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Abstract

Progress in understanding core pathways and pro-
cesses of cancer requires thorough analysis of many
coding regions of the genome. New insights are ham-
pered due to the lack of tools to make sense of large
lists of genes identified using high throughput tech-
nology. Data mining, particularly visualisation that
finds relationships between genes and the Gene On-
tology (GO), has the potential to assist in functional
understanding. This paper addresses the question of
how well GO annotations can help in functional un-
derstanding of genes. We augment genes with associ-
ated GO terms and visualise with Singular Value De-
composition (SVD). Meaning of derived components
is further interpreted using correlations to GO terms.
The results demonstrate that SVD visualisation of
GO–augmented genes matches the biological under-
standing expected in the simulated data and presents
understanding of childhood cancer genes that aligns
with published results.
Keywords: singular value decomposition, visualisa-
tion, genes, gene ontology.

1 Introduction

It is becoming clear that progress towards new in-
sights in cancer treatment require a thorough analysis
of many genes (Jones et al. 2008). The routine use
of microarray–based high–throughput technology has
made more data available for interpretation and con-
sideration by biologists. However, the sheer scale of
this data makes understanding by humans challeng-
ing. Also, as integration of multiple datasets becomes
commonplace, for example using single nucleotide
polymorphisms or the proteome, making sense of the
data becomes even more difficult. Adding to this com-
plexity is the fact that since genes do not have a one–
to–one mapping to phenotype, genes highlighted by
experiments in one area of biology may have been
discovered and annotated in a different area. Conse-
quently, the gene name may not assist in understand-
ing gene function. For these reasons, researchers have
investigated ways of making sense of lists of genes
by augmenting or enriching the data with functional
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information from databases such as the Gene Ontol-
ogy (Ashburner et al. 2000).

The Gene Ontology is a structured vocabulary
of gene products and functions curated by biolo-
gists, currently consisting of more than 28,000 terms,
associated annotations and links to corroborating
databases. It is composed of three sub-ontologies:
molecular functions, cellular components and biologi-
cal processes. Terms in these hierarchies relate to the
biochemical activity, the physical location and the bi-
ological objective of gene products respectively. One
or more terms are related to individual genes. Each
term may have multiple parents in the sub-ontology
using, predominantly, inheritance (or “is–a”) and con-
tainment (“kind–of”) relationships. The hierarchical
structure between terms facilitates the construction
of similarity measures between the genes by calculat-
ing the similarities between the terms associated with
the genes.

The Gene Ontology project is a collaborative effort
since 1998 that aims to address the need for consistent
descriptions of gene products in different databases.
The Gene Ontology structure is based on terms with
each term consisting of (i) a unique alphanumerical
identifier (GO:#######); (ii) a term name, e.g.,
cell, fibroblast growth factor receptor binding or sig-
nal transduction; (iii) synonyms (if applicable); and
(iv) a definition. Each term belongs to one of the
three hierarchies, which are structured as directed
acyclic graphs. Each gene has one or more terms re-
lated to it and a term may have multiple parents in
the hierarchy. Together these terms provide us with a
description of the known functionality of a gene. One
challenge with using terms from the Gene Ontology is
that terms give different amounts of information. For
example, some genes are associated with only very
general terms shared by many other genes whereas
others are associated with very specific terms. Also,
some genes are not associated with many terms. In
short, the information associated with genes in the
Gene Ontology is of mixed quality.

