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Abstract 
Affect detection where users’ mental states are 
automatically recognized from facial expressions, speech, 
physiology and other modalities, requires accurate 
machine learning and classification techniques. This 
paper investigates how combined classifiers, and their 
base classifiers, can be used in affect detection using 
features from facial video and multichannel physiology. 
The base classifiers evaluated include function, lazy and 
decision trees; and the combined where implemented as 
vote classifiers. Results indicate that the accuracy of 
affect detection can be improved using the combined 
classifiers especially by fusing the multimodal features. 
The base classifiers that are more useful for certain 
modalities have been identified. Vote classifiers also 
performed best for most of the individuals compared to 
the base classifiers. . 
Keywords:  Classifiers, machine learning, affective 
computing, data fusion. 

1 Introduction 
Affective computing, mostly useful in the area of human 
computer interaction (HCI), and particularly affect 
detection, heavily depends on efficient machine learning 
techniques (Calvo and D'Mello, 2010). Various 
modalities such as behavioural signatures and 
physiological patterns can be indicators of affect, thus 
pattern recognition techniques applied to a single, but 
mostly a combination of modalities could lead to affect 
detection. 

A number of techniques have been developed for 
affect detection and studies tend to use features from 
audio-visual, speech-text, dialog-posture, face-body-
speech, and speech-physiology, face-physiology, and 
multi-channel physiology (for detailed review see (Calvo 
and D'Mello, 2010)). Most of these studies have applied 
single classifiers, such as support vector machines 
(SVM), k-nearest neighbours (KNN), linear/quadratic 
discriminant analysis (LDA/QDA), decision trees, 
Bayesian network etc. with single and multiple modalities 
(mostly as feature fusion). However, finding a single 
classifier that works well for all modalities and 
individuals is difficult. Even though decision level fusion 
approaches have been proposed for integrating 
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multimodal information in affect detection, in most 
studies it could not exceed the performance of feature 
level fusion (Sebe et al., 2005). 

Combining classifiers is thought to provide more 
accurate and efficient classification results. Instead of just 
one classifier, a subset of classifiers (aka base classifiers) 
can be considered along with the best subset of features 
for the best combination (Kuncheva, 2004). Moreover, a 
certain base classifier may do well on a certain modality, 
but it is challenging to generalize one classifier for 
multiple channels or modalities. There are two important 
reasons for considering combined classifiers (Utthara et 
al., 2010): (1) A single classifier can not perform well 
when the nature of features are different. Using 
combination of classifiers with a subset of features may 
provide a better performance. (2) To improve 
generalization, where a classifier may not perform well 
for new data beyond that in the training set –generally 
very small in affective computing applications.  

Two main strategies are applied for combining 
classifiers: fusion and selection. This study investigates 
the classifier fusion approach. In classifier fusion, each 
classifier is provided with complete information about the 
feature space. Combiners such as the average and 
majority vote are then applied for fusion. Combined 
classifiers may not necessarily always out-perform one 
single classifier, but the accuracy will be on an average 
better than all the base classifiers (Utthara et al., 2010, 
Kuncheva, 2004).  

Combining classifier can be suitable in emotion 
studies for affect detection or classification where 
features contribute from multiple modalities (reason 1) 
and individuals (reason 2) in varying environmental 
setups. Omar AlZoubi et al. (2011) proposed a classifier 
ensemble approach using a Winnow algorithm to address 
the problem of day-variation in physiological signals for 
affect detection. However, the study used only one type 
of classifier (four SVM classifiers) for the ensemble. 
Combined classifiers have been considered in some of 
our previous studies related to affect detection from 
multimodal features (Hussain et al., 2012, Hussain et al., 
2011b, Hussain et al., 2011a), however the improvements 
over the base classifiers have not been justified.  

