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Abstract

Privacy preserving data mining and statistical disclo-
sure control have received a great deal of attention
during the last few decades. Existing techniques are
generally classified as restriction and data modifica-
tion. Within data modification techniques noise addi-
tion has been one of the most widely studied but has
traditionally been applied to numerical values, where
the measure of similarity is straightforward. In this
paper we introduce VICUS, a novel privacy preserv-
ing technique that adds noise to categorical data. Ex-
perimental evaluation indicates that VICUS performs
better than random noise addition both in terms of
security and data quality.

1 Introduction

Potential breaches of privacy during statistical anal-
ysis or data mining have implications for many facets
of modern society (Brankovic & Estivill-Castro 1999,
Giggins & Brankovic 2002, 2003). Privacy preserving
data mining and statistical disclosure control focus
on finding a balance between the conflicting goals of
privacy preservation and data utility (Brankovic &
Giggins 2007, Brankovic et al. 2007). Existing tech-
niques are generally classified as restriction and data
modification techniques (Brankovic & Giggins 2007).
When restriction is applied, a user does not have ac-
cess to microdata itself, but rather to a restricted col-
lection of statistics (queries). In this context data
utility is often referred to as usability, or the percent-
age of queries that can be answered without disclo-
sure of any sensitive individual value (Brankovic et al.
1996a,b). Unfortunately, for general queries the us-
ability tends to be very low (Brankovic & Miller 1995,
Griggs 1997), especially when higher levels of privacy
are required (Griggs 1999). However, if only range
queries are of interest, which is the case in OLAP,
the usability can be very high, providing that all cells
of OLAP cubes contain positive counts (Brankovic
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Unlike restriction, data modification techniques al-
low for the microdata to be made available to users
or, alternatively, can provide answers to any query, al-
though the answers are not necessarily exact. There-
fore, in this context, utility is often equated to data
quality (Islam & Brankovic 2005). In principle, data
modification techniques are applicable to both nu-
merical and categorical attributes (Estivill-Castro &
Brankovic 1999, Islam & Brankovic 2011); however,
techniques such as noise addition are mostly applied
to numerical attributes (Willenborg & de Waal 2001,
Muralidhar & Sarathy 2003).

In the context of privacy, there have been two
different focal points that attracted the most atten-
tion, prevention of membership disclosure (Sweeney
2002, Dwork 2006) and prevention of sensitive at-
tribute disclosure (Machanavajjhala et al. 2007, Li
et al. 2007, Brickell & Shmatikov 2008). Member-
ship disclosure refers to revealing the existence of a
particular individual in the database, while sensitive
attribute disclosure occurs when an intruder is able
to learn something about a particular individual’s
sensitive information (Brickell & Shmatikov 2008).
The k-anonymity privacy requirement introduced by
Samarati and Sweeney (Samarati & Sweeney 1998,
Sweeney 2002) incorporates generalization to achieve
its goal of ensuring that at least k records in the mi-
crodata file share values on the set of key attributes
(quasi-identifiers). While this approach is success-
ful in preventing membership disclosure, it does not
prevent sensitive attribute disclosure if (1) there is
not enough diversity in the sensitive attribute, or (2)
the malicious user has significant background knowl-
edge (Machanavajjhala et al. 2007). The [-diversity
privacy requirement seeks to achieve sensitive at-
tribute privacy by applying an additional requirement
that there must exist at least [ “well-represented” val-
ues of the sensitive attribute in each group of records
sharing quasi-identifier values (Machanavajjhala et al.
2007). In the case of very strong backgraound knowl-
edge of the intruder, [-diversity may not be suffi-
cient to prevent sensitive attribute disclosure (Li et al.
2007). A stronger requirements has been proposed,
namely t-closeness, which compares the distances be-
tween the distributions of sensitive attribute over the
whole microdata file to those for each grouping of
records based on the quasi-identifiers (Li et al. 2007).

Differential privacy (Dwork 2006) attempts to cap-
ture the notion that one’s privacy should not be at
any greater risk of being violated by having one’s in-
formation placed in the microdata file. This principle
is applied to answering queries via an output pertur-
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I Client [ Branch [
Dr T. Green (1) Hong Kong (7)
Mr D. Blue (2) Hong Kong (7)
Mr M. Brown (3) Newcastle (8)
Mrs H. Pink (4) Newcastle (8)
Mr K. White (5) Sydney (9)
Mr J. Black (6) Sydney (9)
Mr J. Black (6) Sydney (9)

Financtal Product [ Advisor ”

Mr D. Smith (14)
Mr D. Smith (14)
Mr R. Jones (15)
Ms W. Wong (16)
Ms W. Wong (16)
Ms W. Wong (16)
Mr M. James (17)

Income Protection Insurance (10)
Home Mortgage (11)
Managed Investment (12)
Share Portfolio (13)
Share Portfolio (13)
Managed Investment (12)
Home Mortgage (11)

Table 1: Bank Client Microdata File - Sample

bation technique in (Dwork et al. 2006).