There has been much recent work to explore the
problem of applying unsupervised learning methods
to lists of genes. Work generally falls into two main
areas: defining similarity measures using GO annota-
tions and applying unsupervised methods to visualise
the functional relationship between genes. Sheehan
et al. (2008) describe several approaches for similar-
ity measures between GO annotations including those
based on sets, vectors, graphs and terms. They pro-
pose an algorithm that finds specific common ances-
tors between terms over the hierarchical GO struc-
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ture. Richards et al. (2010) assess functional coher-
ence of a gene set using both a graph–based similarity
measure and an information content similarity mea-
sure. Mistry & Pavlidis (2008) define a term overlap
measure for gene functional similarity. They make a
set of all the annotations related to a gene and all
the parent terms, compare them to other genes and
fetch the common terms. The greater the number
of common terms the higher the similarity. Mathur
& Dinakarpandian (2007) use the hierarchical struc-
ture of GO to compute similarity between gene prod-
ucts on the basis of common GO terms. Sanfilippo
et al. (2007) propose a cross–ontological approach
that exploits similarity measures over the ontologies
in two ways: firstly, by calculating similarity within a
sub-ontology and secondly by finding inter–gene rela-
tionships across the three sub-ontologies. The latter
method identifies gene annotations in a sub–ontology
based on the annotations for similar genes. Yi et al.
(2007) find functionally similar genes in close proxim-
ity on chromosomes. Lee et al. (2004) find clusters of
genes according to significant biological features us-
ing the hierarchical GO structure. They define a sim-
ilarity measure by transforming the directed acyclic
graph structure of GO into a distance function, which
results in clusters of genes with similar terms or func-
tionality. Similarly Popescu et al. (2004) use GO
terms to extract a functional summary of gene clus-
ters. They identify the highest frequency terms by
applying fuzzy methods to clusters of genes and pro-
duce a hierarchical clustering of genes that results in
clusters labelled with the “most representative term”
of the contained genes.

Huang et al. (2008) evaluate tools for functional
analysis of large gene lists. They classify tools ac-
cording to key statistical methods and divide them
into three categories based on singular enrichment
analysis, gene set enrichment analysis and modular
enrichment analysis. These categories give users a
list of the strengths and limitations of tools. Huang
et al. (2007) describe the tool ‘DAVID’ for finding
functional relationships between a set of genes using
statistical methods such as heuristic fuzzy multiple–
linkage partitioning. FuncAssociate (Berriz et al.
2009) has been developed to identify the enriched
properties from a list of genes or proteins and uses
the hierarchical structure of GO and the synergizer
database (Berriz & Roth 2008): a database developed
from several different data sources. Similarly, Gene-
Trail (Backes et al. 2007) helps in finding functional
enrichments in gene and protein data sets by using
two statistical methods: over–representation meth-
ods and gene set enrichment analysis. Speer et al.
(2005) and Fröhlich et al. (2007) cluster genes with
an information–theoretic kernel function to calculate
the similarity between genes using GO. The motiva-
tion behind this approach as opposed to a distance
measure using the distance over the GO graph is to
better handle the variable branching and density of
GO. They derive gene clusters by applying a dual
k–means clustering algorithm. However few of these
reviewed methods are used in routine biomedical re-
search.

In this paper we apply singular value decompo-
sition to visualisation of genes. Our motivation for
applying SVD compared to other dimensionality re-
duction methods such as Principal Component Anal-
ysis (PCA) is that genes and terms may be visualised
on the same graph. This allows improved understand-
ing of the biological function of genes. The approach
is applied to two data sets: a data set used to val-
idate the approach composed of genes selected from
the KEGG database (Kanehisa et al. 2008) and a data

set of genes highlighted from biological experiments
in childhood cancer. Our approach differs from those
above by recognising that functionality needs to be
described over several ‘axes’. Rather than looking
at only two or three functional dimensions, we find
that it is valuable to also examine later dimensions
that describe more subtle functional similarities be-
tween genes. Our approach differs from commercial
products like Metacore and Ingenuity by focusing on
gene functionality rather than metabolic pathways.
Whilst we agree that metabolic pathways are impor-
tant, our motivation is to concentrate on full explica-
tion of functional interrelationships before augment-
ing data with pathway interconnectivity.

2 Methods

2.1 Singular Value Decomposition

Singular value decomposition (Golub & Van Loan
1996) is a method that transforms a data matrix
X ∈ Rn×m into the orthogonal matrices U ∈ Rn×r,
V ∈ Rm×r and a diagonal matrix D ∈ Rr×r where r
≤ m is the rank of X.

X = UDVT (1)

Row vectors of U relate to the original data points
(rows of X) and rows of V are associated with the
data attributes (columns of X). The columns of U
are called the left singular vectors of X and columns of
V are called the right singular vectors. The elements
of D are termed the singular values of X. Singular
value decomposition has been used often in bioinfor-
matics, for example, in visualisation of gene expres-
sion values (Tomfohr et al. 2005), but the novelty in
our work is to augment lists of genes with knowledge
from a domain ontology and to use the later principal
components to extract superior understanding.

In this study, we apply SVD to an augmented data
matrix that reflects term similarities. Before applying
SVD, the matrix is centered and scaled.