In this study we have applied vote classifiers to detect 
affects, in this context detecting how positive or negative 
their valence (e.g. happy vs. unhappy) and its intensity 
(aka arousal or activation) using features from 
multichannel physiology and facial video.  Three types of 
base classifiers (function, lazy, decision trees) are 
considered and results are evaluated for the individual 
base classifiers and the vote classifiers. The study 
provides empirical justification of using the vote 
classifiers for affect detection using multimodal features 
collected from a variety of subjects, during controlled 
stimulus presentation. The vote classifiers are also briefly 
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evaluated for affect detection using a separate dataset 
(Hussain et al., 2012), collected during naturalistic 
interactions with an Intelligent Tutoring System (ITS).  

Section two gives a brief description of the data 
collection procedure and section three gives the 
computations model. Section four gives the results with 
discussions followed by conclusion in section five. 

2 Data Collection: Participants, Sensors, and 
Procedures 

The data used for detecting affect (i.e. the arousal and 
valence dimensions) in this paper was collected in a study 
where participants viewed emotionally stimulating 
photos. The purpose of this experiment was to collect 
physiological signals and facial video in response to 
emotional stimulus (3-degrees of arousal and valence). 
Data was collected from 20 students (8 males and 12 
females, age ranged from 18 to 30) from University of 
Sydney. Each session took approximately 15 to 20 
minutes for preparation (consent forms, sensor setup and 
the explanation of experiment protocol) prior to the 
experiments. Physiological signals and facial video were 
recorded during the entire session. The participants’ 
electrocardiogram (ECG), skin conductivity (SC), and 
respiration (Resp) were measured using a BIOPAC 
MP150 system with AcqKnowledge software. Video was 
recorded using Logitech Webcam Pro 9000. All videos 
were recorded in colour at 15 frames per seconds (fps) 
with pixel resolution of 640×480 pixels.  

The experiment was conducted under systematic setup 
and considered images from the International Affective 
Picture System (IAPS) (Lang et al., 1997) as part of the 
emotion stimulation process. The IAPS collection 
contains set of colour photographs with normative ratings 
of emotion (valence, arousal, dominance) providing a set 
of emotional stimuli frequently used in experimental 
investigations of emotion and attention. The normative 
ratings in the IAPS collection are the result of many 
studies with large number of subjects.  

Each session lasted approximately 40 minutes where 
participants viewed the photos from the IAPS collection. 
A total of 90 images were presented; each image was 
presented for 10 seconds, followed by a 6 seconds pause 
showing a blank screen between the images. The 
experiment was interrupted by short breaks after 
presenting every 30 images. Images were categorized 
based on IAPS normative ratings so that the valence and 
arousal scores for the stimulus spanned a 3×3 space and 
presented based on the affective circumplex model 
(Russell, 1980). 

3 Computational Model 
The computational model for feature extraction, feature 
selection and classification were implemented in Matlab 
with the support of in-house and third party toolboxes.  

 

 
Figure 1: Overview of computational model  

Figure 1 gives the overview of the computational 
model. The following subsections provide detailed 
description of the three main computational modules 
followed by the classifier training and testing procedure. 

 

3.1 Feature Extraction, Normalization and 
Feature Fusion 

A total of 287 features were extracted from the facial 
video and the physiological signals. Feature vectors were 
calculated from the time window corresponding to the 
duration of each stimulus presentation (10 seconds). The 
feature vectors were also labelled with the normative 
ratings (1-3 degrees of valence/arousal). The feature 
extraction and normalization process is explained briefly 
as followed. 

Videos were analysed offline using MATLAB and 
Open Computer Vision library (OpenCV)1. Two types of 
image-based features were explored: geometric and 
chromatic features. Five geometrical data (x and y 
coordinates, width, height and area) were derived which 
determined the position of the head in each frame. In 
addition, each frame was separated into red, green and 
blue colours in different conditions, due to movement or 
changing illumination sources. A total of 115 features 
were extracted from the videos (59 from geometric and 
56 from chromatic).   