In this paper we focus on sensitive attribute disclo-
sure, namely we aim to minimise the information an
intruder is able to reveal about a sensitive attribute
value belonging to an individual in the microdata file.
By focusing on microdata files containing categorical
data we are also limited in the way in which we can
apply existing privacy requirements and SCD tech-
niques. For instance, having no natural ordering of
categories in an attribute makes the application of
generalization techniques difficult when there is no
obvious hierarchy to the values. Within data modifi-
cation techniques noise addition had been one of the
most widely studied, but have traditionally been ap-
plied to numerical values (see for example (Muralid-
har & Sarathy 2003), and when the data set contains
categorical values the application of these techniques
tends to be much less straightforward (Willenborg &
de Waal 2001). In this paper we introduce “VICUS”,
a novel noise addition technique for categorical at-
tributes. An important step in VICUS is the cluster-
ing of categorical values while, in turn, an important
component of any clustering technique is the notion of
similarity between the attribute values. VICUS seeks
to maximise the similarity between values in the same
cluster, while minimising the similarity between val-
ues from different clusters.

In the next section we outline the similarity mea-
sure that will be employed in VICUS in Section 3. We
first outline the motivation for the similarity measure,
before formally defining it. We then present experi-
mental results on several different data sets, which
highlight the effectiveness of our measure. In Section
3 we propose VICUS, a noise addition technique for
categorical values, which incorporates our similarity
measure and assigns transition probabilities based on
the discovered clusters of attribute values. We also
provide an analysis of experimental results to see how
well VICUS performs in the conflicting areas of secu-
rity and data quality. We provide some concluding
remarks in Section 4.

2 Similarity Measure

2.1 Motivating Example

The following example is designed to illustrate the re-
lationships that exist in the microdata file, and how
VICUS attempts to capture these relationships. Ta-
ble 1 shows a sample Bank Client microdata file for
customers buying financial products from a fictional
bank and similar examples can be constructed from
medical, marketing or criminal research area.

On examining Table 1 we can clearly see a connec-
tion between Dr Green and Mr Blue, as they are both
customers of the Hong Kong branch and both see the
same financial advisor. However, it may not be so
obvious that there is a connection between Mr Brown
and Mr White as they have no attribute values in
common, have purchased different financial products

140

and are seen by different financial advisors at differ-
ent branches. Nevertheless, these two clients have
both purchased financial products that require the
purchase of shares, so there should be some notion of
similarity between them.

To better understand these connections between
the customers we can represent the microdata shown
in Table 1 as a graph (see Figure 1). This is done by
assigning values that appear in the table to vertices.
An edge appears between two vertices when the corre-
sponding two values appear together in a record. Note
that each record forms a clique in the graph. The red
circled subgraph in Figure 1 represents record 7, that
is, Mr Black who has a mortgage and is advised by
Mr James at the Sydney branch.

Figure 1: Motivating example microdata represented
as a graph.

Note that we will be evaluating similarity only
between vertices corresponding to the values of the
same attribute in the data set, that is, vertices 1-
6, 7-9, 10-13 and 14-17. In the sample database Mr
Black (vertex 6) has direct similarity with every other
client except for Dr Green. This direct similarity is
indicated by one or more common neighbours of the
corresponding vertices (or, equivalently, by a path of
length two between the vertices).

Figure 1 shows that there are no common neigh-
bours of vertex 3 (Mr Brown) and vertex 5 (Mr
White). This effectively means that the records per-
taining to Mr White and Mr Brown will have no val-
ues in common. So any method only looking at com-
mon values (neighbours) would not find these two
values at all similar. However, looking at the data
set it is clear that there is some transitive similar-
ity between Mr Brown and Mr White, as they both
purchased products which would typically be consid-
ered similar in the financial context. Although the
products purchased by Mr White and Mr Brown were
provided by different financial advisors, Mr R. Jones
and Ms W. Wong, these two staff are considered simi-
lar because they both sell managed investment funds.
Thus, Mr White and Mr Brown do indeed have similar
products and are serviced by advisors of similar ex-
pertise. Consequently, we may still wish to consider
Mr White and Mr Brown as similar. Our method
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captures this kind of similarity by looking not just at
common neighbours of two vertices, but also at com-
mon neighbours of their neighbours. We now outline
how this type of similarity can be measured.