2.2 Incorporating functional information into
the SVD

Given a set of genes G define T as the set of GO terms
directly associated with any of the genes. From G we
create a matrix X ∈ Rn×t where n is the number of
genes |G| and t the number of GO terms |T |. Each
element xij of X has the value 1 if the gene i is directly
associated with term j otherwise 0. This is similar to
computational linguistics where “genes” are replaced
by “documents”.

This data matrix is augmented by information re-
flecting inter–term similarities. A symmetric prox-
imity matrix P ∈ Rt×t is created with elements
0 ≤ pij ≤ 1 representing the proximity (or similar-
ity) between GO terms i and j. Terms with a close
relationship have values close to 1, with the diagonal
elements pii = 1. The proximity between GO terms
is based on the number of links (or distance) between
them and is defined as pij = (dij + 1)−1 where dij is
the minimum distance between terms i and j over the
hierarchy using “is-a” links which are more frequent
than “kind-of” relationships, extracted from GO us-
ing SQL. The augmented data matrix is defined as
X′ = XP. SVD is applied to X′ after centring and
normalisation. Whilst proximity matrices have been
used for text kernels, we are unaware of their use with
GO terms. Pearson correlation between GO terms
and data projected into PC space is calculated and
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important terms are those with higher absolute val-
ues of correlation.

2.3 Data sets

Two datasets are interrogated in this study: a vali-
dation set of genes selected from known classes and a
data set of genes identified from an experiment in the
cancer domain.

2.3.1 KEGG data set

A set of genes has been selected from the Ky-
oto Encyclopaedia of Genes and Genomes (KEGG)
database (Kanehisa et al. 2008), which includes a
functional classification of genes independent of the
GO. The rationale is to validate our approach with
genes of known functional similarity. KEGG links
genomes to their biological systems and is a series
of interconnected databases that interrelate (i) genes
and proteins, (ii) chemical building blocks, (iii) molec-
ular interaction pathways and (iv) hierarchies of bi-
ological objects. The last of these, KEGG BRITE,
links genes into a functional hierarchy called the
KEGG Orthology (KO). This hierarchy is different to
the GO and has been constructed independently. We
validate our approach by extracting genes from classes
based on their KO terms and visualise them using GO
terms. Our KEGG data set (see Table 1) contains
genes (also in GO) from five KO classes: ribosome
(ko03010, class 1), RNA polymerase (ko03020, class
2), transcription (ko01210, class 3), pentose phos-
phate pathway (ko00030, class 4) and pentose and
glucoronate interconversions (ko00040, class 5). We
expect genes in classes 1, 2 and 3 will be similar (with
classes 2 and 3 more similar than to class 1). Genes
in classes 4 and 5 should be similar to one another
but different to the other classes.

2.3.2 Acute Lymphoblastic Leukaemia data
set

Acute Lymphoblastic Leukaemia (ALL) is the most
common childhood malignancy with around 250 chil-
dren in Australia diagnosed annually. Microarray
technology has been used extensively in attempts to
identify markers that are predictive of treatment out-
come in ALL.

The ALL dataset was constructed by building on
previous work by Flotho et al. (2007) and Catchpoole
et al. (2008). Flotho et al. reported a fourteen gene
signature (encompassed by fifteen Affymetrix expres-
sion probesets) that separated a cohort of ALL pa-
tients treated at the St. Jude Children’s Research
Hospital into two distinct groups. The observed sep-
aration was associated with relapse potential, leading
the investigators to conclude the fourteen gene sig-
nature as predictive of relapse. Catchpoole and col-
leagues examined these fourteen genes and found that
the signature produced a separation in their cohort of
ALL patients treated at The Children’s Hospital at
Westmead. However, the separation observed in this
cohort was not associated with relapse nor treatment
outcome.

To further explore this separation observed by
both groups of investigators, Ho et al. (submitted) ap-
plied Random Forest to identify other probesets that
further support this separation. The authors identi-
fied the 250 most important probesets that underlie
this patient separation and found that the genes en-
compassed by these probesets are heavily involved in
the cell cycle, mitosis, DNA replication, apoptosis and

DNA damage repair mechanisms. Our study will use
these 250 probesets for further analysis by SVD and
Expectation Maximisation clustering to explore their
findings.