Statistical features were extracted from the different 
physiological channels using the Augsburg Biosignal 
toolbox (AuBT) (Wagner et al., 2005) in Matlab. Some 
features were common for all signals (e.g. mean, median, 
and standard deviation, range, ratio, minimum, and 
maximum) whereas other features were related to the 
characteristics of the signals (e.g. heart rate variability, 
respiration pulse, frequency). A total of 172 features were 
extracted from the five physiological signals (84 from 
ECG, 21 from SC, and 67 for respiration).  

All features were merged to achieve the fusion model 
(fusion) for further analysis. All physiological features 
were considered as the physio modality and both 
geometric and chromatic features were considered as the 
face modality. Hence, fusion contained all features of 
these two modalities. All features were normalized using 
z-scores before classification. 

3.2 Feature Selection 
The feature selection was implemented in Matlab using 
the DMML2 wrapper for Weka (Hall et al., 2009). Feature 
selection techniques are used for discarding redundant, 
noisy features. This study investigates correlation based 
feature selection (CFS) as a way of choosing the best 
subset of features. The feature selection was performed 
separately for all individual modalities, and their fusion. 
The CFS technique evaluates the worth of a subset of 
features by considering the individual predictive ability of 
each feature along with the degree of redundancy 
between them (Hall, 1999). Equation (1) gives the merit 
of feature subset S consisting of k features. 
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2 DMML: featureselection.asu.edu/software.php 
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𝑀𝑒𝑟𝑖𝑡!! =
!!!"

!  !  !(!  !  !)!!!
    (1) 

 
Where, 𝑟!" is the average value of all feature-

classification correlations, and 𝑟!!  is the average value of 
all feature-feature correlations. The subset with the 
highest merit, as measured by Equation (1) found during 
the search, is used to reduce the dimensionality of both 
the original training data and the testing data. The CFS is 
defined by Equation (2). The 𝑟!!! and 𝑟!!!! variables are 
refereed to as correlations.  

 

𝐶𝐹𝑆 =
𝑚𝑎𝑥
𝑆!

!!!!   !  !!!!  !  …  !  !!!!
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  (2) 

3.3 Classification 
The classification was performed in Matlab using 
MatlabArsenal3, a wrapper for the classifiers in Weka 
(Hall et al., 2009). Three types of base classifiers: lazy, 
function, and tree are considered.  

Firstly, the three types of classifiers are evaluated: 
decision trees (J48), k-nearest neighbor (KNN), and 
support vector machine (SVM). In particular, SVM, KNN 
and decision trees are popular based on their 
compatibility and performance in many applications 
(Nguyen et al., 2005). These popular supervised learning 
algorithms that are simple to implement, span a variety of 
machine learning theories and techniques (e.g. function, 
lazy, tree), making them suitable in combined classifiers 
for addressing the diversity of features and subject 
variability. The CVParameterSelection, a meta-classifier 
in Weka that performs parameter selection by cross-
validation was used to evaluate and determine parameter 
values for the classifiers with our dataset. The K value of 
one was selected for KNN classification. The exponent 
value of 1.0 (linear kernel), complexity factor of 1.0 was 
set for SVM.  The C4.5 decision tree was used with 
confidence factor set to 0.25, and considering the subtree 
operation when pruning.  

Secondly, two types of vote classifiers (as followed) 
are evaluated for combining classification results from 
the base classifiers to achieve the final classification 
decisions.  

Average Vote Classifier (AVC): This vote classifier is 
a meta-classifier that combines the probability 
distribution of base classifier using the average 
probability rule. This is categorized as combining 
probabilistic (soft) outputs (Utthara et al., 2010, 
Kuncheva, 2004). This Vote classifier determines the 
class probability distribution computing the mean 
probability distribution of the base N arbitrary classifiers 
as followed (Seewald, 2003): 

 
𝑝𝑟𝑒𝑑 =      !!

!
!
!!!      (3) 

 
Where, 𝑃! refers to the probability given by classifier i. 