2.2 Evaluating Similarity

The first step in calculating similarity between at-
tribute values is to create a corresponding graph,
where there is an edge between vertices when two cor-
responding values appear together in a record. Note
that we have considered both the simple graph and
multigraph created from the data set. In the simple
graph we create an edge between two attribute val-
ues if they co-occur in any record. In the multigraph
form we count the number of co-occurrences of the
two values and consider this as the number of edges
between the two corresponding vertices.

The first type of similarity we consider is based on
the values co-occurring in records. For example, in
the Bank Client graph (Figure 1), we would consider
that Dr Green and Mr Blue are similar since they
see the same financial advisor at the same branch.
This type of similarity, which we term S similarity,
is measured by the number of common neighbours of
these two vertices in the graph. Looking at Figure 1
we see that vertex 1 (Dr Green) and vertex 2 (Mr
Blue) are both adjacent to vertex 7 (Hong Kong) and
vertex 14 (Mr D. Smith). We consider this as a high
similarity since these two values share a majority of
neighbours in the graph.

The second type of similarity examines ‘neigh-
bours of neighbours’ and we denote it as S~ similarity,
and measure it by first considering the s similarity
of ‘neighbours’. An example of this type of similar-
ity as discussed in Section 2.1 is between Mr Brown
and Mr White, who although do not share any at-
tribute values, do have ‘similar’ values. For instance,
the Newcastle and Sydney branches would be consid-

ered similar via an S” calculation. Similarly, the Man-
aged Investment is similar to Share Portfolio, and Mr
R. Jones is similar to Ms W. Wong. This means that
all of the values that Mr Brown and Mr White ap-
pear with in the data set are considered similar via

s similarity, and hence these two values would have
a high S” similarity.

The Total Similarity S for two attribute values is
taken to be composed of both the S "and S” similarity
for the values. We now provide a formal definition of

our similarity measure S.
We calculate the total similarity S;; as a weighted

sum of the S;j and S;;-:
Sij =c1 % S;j +co X S;; (1)

where ¢; + ¢ = 1. Typical values might be ¢; = 0.65
and co = 0.35. In the next section we experiment
with different values for ¢; and cs.

2.2.1 Similarity Measure - S;;

We define a simple graph G = (V, E)) on n vertices and
m edges, where v € V represents an attribute value in
the data set. An edge {i,j} € F exists between two
vertices ¢, 7 € V when the values ¢ and j both appear
together in one or more records in the data set. The
adjacency matrix, A, for graph G will contain a 1
in position a;; if an edge {ij} appears between the
vertices ¢ and 7, and 0 otherwise.

Input: Graph G, Threshold T
Output: S” values for G

initialise S matrix to 0;

for each attribute x € G do

get the list of attribute values val,;

/* Loop over all pairs of values for
the attribute z */

for each value i € val, do

for each value j € val, do

initialise mergedGraph to Gj;

/* Loop over all attributes in
G, excluding =z */

for each attribute y € G\ z do

get the list of attribute values
valy;
/* Loop over all pairs of
values in y */
for each value c € val, do
for each value d € val, do
if (there are egdes ({c,i}
and {d,j}) Vv ({c,7} and
{d,i}) in G) A (c and d
not already in the same
vertex in mergedGraph)
then
if S, > Threshold T
then
merge vertex ¢ and
d in mergedGraph;
/* Note: if one
vertex has
already been
merged with
another,
merge all
together  */
end
end
end
end
end
S; =S, calculated on
mergedGraph
end
end

end

" .
return S matrix;

Algorithm 1: Calculating 5" values for graph
G

We define a multigraph H = (V, E) on n vertices
and m edges, where v € V represents an attribute
value in the data set. An edge {i,j} € E exists
between two vertices i,j € V for each record that
contains both values ¢ and j. We do not allow self-
loops in this graph. In the adjacency matrix A for
multigraph H, a;; is the number of edges appearing
between the vertices ¢ and j in H.

The S;j similarity between two attribute values is
given by

n
E V Aik X Qj
! k=1

9T dG) X dG)

where the sum is over all vertices in the graph G (or
H), ain, is the adjacency matrix entry for vertices [
and m (1 <I,m <n) and d(1) is the degree of vertex

. Note that S;j has a maximum value of 1 when the

(2)
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two vertices have all their (d(i) = d(j)) neighbours
in common, and a minimum value when two vertices

have no neighbours in common (S;j =0). S values
are only calculated within an attribute and not across
attributes,

The S;; similarity captures a notion of transitive
similarity for attribute values that are not necessar-
ily directly connected to a common neighbour but are
connected to similar values, that is, values which have

a S;j value greater than the user defined threshold T'.

A basic version of an algorithm for calculating S;;
is shown in Algorithm 1. Note that the actual al-
gorithm used in experimental analysis is significantly
more efficient than Algorithm 1.