3 Results

3.1 Visualising KEGG data set

After transformation of the KEGG dataset with SVD
we calculated the Pearson correlation between the
data projected to principal components and to the
association of GO terms to genes (i.e., X), the to-
tal number of GO terms for each gene and the gene
class. There was a very strong correlation of 0.995
between the data projected into principal component
1 (denoted as PC1 in this paper) and the number of
terms associated with each gene suggesting that this
principal component is a “size” component (Jolliffe
2004). It seems reasonable that the most variation in
the dataset is based on the number of terms for genes.

Principal component 2, associated with the next
largest variance, generally contrasts the genetic in-
formation processing genes with the carbohydrate
metabolism genes as can be seen in Figure 1, where
PC2 denotes the axis for principal component 2.
However, we acknowledge that it is not a completely
clear division: there is some overlap. The outlier (cir-
cled) with high PC2 and PC3 values is the gene RHO
which is associated with the largest number of terms
in the data. Table 2 shows that the highest correla-
tion to PC2 is with the class label followed by strong
positive correlations to GO terms describing carbohy-
drate metabolism and negative correlations to terms
associated with ribosomes.

Apart from the outlier RHO, Figure 1 shows that
PC3 separates the different kinds of genetic informa-
tion processing genes as expected because there are
more of these than the carbohydrate processing genes.
Again, the separation involves some overlap between
the classes.
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Figure 1: KEGG genes by PC2 and PC3. Ribo-
some ◦; RNA polymerase4; transcription +; pentose
phosphate pathway ×; pentose/glucoronate intercon-
versions �. PC2 and PC3 are the axes for principal
components 2 and 3 respectively.
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Table 1: Genes in the KEGG dataset listed by class identifier. Column 1: class number and symbol in Figure 1.
Column 2: KO terms describing class and associated genes.

Class KO structure and list of genes used

1 ◦ genetic information processing : translation : ribosome
rpsA, rpsB, rpsC, rpsD, rpsE, rpsF, rplB, rplC, rplD, rplE, rplF, RPS21,
RPS23, RPS24, RPS25, rpmB, rpmC, rpmD, rpmE, rpmF

2 4 genetic information processing : transcription : RNA polymerase
FLIA, RPOA, RPOB, RPOZ, RPOH, RPON, RPOD, RPB2, RPB1,
RPB3, RPA49, RPA14, RPA34, RPA43, RPA12, RPC19, RPC25,
RPB7, RPB4

3 + genetic information processing : transcription
GREA, GREB, NUSA, NUSB, NUSG, MBF1, Rcl1, RHO, ELP3, POL-
RMT, gtf2a2

4 × metabolism : carbohydrate metabolism : pentose phosphate path-
way
pgl, zwf, edd, rpe, tktA, fbp, rpiA, gcd, rbsK, pgm, eda

5 � metabolism : carbohydrate metabolism : pentose and glucoronate
interconversions
GUSB, galU, rpe, AKR1, mtlY, mtlD, clpX

Table 2: GO term name and accession for terms with Pearson correlation > 0.5 to PC2 values for KEGG data.
“Class” refers to the class identifier for the gene.

Term name and accession Correlation

Class 0.550
Carbon utilization by utilization of organic compounds (GO:0015978) 0.539
Cellular catabolic process (GO:0044248) 0.539
Ribosome (GO:0005840) -0.626
Ribonucleoprotein complex (GO:0030529) -0.626
Intracellular (GO:0005622) -0.606
Structural constituent of ribosome (GO:0003735) -0.606
Translation (GO:0006412) -0.606
Cytosolic small ribosomal subunit sensu Eukaryota (GO:0005843) -0.577

3.2 Visualising cancer dataset

As with the KEGG dataset, there is a strong correla-
tion between the number of GO terms associated with
the genes and principal component 1 (PC1). The sec-
ond, third and fourth PCs separate GO terms by their
respective subontologies as shown in Figure 2. This
suggests unsurprisingly that most of the variance in
the dataset is based on technicalities rather than bi-
ological factors. Consequently we split the GO terms
according to the three sub–ontologies and performed
SVD on each individually.

Results for the Cellular Component GO terms,
shown in Figure 3 (top) highlight two clusters of
terms, separated along the PC3 axis. Pearson corre-
lation between GO terms and the PCs (see Table 3)
reveals that the separation between terms is associ-
ated with the cytoplasmic structure (e.g. GO:0005856
cytoskeleton and GO:0005874 microtubule) and DNA
replication (e.g. GO:0031298 replication fork protec-
tion complex and GO:0042555 MCM complex ).