The Voting prediction for j classes are mapped using 𝑃!!  
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instead of 𝑃! in Equation (3). 𝑃!! is the vector of p., for all 
j, where 

 𝑃!,!! = 1    𝑖𝑓  𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥! 𝑃!,! , 𝑓𝑜𝑟  𝑔𝑖𝑣𝑒𝑛  𝑖
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                          

 (4) 

 
Weighed Majority Vote (WMV): In this vote classifier 

more competent base classifiers are given greater power 
to make the final decision based on the weighted majority 
vote algorithm (a meta-learning algorithm). This 
classifier is categorized as combining class labels (crisp 
outputs) (Utthara et al., 2010, Kuncheva, 2004). The class 
labels are available from the classifier outputs. The 
decision by classifier i (from N arbitrary classifiers) for 
class j is defined as di,j. If the classifier chooses class ωj 
then di,j=1, and 0 otherwise. The classifiers whose 
decisions are combined through weighted majority voting 
will choose class ωk if  

 
𝑏!!

!!! 𝑑!,! = max! 𝑏!!
!!! 𝑑!,!   (5) 

 
Where, bi is the weight coefficient for classifier i.  

3.4 Training, Testing and Evaluation 
All datasets were initially shuffled and randomized. Then 
the training and testing was performed separately with 
10-fold cross validation. In 10-fold (k-fold) cross-
validation, each dataset or sample was randomly 
partitioned into 10 subsamples. Of the 10 subsamples, a 
single subsample was retained as the validation data for 
testing the model, and the remaining 9 (k-1) subsamples 
were used as training data. The cross-validation process 
was then repeated 10 times (the folds), with each of 
the 10 subsamples used exactly once as the validation 
data. The 10 results from the folds were then averaged to 
produce a single estimation.  

The ZeroR classifier is used for determining the 
baseline accuracy. The accuracy score is used for 
reporting the overall classification performance and 
precision score is used for reporting performance of 
individual classes.  

4 Results and Discussion 
In this section we provide results for detecting 3-degrees 
of valence (negative, neutral, positive) and arousal (low, 
medium, high) from physio, face and fusion using the 
vote classifiers (AVC and WMV) and the base classifiers 
(J48, KNN, SVM). Figures 2 and 3 give the average 
classification accuracy and the standard deviation (error 
bars) over all subjects4. The baseline classification 
accuracy is 33% for both valence and arousal.  

Firstly, evaluating the overall performance of 
detecting degrees of valence and arousal from individual 
modalities (physio and face) and fusion shows that in 
almost all cases (except J48 and KNN in arousal) fusion 
has higher accuracy and lower standard deviation. 
Secondly, evaluating the classifiers show that both AVC 
and WMV in general exhibits similar (compared to 
individual modalities) or higher (compared to fusion) 
accuracy compared to the base classifiers.  

                                                             
4 Results for 19 subjects due to SC sensor failure in one subject. 
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Among the base classifiers, KNN exhibits the highest 
accuracy for physio (50%), face (60%) and fusion (62%) 
in valence (Figure 2). J48 exhibits the highest accuracy 
for both physio (49%) and fusion (56%) with slightly 
higher accuracy with KNN for face (57%) in arousal 
(Figure 3). SVM shows comparatively low accuracy in 
face for both valence and arousal. For this dataset, the 
vote classifiers are unable to improve the accuracy of the 
individual modalities over the base classifiers, except in 
physio for valence (showing 2% and 1% improvement in 
AVC and WMV respectively). The fusion exhibits 2% 
improvement (both AVC and WMV) in valence and 4% 
improvement (only AVC) in arousal compared to the 
accuracy of the best base classifiers. However, the 
improvements by AVC were statistically significant5 only 
over SVM for face in both valence and arousal. The 
improvement by WMV was also significant over SVM 
for face but only for arousal. 