2.3 Experiments - Similarity

In this section we present the results of experiments
conducted on several data sets to observe the effec-
tiveness of our similarity measure. Note that only
a small subset of the full experimental analysis con-
ducted is presented in this paper due to space restric-
tions.

2.3.1 Data Sets

Several data sets have been selected to best demon-
strate various qualities and characteristics of our sim-
ilarity measure Sj;.

Motivating Example. This is the same data set
presented in Section 2.1, and is used to illustrate ad-
vantages of our technique over other similarity mea-
sures.

Mushroom. This data set was selected as it contains
only categorical values, and although it is a classifi-
cation data set, it has also been studied in the con-
text of clustering (Guha et al. 2000). It is obtained
from the UCI Machine Learning Repository (Asun-
cion & Newman 2007). The original data set con-
tains 8124 instances on 23 attributes (including the
class attribute), where we removed any records with
missing values.

ACS PUMS. The American Community Survey
(ACS) is conducted annually by the United States
Census Bureau and was designed to provide a snap-
shot of the community. We took a random sample of
20,000 records from the 2006 Housing Records Public
Use Microdata Sample (PUMS) ! for the whole of the
US. The sub-sample was chosen on only 14 attributes
of the available 239, and any records with missing
values on these attributes was not considered.

2.3.2 Parameter Selection

There is a certain amount of flexibility in the calcu-
lation of the similarity measure S. First, there is a

choice for the value of the S;; threshold 7', which is

in the range [0,1]. One observation on the selection of
this threshold is that for smaller/sparser graphs the
threshold generally needs to be set at a lower value
than it does for larger/denser graphs. The second
parameter that needs to be selected is the weighting
values ¢; and ¢y in Equation 1 where ¢; +¢ = 1, and
a typical value choice for these parameters would be
c1 = 0.6 and co = 0.4. This gives a slightly higher

weighting to S;j than to S;; Finally, we have the
choice of making this graph generated from the data

Lhttp://factfinder.census.gov/home/en/acs_pums_2006.html
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Figure 2: Similarity color map for Motivating Exam-
ple.

set a simple graph or a multigraph, that is, a graph
with multiple edges. When showing results for the
similarity measure we generally present a range of pa-
rameters for comparison.

2.3.3 Results

We present a range of results to illustrate the effec-
tiveness of our measure. One way in which we present
the similarity values is via a colour map, as shown in
Figure 2. The colour map assigns different colours
to different values as per the colour bar on the right
hand side of the diagram. Dark red maps to 1.0 and
and dark blue to 0.0. This figure shows S;; values
for the Motivating Example graph on all 17 values
over the 4 attributes. The parameters are as follows;
T =04, c; = 0.6 and c; = 0.4. Value Sy ; is in the
bottom left hand corner of Figure 2, and value Si7,17
is in the right hand top corner. If you look at the di-
agonal between these two values, you will see that all
values along the diagonal are 1.0, since each value has
maximum similarity with itself. Areas outside of an
attribute are dark blue since we do not consider the
similarity between values from different attributes.

Motivating Example. Examining the similarity
values we can compare the S;j and S;; values to the
scenarios discussed in Section 2.1. Table 2 gives the
S;j, S;; and S;; similarity values for the first attribute
in our motivating example, that is, Client and shows
that Vertex 5 (Mr White) and Vertex 3 (Mr Brown)

’ . . . . .
have no S;; similarity since they have no values in

common in the data set. However, when the S;;
threshold T is equal to 0.4, these two values have
a S;; similarity of 1.0. This supports the notion that

although these two clients do not have any direct sim-
ilarity in the data set, they do have a transitive sim-
ilarity which should be considered in any subsequent
clustering of these values. By the appropriate assign-
ment of values to ¢; and ¢ we can give the desired

weight to this indirect similarity represented by SZ/;

In Table 2 we can see the situation for ¢; = 0.6 and
Cy = 0.4.
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7

[sul + [ 2 | 3 [ 4] 5 [ o ]
T | 1.000 | 0.667 | 0.000 | 0.000 | 0.000 | 0.000
2 || 0.667 | 1.000 | 0.000 | 0.000 | 0.000 | 0.258
3| 0.000 | 0.000 | 1.000 | 0.333 | 0.000 | 0.258
4 || 0.000 | 0.000 | 0.333 | 1.000 | 0.667 | 0.258
5 || 0.000 | 0.000 | 0.000 | 0.667 | 1.000 | 0.516
6_ || 0.000 | 0.258 | 0.258 | 0.258 | 0.515 | 1.000
77

[sal + [ 2 | s [ 4] 5 [ 6 ]
1 ][ 1.000 [ 1.000 | 0.000 [ 0.000 | 0.000 [ 0.258
2 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.258
3 || 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.775
4_|| 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.882
5_ || 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.882
6 || 0.258 | 0.258 | 0.775 | 0.882 | 0.882 | 1.000

