theorem 1, we showed that threshold graphs are pairwise compatibility graphs

of trees that are stars. It is natural to wonder how much this particular structure

of the tree is connected with the structural properties of threshold graphs. Here we

completely describe all the graphs that are PCGs of a star. Namely, we prove that

stars are pairwise compatibility trees of a superclass of threshold graphs. To the

best of our knowledge, this class of graphs has never been characterized before, so

we introduce for it the name nearly three-threshold graphs.

Before defining this new class of graphs, we will consider another equivalent

definition of threshold graphs, that is based on the concept of vicinal preorder.

Given a graph G = (V,E), let us define the open and closed neighborhood of x

as N(x) = {w : w ∈ V,w 6= x and (w, x) ∈ E} and N [x] = N(x) ∪ {x}.

In general, if V ′ ⊂ V , NV ′(x) and NV ′ [x] are the neighborhoods (respectively

open and closed) of x restricted to the graph induced by V ′.

The vicinal preorder � of a graph G = (V,E) on the set of nodes V guarantees

that for any two nodes u, v ∈ V , u � v if and only if N(u) ⊆ N [v]. The dual preorder

�∗ is defined by: u �∗ v if and only if v � u.

A graph G = (V,E) is a threshold graph if and only if the vicinal preoder on V

is total, i.e. for any pair of nodes u, v ∈ V , either u � v or v � u.

Definition 4. A graph G = (V,E) is nearly three-threshold if it is possible to

partition the set of nodes V into three classes VK , VS1 , VS2 so that:

a) The subgraph induced by K ∪ S1 is a threshold graph.,

b) The subgraph induced by K ∪ S2 is a threshold graph.

c) The subgraph induced by S1 ∪ S2 is a bipartite graph.
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Furthermore, the total vicinal preorder related to the graph induced by K ∪S2 is the

dual of the total vicinal preorder defined by the graph induced by K ∪S1 (see Figure

9(a)).

For the subgraph induced by S1 ∪ S2 we cannot deduce such a similar strong

property. However, we show that under some particular conditions, even in this

case, there must be a strong relationship between the neighborhoods of the nodes

in S1 ∪ S2.

In order to prove next theorem, let us introduce a new definition. Consider a

pairwise compatibility graphG = PCG(T, dmin, dmax) and let w be the edge-weight

function for T . We define a total order �w on the nodes of G such that for any

u, v ∈ V (G) it holds v �w u if and only if w(elv ) ≤ w(elu) where, as usual, lu, lv
denote the leaves of T corresponding to the nodes u, v and elu , elv denote the unique

edges incident to these leaves in the tree.

☛
✡

✟
✠

☛
✡

✟
✠

☛
✡

✟
✠

✁
✁
✁

✁
✁
✁

✁
✁
✁

❆
❆
❆

❆
❆
❆

❆
❆
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S1 S2

� �∗

(a)

✉ ✉ ✉ ✉
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✉

✉
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✉
✉
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K

(b)
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✉
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2 2 3 4

1

1

1

5

6

6

(c)

Fig. 9: (a) The structure of a PCG generated by a star; (b) an example of a PCG generated by
a star.

We can now prove the following:

Theorem 7. If a graph G is a PCG of a star then G is a nearly three-threshold

graph.

Proof. Let G = PCG(T, dmin, dmax) where T is a star centered in some node c

and let w be the edge weight function on the tree T .

Define three subsets of the set of nodes of T , VK , VS1 and VS2 as follows:

VK =

{

lv ∈ V (T ) :
dmin

2
≤ w((lv , c)) ≤

dmax

2

}

VS1 =

{

lv ∈ V (T ) : w((lv, c)) <
dmin

2

}

VS2 =

{

lv ∈ V (T ) : w((lv, c)) >
dmax

2

}

(4.1)
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Let K, S1 and S2 be the sets of nodes of G whose corresponing leaves in T

belong in VK , VS1 and VS2 , respectively. Since the sum of the weights of two edges

whose leaf extremes are in VK is always between dmin and dmax (in view of the

definition of VK), easily K induces a clique; using similar reasonings, S1 and S2

induce two stable sets. From this latter consideration, it follows that the subgraph

induced by S1 ∪ S2 is a bipartite graph. So it remains to prove that the subgraphs

induced by K ∪ S1 and K ∪ S2 are threshold graphs.

The main idea of the proof is to show that there is a strong relation between

the vicinal preorder defined on K∪S1 and K∪S2 and the weights of edges incident

to the corresponding leaves of the tree. More in detail, we show that �w is a total

vicinal preorder on K ∪ S1 and its dual �∗

w is a total vicinal preorder on K ∪ S2.

First we prove that K ∪ S1 is a threshold graph. We will show, first, that the

vicinal preorder � defined is total on K ∪ S1 and then that it coincides with �w.

To this purpose, consider any two arbitrary nodes v, u ∈ K ∪S1 and let w((lv, c)) ≤

w((lu, c)) (thus, v �w u). We prove that v � u. Indeed, for any other node x ∈

NK∪S1(v) it must hold that dmin ≤ w((lx, c)) + w((lv , c)) ≤ dmax. Now, it is clear

that w((lx, c))+w((lu, c)) ≥ w((lx, c))+w((lv , c)) ≥ dmin. Furthermore, as w((lx, c))

and w((lu, c)) are both less than or equal to dmax/2 their sum is less than or equal to

dmax. Thus, we have that x ∈ NK∪S1(u). Hence, NK∪S1(v)−{u} ⊆ NK∪S1(u)−{v}

meaning that the vicinal preorder � is total.