For the Biological Process terms in Figure 3 (mid-
dle) PC2 separates terms associated with cell division
(e.g. GO:0007067 mitosis and GO:0051301 cell divi-
sion) from those related to DNA replication (clus-
ter A). PC3 reveals a tight group of terms (clus-
ter B in Figure 3 middle) associated with develop-
ment (e.g. GO:0009790 embryonic development and
GO:0030903 notochord development). See also Ta-
ble 4.

For the Molecular Function terms in Figure 3 (bot-
tom), PC2 shows a cluster of terms separate from the
main grouping (cluster C) that is related to DNA he-
licase activity (see Table 5). Located in close prox-
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Figure 2: Plot of GO terms by PC2 and PC3 for
cancer data. Terms labelled by sub-ontology: cellular
component (red +), molecular function (black ♦) and
biological process (green ◦). PC2 and PC3 denote
axes for principal components 2 and 3 respectively.
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Figure 3: Plot of principal components 2 and 3 for
U matrix (genes = •) and V matrix (terms: red +
for cellular component, green ◦ for biological process
and black � for molecular function) for the cancer
dataset. Top: cellular component terms, Middle: bi-
ological process terms, Bottom: molecular function
terms. Circled clusters A, B, C and D are described
in the text.

imity is a loose cluster of six genes (the grey circles)
that code for mini chromosome maintenance proteins
(MCM2–MCM7). Both MCM and replicative heli-
case play integral roles in eukaryotic DNA replica-
tion: the MCM protein complex formed by MCM2–
MCM7 is involved in initiation (Costa & Onesti 2008)
and replicative helicase is an enzyme that plays an
role in unwinding the strands (Johnson et al. 2007).
MCM10, the remaining MCM gene in the data is
found in the main group of genes rather than the
cluster. Whilst MCM10 is involved in DNA replica-
tion (Chattopadhyay & Bielinsky 2007) and interacts
with MCM2–MCM7, it is not part of the MCM2–
MCM7 family (Merchant et al. 1997) and our visual-
isation can highlight this.

Cluster D in Figure 3 (bottom) shows Molecular
Function terms associated with kinase activity. This
groups genes with roles in mitosis and, in particular,
in mitotic spindle checkpoint signalling and includes
NEK2, which has been shown to be an important pro-
tein in mitotic checkpoint signalling (Lou et al. 2004)
and BUB1, which functions as a regulator of spindle
assembly and has been shown to lead to aneuploidy in
leukemic cells lines if mutated (Ru et al. 2002). Also
within this cluster is thymidine kinase 1 (TK1), which
has been reported to be predictive of remission dura-
tion (Jahns-Streubel et al. 1997) and relapse (Votava
et al. 2007) in acute leukemias, and is essential to
DNA synthesis.

SVD visualisation of the cancer data results in a
meaningful functional visualisation of the genes, par-
ticularly when limited to terms in sub–ontologies.
Clusters of terms highlight functional groupings of
genes and the genes themselves cluster “behind” the
terms that describe them. Correlations describe the
PC axes. Each PC describes a different functional
aspect of the gene set.

4 Conclusion

We applied SVD to lists of genes augmented with GO
terms and inter–term similarities. Two datasets were
visualised: validation data from KEGG and a set of
genes identified experimentally. Results showed that
principal component 1 measured the number of terms
associated with genes. Later components allowed vi-
sualisation of genes according to their functional in-
formation, but the meaning of PCs varied depending
on the underlying genes. For the KEGG data PCs
described gene functionality. For the larger cancer
dataset the early PCs simply identified known hier-
archies. Separate visualisation using terms from the
individual subontologies was more informative. Cor-
relation between GO terms and PCs improved under-
standing of the functional meaning of the PCs. These
results show that our approach can bring meaningful
biological interpretation to gene lists.

We plan to explore other similarity measures,
specifically an information–theoretic one (Speer et al.
2005). We will address the bias to genes with many
terms by applying methods based on local distance
measures. However, unlike the methods in this paper,
those methods require parameter tuning, which in
turn requires investigation of how to decide whether
one visualisation is “better” than another. This will
also involve comparing the visualisations derived us-
ing our approach more widely with other state-of-the-
art methods. Variability of the quality of information
throughout GO is an issue and we plan to investigate
ways to deal with this.