(S It [ 2 [ 3 [ 4 [ 5 [ 6 1]
T [ 1.000 | 0.800 [ 0.000 | 0.000 [ 0.000 | 0.103
2 [ 0.800 | 1.000 | 0.000 | 0.000 | 0.000 | 0.258
3_ || 0.000 | 0.000 | 1.000 | 0.600 | 0.400 | 0.465
1_|| 0.000 | 0.000 | 0.600 | 1.000 | 0.800 | 0.508
5_ || 0.000 | 0.000 | 0.400 | 0.800 | 1.000 | 0.663
6 || 0.103 | 0.258 | 0.465 | 0.508 | 0.663 | 1.000

! /1
Table 2: S;;, S;; and S;; values for Client attribute

in Motivating Example.

Mushroom. This data set has only categorical at-
tributes. The results for selected attributes are pre-
sented in Figure 3 for parameters T = 0.6,¢; = 0.6
and co = 0.4. It can be seen from the figure that
for some attributes such as Cup Shape, Cup Colour,
Stalk Root and Habitat, all pairs of values exhibit
similarity, while for attributes such as Stalk Colour
Below Ring and Ring Type there are values which
are not very similar to any other value.

ACS PUMS. This data set is good mixture of cat-
egorical and numerical attributes of varying sizes.
A sample of total similarity results for parameters
T =0.75,¢1 = 0.6 and ¢y = 0.4 are shown in Figure
4.

The total similarity across all attributes is shown
in the image in the top left hand corner of Figure 4,

while the S;j and S;; values are shown in the bottom

right hand corner. There are several numerical values
worth mentioning here, including the two attributes
related to income, WAGP (Wages or income in the
past 12 months) and PINCP (Person’s total income).
Both of these attributes exhibit very numerical ten-
dencies in that values that are close together numer-
ically tend to be more similar than those that are
further apart numerically. However, there is a noted
exception to this rule for the attribute PINCP, since
when the income is below zero these values have very
low similarity to values just above zero, yet appear
more similar to high incomes.

Another attribute worth noting is Fducational at-
tainment (SCHL), in the bottom row of Figure 4. The
values in this attribute appear to be partitioned into
two distinct groups that have a high level of similarity
within a partition, and lower similarity outside of it.
The two values at the boundary of these two groups
are values 8 and 9, which correspond to ‘Grade 12
no diploma’ and ‘High school graduate’ respectively.
This result indicates that based on the subset of at-
tributes in the data set, there is a strong relationship
between levels of education above that of high school
graduate, and also between the levels of education
that fall below this benchmark.

An example of a numerical attribute from the ACS
PUMS data set which does not exhibit a numerical
ordering is that of ‘ Usual hours worked per week last
12 months’ (WKHP), shown in the top right hand

Attribute 2 - Cap Shape

Attribute 4 — Cap Colour Attribute 6 — Odour

2 4 6 2 4 6 8 2 4 6

Attribute 12 - Stalk Root Attribute 13 - Stalk Surface Above Ring Attribute 16 — Stalk Colour Below Ring

6

4

2

1 2 3 4 1 2 3 4 2 4 6

Attribute 19 - Ring Type Attribute 21 - Population Attribute 22 - Habitat

e N W s G O

Figure 3: A close look at S;; values for selected at-
tributes in Mushroom. (T = 0.6, ¢; = 0.6, co = 0.4).

corner of Figure 4. Although there are quite a few of
the values which are numerically close that also have
a high level of similarity, there are also many values
which do not follow this convention.

In the next section we will incorporate our simi-
larity measure into a noise addition technique for cat-
egorical values.

3 Noise Addition

In this section we propose a noise addition technique
for categorical values which incorporates our similar-
ity measure from Section 2 and uses it to cluster these
values. It then assigns transition probabilities based
on the discovered clusters. We also provide an anal-
ysis of experimental results to see how well our tech-
nique performs in the conflicting areas of security and
data quality.

Recall our Motivating Example from Section 2.1.
Having evaluated the similarity values for the at-
tributes in this data set, we are now faced with the
problem of how best to partition the values so as to
maximise similarity within a partition, and minimise
similarity across partitions. Although it is not diffi-
cult to define a maximisation function that will indi-
cate the quality of a selected partitioning of the graph,
it is more challenging to decide how best to arrive at
an optimal solution.

3.1 VICUS - Noise Addition Technique

Noise is added to a data set by applying the following
three steps.

Step 1: We partition the graph using the similar-
ity measure for values within an attribute. We use a
genetic algorithm to explore the solution space and
arrive at a close to optimal partitioning of the graph.
Step 2: Using the partitioning of the graph obtained
from Step 1, we generate a transition probability ma-
trix for all attribute values. The transition matrix
gives the probabilities of each attribute value chang-
ing to every other value within the attribute.
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Figure 4: Sample results for Census PUMS data set ("= 0.75,¢; = 0.6, ¢ = 0.4).