For the subgraph induced by K ∪ S2 we use similar arguments. We prove that

K ∪ S2 is also a threshold graph by showing that the vicinal preorder �′ defined is

total on K ∪ S1 and moreover it coincides with �∗

w. To this purpose, consider two

nodes v, u ∈ K∪S2 and suppose again that w((lv, c)) ≤ w((lu, c)) (thus v �w u). We

prove that u �′ v , i.e. �′ coincides with �∗

w and NK∪S2(u) − {v} ⊆ NK∪S2(v) −

{u}. For any other node x ∈ NK∪S2(u) it must hold that dmin ≤ w((lx, c)) +

w((lu, c)) ≤ dmax. It is clear that w((lx, c)) + w((lv , c)) ≤ w((lx, c)) + w((lu, c)) ≤

dmax. Furthermore as lv, lx ∈ K∪S2 then w((lx, c))+w((lv , c)) ≥ dmax/2+dmin/2 ≥

dmin. Thus we have that x ∈ NK∪S1(v). Hence, NK∪S2(u)−{v} ⊆ NK∪S2(v)−{u}

meaning that the vicinal preorder �′ is total.

In the next claim we show that in some cases it is possible to reveal more of the

structure of the bipartite graph S1 ∪ S2.

Claim 1. Let G be a graph such that G = PCG(T, dmin, dmax) where T is a

weighted star and dmax

2
≥ dmin. Let w be the edge-weight function on T , then

G = (K,S1, S2) is a nearly three-threshold graph and �∗

w defines a vicinal preorder

in the bipartite graph S1 ∪ S2 which is total in the sets S1 and S2.

Proof. Let G = PCG(T, dmin, dmax), with dmax/2 ≥ dmin and where T is a

weighted star centered in some node c and let w be the edge weight function on

this star. Notice that Theorem 7 holds for any value of dmin and dmax ≥ dmin, so

G = (K,S1, S2)is a nearly three-threshold graph. Consider the induced bipartite

graph S1 ∪ S2.
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We show that �∗

w is a total vicinal preorder on S1, leaving to the reader

the identical proof on S2. Let us consider two arbitrary nodes v, u ∈ VS1 with

w((lv, c)) ≤ w((lu, c)). We prove that NS1∪S2(u) ⊆ NS1∪S2(v). For any other node

x ∈ S2 such that x ∈ NS1∪S2(u) we have that dmin ≤ w((lx, c))+w((lu, c)) ≤ dmax.

Again w((lx, c)) + w((lv , c)) ≤ w((lx, c)) + w((lu, c)) ≤ dmax. Furthermore as

w((lx, c)) + w((lv , c)) ≥ dmax/2 + w((lv , c)) ≥ dmin, we deduce that x ∈ NK∪S1(v)

(note that here we used the fact that dmin ≤ dmax/2). So,�∗

w is a total vicinal

preorder on S1 and the Claim is proved.

5. Conclusions and Open Problems

In this paper we present two different contributions: one oriented to increase the

number of specific classes of graphs that are PCGs and the other one going toward

the direction of characterizing subclasses of PCGs derived from a specific topology

of the pairwise compatibility tree. Both these results are related to generalizations

of threshold graphs.

For what it concerns the first topic, we have proved that many split matrogenic

graphs are in PCG. Nevrtheless, there are some split matrogenic graphs for which

we cannot say whether they are PCGs or not. In partcular, it remains an open

problem to understand if it is possible to find a pairwise compatibility tree and

two values dmin and dmax for the split matrogenic graph H = G1 ◦ . . . ◦ Gt such

that for some split antimatching graph Gi and for some split matching graph Gj it

holds that i < j. In fact, it seems that the order of appearance of a matching or an

antimatching sequence in a split matrogenic graph is somehow strictly related to the

pairwise compatibility property, so it would be extremely interesting to understand

whether even only the split matrogenic graph in Fig. 10 is a PCG or not.

Fig. 10: The smallest split matrogenic graph for which it is still an open problem

determining whether it belongs to the PCG class or not. The triple lines between

the split antimatching graph and the split matching graph mean the composition

operation.

The second result presented in this paper is on the structure of graphs that are

PCGs of a star. We have proved that stars are pairwise compatibility trees of a new
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class of graphs, the nearly three-threshold graphs, which is a superclass of threshold

graphs. A natural open problem consists in completely identify the class of graphs

that are PCG of a star. Moreover, it is clear that we can ask similar questions for

other particular trees. For example, we have seen that the simplest split matrogenic

graphs (split matching and split antimatching graphs) are PCGs of a a particular

tree structure: a caterpillar. Thus, it should be interesting to determine the class of

PCGs characterized by a caterpillar. This topic seems to be very wide; it has been

preliminarily approached in [5] but it is far from being solved.
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[1] Brandstädt, A.: On Leaf Powers. Technical report, University of Rostock, (2010).
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