We acknowledge that interpretation of our results
is somewhat subjective. This is a problem gener-
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Table 3: GO terms from the cellular component sub-ontology with absolute value of Pearson correlation > 0.35
for PC1–4 values from the cancer data set.

PC GO term name and accession Correlation

1 Number of terms 0.855
2 GO:0000777 (condensed chromosome kinetochore) 0.547

GO:0000775 (chromosome, centromeric region) 0.503
GO:0000776 (kinetochore) 0.466
GO:0000778 (condensed nuclear chromosome kinetochore) 0.427

3 GO:0005856 (cytoskeleton) 0.465
GO:0005874 (microtubule) 0.418
GO:0005819 (spindle) 0.386
GO:0031298 (replication fork protection complex) -0.376
GO:0042555 (MCM complex) -0.359

4 GO:0005737 (cytoplasm) 0.383
GO:0005730 (nucleolus) 0.372
GO:0005634 (nucleus) 0.365

Table 4: GO terms from the biological process sub-ontology with absolute value of Pearson correlation > 0.35
for PC1–4 values for the cancer data set.

PC GO term name and accession Correlation

1 Number of terms 0.950
2 GO:0007067 (mitosis) 0.672

GO:0051301 (cell division) 0.665
GO:0007049 (cell cycle) 0.438
GO:0006260 (DNA replication) -0.498

3 GO:0009790 (embryonic development) -0.353
4 GO:0006281 (DNA repair) 0.588

GO:0006974 (response to DNA damage stimulus) 0.445
GO:0000724 (double-strand break repair) 0.388
GO:0006350 (transcription) -0.488
GO:0045449 (regulation of transcription) -0.487

Table 5: GO terms from the molecular function sub-ontology with absolute value of Pearson correlation > 0.35
for PC1–4 values for the cancer data set.

PC GO term name and accession Correlation

1 Number of terms -0.872
2 GO:0043140 (ATP-dependent 3’-5’ DNA helicase activity) -0.604

GO:0003678 (DNA helicase activity) -0.575
GO:0004003 (ATP-dependent DNA helicase activity) -0.574
GO:0009378 (four-way junction helicase activity) -0.529
GO:0003697 (single-stranded DNA binding) -0.562

3 GO:0016301 (kinase activity) -0.565
GO:0004672 (protein kinase activity) -0.533
GO:0004674 (threonine kinase activity) -0.571

4 GO:0004518 (nuclease activity) 0.670
GO:0004527 (exonuclease activity) 0.650
GO:0004523 (ribonuclease H activity) 0.589
GO:0008409 (5’-3’ exonuclease activity) 0.557
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ally with visualisation and unsupervised learning. We
plan to investigate more informative and objective ap-
proaches to characterising clusters than simple Pear-
son correlation that can also take into account the
level of GO terms in the hierarchies.

References

Ashburner, M. et al. (2000), ‘Gene Ontology: tool
for the unification of biology. The Gene Ontology
Consortium.’, Nature Genetics 25(1), 25–9.

Backes, C. et al. (2007), ‘GeneTrail–advanced gene
set enrichment analysis’, Nucleic Acids Research
35(suppl 2), W186–W192.

Berriz, G. & Roth, F. (2008), ‘The Synergizer service
for translating gene, protein and other biological
identifiers’, Bioinformatics 24(19), 2272.

Berriz, G. et al. (2009), ‘Next generation soft-
ware for functional trend analysis’, Bioinformatics
25(22), 3043.

Catchpoole, D. et al. (2008), ‘Predicting outcome in
childhood acute lymphoblastic leukemia using gene
expression profiling: Prognostication or protocol
selection?’, Blood 111(4), 2486.

Chattopadhyay, S. & Bielinsky, A. (2007), ‘Hu-
man Mcm10 regulates the catalytic subunit of
DNA polymerase-α and prevents DNA damage
during replication’, Molecular Biology of the Cell
18(10), 4085.

Costa, A. & Onesti, S. (2008), ‘The MCM complex:
(just) a replicative helicase?’, Biochemical Society
Transactions 36, 136–140.

Flotho, C. et al. (2007), ‘A set of genes that regu-
late cell proliferation predicts treatment outcome
in childhood acute lymphoblastic leukemia’, Blood
110(4), 1271.
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