Step 3: We perturb each individual value in the orig-
inal data file by applying the transition probabilities.
Note that the value will generally have a relatively
high probability of remaining the same in the per-
turbed file.

We next describe each of the steps in more detail.

Graph Partitioning. We now define the graph par-
titioning problem as presented in Bui and Moon (Bui
& Moon 1996). Given a graph G = (V, E) on n ver-
tices and m edges, we define a partition P to consist
of disjoint subsets of vertices of G. The cut-size of a
partition is defined to be the number of edges whose
end-points are in different subsets of the partition.
A balanced k-way partition is the partitioning of the
vertex set V into k disjoint subsets where the differ-
ence of cardinalities between the largest subset and
the smallest one is at most one. The k-way partition-
ing problem is the problem of finding a k-way parti-
tion with the minimum cut-size (Bui & Moon 1996).
We relax the condition of difference of partition sizes
being at most 1, and we impose a lower bound on
the minimum size of the partition minS. The k-way
partitioning problem has been well studied and has
been shown to be N P-complete in both the balanced
and unbalanced form (Garey & Johnson 1979, Bui &
Moon 1996). Hence, we will apply a heuristic, namely
a genetic algorithm, to solve the problem of moving
from one solution to the next.

Transition Probability Matrix. When deciding
how much noise to add when we perturb a data set,
we must decide on how best to distribute the transi-
tion probabilities amongst the possible choices. Note
that we explore two separate methods for defining
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the transition probabilities, the first being our VICUS
method, and the second being a method we term Ran-
dom, which is used to evaluate the effectiveness of the
VICUS method. We next describe both of them in
more detail.

VICUS Method. Given a partition P of the
original data set which divides all possible values
into k disjoint sets, we calculate the transition
probabilities for each attribute individually. We use
the following notation.

B - the set of all values in the microdata file.

P = {By,Ba, -, By} - a partition - a collection of
disjoint subsets (some of which may be empty) of B

such that Ule B, = B.
A - the set of values of attribute A.

Pa = {A1,As,---, Ai} - a partition - a collection of
disjoint subsets (some of which may be empty) of A

such that J¥_, 4, = A and A; € B;, 1 <i < k.
S - the subset from P4 containing an attribute value,
a € A.

|S| is the number of attribute values in the subset
containing the value a.

S =Pa \ S - the relative complement set containing
all other subsets.



Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

|S'| is the number of attribute values that are in a
different subset to a.

P, - the probability of an attribute value remaining
unchanged.

Dsp - the probability that an attribute value is
changed into a different attribute value from the
same subset.

Py, = (|S| = 1) X psp - the probability that the
attribute value remains in the same subset, but not
unchanged.

pdp - the probability that the value a changes to a
value from a different subset.

Pu, = |S'| X pay - the probability that the attribute
value changes the subset.

The transition probabilities for an attribute value
a satisfy the following;

Py+ Py + Py =1 (5)

We now introduce two parameters that allow the
data manager to adjust the amount of noise to be
added to the microdata file. The first parameter, k1,
is defined such that an attribute value a is k; times
more likely to stay the same than to change to another
value in the same subset. The second parameter, ko,
tells us how many times more likely a value a is to
change to another in the same subset than one in
a different subset. Hence, we can reformulate our
probabilities as

Ps:klxpsp:kIXk2xpdp (8)

and Equation 5 becomes

LI

P,
P, S|-1)x —+|S =

From the above, the probability that a value remains
the same becomes

p — k1><k2
T ki X ko + ke x (IS 1)+ S|

9)

1
Pdp = ki X ka + ko x (|S| = 1) + |5

(10)

ko
kX ket ke x (IS 1) +[S|

(11)

DPsp

3.1.1 Random Method

We also define a set of transition probabilities for the
method we term Random. This method does not as-
sign probabilities for P, and Pg,, but rather intro-
duces the probability of a value changing to any other
value in the attribute, which is denoted P.. However,
it still uses Equation 9 to calculate the probability of
a value remaining unchanged in the perturbed data
set. We define the probability of a value changing to
any other value in the attribute as follows

1- P,

p=—— 15 12
SEGIEE (12)

The resulting method will perform better than a
truly random method, as it is imparting some of the
information from our partitioning of the values when
calculating the value for P;. However, to evaluate
the quality of our method we need to perturb the
‘random’ in such a way as to be able to compare the
results of our security measure and data quality tests.

Perturbing Microdata File. Once the transition
probability matrix has been generated for each at-
tribute, the next step is to simply perturb the original
microdata file according to the transition probabili-
ties assuming that a random value is drawn to de-
cide if the value changes to another value in the same
partition, one from a different partition, or remains
unchanged.

3.2 Evaluation Methods

We now evaluate VICUS both in terms of security
and data quality. In evaluating the security of a per-
turbed data set we assume that the intruder is aware
of the exact perturbation technique. We apply an in-
formation theoretic entropy (Shannon 1948) measure
to estimate the amount of uncertainty the intruder
has about the identity of a record as well as the value
of a confidential attribute. In order to gauge how well
our noise addition technique preserves the underlying
data quality, we apply the chi-square statistic test.

Input: Transition Probability matrix M,
Perturbed microdata file P,
Probabilities p, for all records

Output: H(D) entropy

for each value ¢; € C do
| initialise probability D; to 0;
end
for each record x in P with C, for C do

for each confidential value in ¢; € C' do
/* Sum the probability that C, in
P originated from c¢; x/
/* in O and multiply by the
probability that x/
/* record x is the record the
intruder ‘knows’ */
Di+ = p(ei = O(Cy)) X pa;
end
end
/* Now calculate the entropy of the
confidential value V, */

H(D) = £ Diloga 3
return H(D);

Algorithm 2: Calculating entropy of confiden-
tial attribute in perturbed microdata file.

Security Measure. One way in which we can mea-
sure the security of a released microdata file is by
estimating how certain an intruder is that they have
identified a record, and more importantly the cor-
rect confidential value for that record (Oganian &
Domingo-Ferrer 2003). To gauge the amount of un-
certainty an intruder has about having identified a
particular record in the perturbed microdata file, we
calculate the entropy for this record. Similarly, by
calculating the entropy of a confidential value we can
estimate the amount of uncertainty the intruder has
about this value. We assume that there is only one
confidential or sensitive attribute in the microdata
file; it is straightforward to generalise to a case where
there is more than one confidential attribute. We as-
sume that an intruder (1) knows how noise has been
added to the microdata file (2) knows one or more
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attribute values about a particular record for which
they wish to learn the confidential value (3) only has
access to the perturbed and not the original micro-
data file (4) is trying to compromise one particular
record in the database and that they know the orig-
inal values of some or all non-confidential attributes
for that record. The algorithm used to calculate the
entropy of a confidential attribute is given in Algo-
rithm 2.

Data Quality. Information loss is an important con-
sideration when evaluating the quality of a perturba-
tion technique (Trottini 2003). The goal of the data
manager is to minimise the reduction in data qual-
ity while at the same time maximise the security of
released data. In order to evaluate how VICUS per-
forms in terms of information loss apply a chi-square
statistical test to both the original and perturbed
data sets to ascertain how successfully VICUS pre-
serves the underlying statistics from the original data
set.

The chi-square test is a commonly applied statis-
tical measure for determining the statistical signifi-
cance of an association between two categorical at-
tributes (Utts & Heckard 2004). We follow the five
step approach to determining statistical significance
as outlined by Utts and Heckard (Utts & Heckard
2004, p.184).

Note that our aim here is not to determine if there
is any statistical significance of the attribute associ-
ations studied, rather we aim to determine that any
such significance is undisturbed by our perturbation
method.

Mushroom
Comparing entropy to the number of attribute known to the intruder
T T T T T

T T T

* - VICUS (k1=2, k2=20)

128 —0O— - Random (k1=2, k2=20) [
\

Y # - VICUS (k1=10, k2=50)
N —o- Random (k1=10, k2=50)

11

10 .

entropy
/
/

I I I I I I I
2 4 6 8 10 12 14 16 18 20
number of attributes known to the intruder

Figure 5: Record entropy vs number of known at-
tributes, Mushroom data set.

We analyse our data set in the form of two-way
contingency tables, which count the co-occurrence of
a categorical value from one attribute with a value in
another attribute, for all combinations of values.

Since we are dealing with categorical data specif-
ically, and all of our experimental data sets have
been perturbed under this assumption, the chi-square
statistic is a natural choice. The chi-square statis-
tic, x2, measures the difference between the observed
counts in the contingency table and the so-called ex-
pected counts, which are those that would occur if the
there was no relationship between the two categori-

146

cal variables (Utts & Heckard 2004). An alternative
statistic is the Likelihood Chi-Square X%, was also
used in our analysis. For large data sets the values of
x? and x2 r should be comparable. The same method
is used to compare these statistics to the p-value to
evaluate the correctness of the null hypothesis.

3.3 Experiments - Noise Addition

From the data sets examined in Section 2.3, where we
looked at experimental results for our similarity mea-
sure, we present only the results for the Mushroom
Data Set in this paper. In preparing our experiments
we generated a multigraph from the original data set,
and we ran a genetic algorithm 30 times and selected
the partition with the largest fitness function. We
next select five different combinations of parameters
for the transition probability generation, and for each
selection we perturbed 30 files according to the gen-
erated transition probabilities.

Security. We calculated the entropies for the situa-
tion when the user knows one, two, three and all of
the attributes excluding the confidential one, to give
a comparison ‘worst case scenario’ result. For each of
the 30 perturbed files, we averaged the entropies over
all records and all files for when the intruder knows
one attribute value, and present the results in Table
3. The average entropies do not differ significantly
between VICUS and Random method and the range
between 11 and 12 bits for record entropy and 1.6 and
2.6 bits for confidential attribute entropy.

In Figure 5 we show how the entropy drops when
the user learns more attribute values for a particular
record. We are also interested to know if certain at-
tributes are more or less revealing than others, that
is, if they yield a lower or higher entropy than aver-
age. Figure 6 provides a close up view of the entropies
for each individual attribute.

Data Quality. We used the SPSS Statistical Soft-
ware package to analyse the Chi-square statistics of
the mushroom data set. For each attribute pair
we calculated the Pearson’s Chi-Square statistic and
Likelihood Ratio Chi-Square statistic on the original
data set, 30 files perturbed using VICUS method and
30 file perturbed via the Random method. We com-
pared both the Chi-square statistic value and asso-
ciated p-value for each. We first want to see VICUS
performed in terms of how far the x? values were from
those on the original file and the Randomly perturbed
files. We next wanted to verify if there was a change
in the outcome of the null hypothesis for the files per-
turbed with the VICUS method.

We chose to look at Attribute 4 (Cap Colour)
against the other attributes, since this attribute
showed to be the most sensitive in terms of security
when we calculated the entropy for the user knowing
one attribute value (Figure 6).

We also selected only a single combination of val-
ues for the parameters, namely k; = 5 and ky = 20,
as this combination gave middle of the range results
on entropy.

Of the 21 attribute combinations, there were 7 at-
tribute pairs that satisfied the large sample require-
ment on the original data set. That is, these at-
tributes had over 80% of cells in the contingency table
with expected counts larger than 5, and all cells had
an expected count larger than 1.

Figure 7 compares the distributions of the x?
statistic values for the 30 files perturbed via the VI-
CUS and Random methods, and shows how far away
they are from the x? statistic for the original file,
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Perturbation | % ko VICUS | Random VICUS [ Random
Record Entropy Confidential Entropy
Mushl 2 20 11.9720 12.0074 2.0743 2.4496
Mush?2 5 20 11.7502 11.7316 1.8778 2.1962
Mush3 10 10 11.6141 11.5772 1.8280 2.0036
Mush4 10 20 11.5826 11.5487 1.7220 1.9450
Mushb 10 50 11.5567 11.5284 1.6409 1.9045

Table 3: Average record and confidential attribute entropy.

entropy
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Record entropy for VICUS and Random
Intruder knows 1 particular attribute

Comparing Chi-Square Statistic Distributions
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Figure 6: Record entropy sensitivity.

which had the value of 2711.8. For all 30 files VICUS
had the x? greater that 1500, while Random had the
x? value less than 1000. On all attribute pairs exam-
ined, our VICUS method produced x? values closer
to the original than the those of the random method.

4 Conclusion

In this paper we have presented a new noise addi-
tion technique, VICUS, for application on categor-
ical data. The first step of VICUS is to calculate
the similarity between the categorical attribute val-
ues. To this end we have designed a new similarity
measure specifically for use on categorical attribute
values. The similarity measure aims to capture the
notion of transitive similarity between values of an

attribute, the so called S” similarity. As the results
of experimental analysis show, our similarity measure
is effective in capturing the similarities that occur in
the microdata when values no neighbours in common.
Although VICUS is designed for application on cate-
gorical values, it can also be applied to numerical at-
tributes by treating the discrete values as categories.
The experiments showed that not all numerical at-
tributes exhibit a numerical ordering according to our
similarity measure, that is, values that are numer-
ically close together do not necessarily have a high
similarity. This would seem to indicate that the ap-
plication of traditional numerical noise addition tech-
niques on such attributes could result in reduced qual-
ity of the perturbed data set. Experimental results
indicate that VICUS performs well in both the areas

I I
0 500 10 2000 2500

00 1500
Pearson’s Chi-Square Statistic

Figure 7: Chi-square statistic

of security and data quality. We observed that a low
value for k1 and high value for ko transition probabil-
ity parameters lead to improved performance in terms
of both data quality and security of VICUS over the
Random method. Setting the product (k; x k2) of
these parameters to a value of 100 or higher, while
also ensuring that k; is low and k5 is high appears to
give the best balance between the conflicting goals of
security and data quality.
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