 

 
Figure 2: Accuracy (Mean, SD) of classifying 3-

degrees of valence from physio, face and fusion using 
vote classfiers (AVC, WMV) and their base classfiers 

 
Figure 3: Accuracy (Mean, SD) of classifying 3-

degrees of arousal from physio, face and fusion using 
vote classfiers (AVC, WMV) and their base classfiers 

For this dataset, the base classfiers performed better 
for certain subjects and the vote classfiers for others. This 
reflects that for some subjects, where the performance of 
the base classfiers were poor, the vote classifiers acheived 
improvement. Figures 4 and 5 give the proportion of 
subjects representing the classifiers that performed with 
highest accuracy for valence and arousal respectivly. The 
vote classfiers (specially AVC) peformed better in most 
subjects for fusion compared to the individual modalities 
in both valence and arousal. This reflects that the vote 
classfies perform best using features from multiple 
modalities. For face, KNN perfomed better for most 
subjects in valence and J48 in arousal. SMV in general 
                                                             
5 One-way ANOVA and post-hoc test with bonferroni 

was less useful in most subjects except for physio in 
arousal. KNN was also less useful for physio and fusion 
in arousal. 

 

 
Figure 4: Proportion of subjects representing 

classifiers that performed with highest accuracy (val.)  

 
Figure 5: Proportion of subjects representing 

classifiers that performed with highest accuracy (ar.) 

The classification was performed using balanced class 
distribution; therefore the precision score is used to report 
the classification accuracies of the individual classes, in 
this case individual degrees of valence and arousal. Table 
1 gives the precision scores (mean and standard 
deviation) for classifying the individual degrees of 
valence and arousal from fusion. According to table 1, the 
vote classifiers exhibit higher precision compared to the 
base classifiers where both AVC and WMV show similar 
performance. For this dataset, AVC is slightly better at 
detecting positive valence and medium arousal whereas; 
WMV is best at detecting neutral, negative valence and 
high arousal. This reflects that vote classifiers have 
improved the accuracy of the individual affective states 
compared to the base classifiers. 

 

  
Valence Arousal 

Pos. Neu. Neg. High Med Low 

j48 0.62  
(.13) 

0.53  
(.10) 

0.64 
(.12) 

0.62  
(.09) 

0.47  
(.14) 

0.58  
(.12) 

knn 0.66  
(.13) 

0.53  
(.14) 

0.66  
(.10) 

0.57  
(.10) 

0.45  
(.14) 

0.61  
(.12) 

svm 0.66  
(.17) 

0.46  
(.15) 

0.61  
(.19) 

0.60  
(.11) 

0.39  
(.18) 

0.65  
(.15) 

avc 0.72  
(.14) 

0.53  
(.13) 

0.67  
(.13) 

0.64  
(.10) 

0.50  
(.16) 

0.66  
(.11) 

wmv 0.70  
(.16) 

0.55  
(.13) 

0.69  
(.13) 

0.65  
(.09) 

0.46  
(.15) 

0.66  
(.14) 

Table 1: Precision scores (Mean, SD) for detecting 
individual degrees of valence and arousal from fusion 
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The evaluation of these classifiers with the same 
computational model can also be presented using another 
dataset, which consists of similar features (physiological 
and facial video), collected from participants during 
naturalistic interactions with an ITS. Hussain et al. (2012) 
collected this dataset and reported the accuracy of 
detecting degrees of valence and arousal with AVC from 
physiological and facial features (see paper for more 
details about the experiment). Participants had self-
reported their affect (3-degrees of valence and arousal) 
judgment which were synchronized with the 
physiological and facial video features and used as labels 
for classification. However, the study by Hussain et al. 
(2012) did not address detection accuracies of the base 
classifiers, thus did not quantify if AVC achieved any 
improvements. 

The classifiers selected (base classifiers, AVC, and 
WMV) in our study in this paper can be evaluated with 
this dataset that represent affects self-reported from 
naturalistic interactions compared to normative ratings 
from a controlled stimulus presentation. Following the 
study by Hussain et al. (2012), in Figures 6 and 7, we 
present the overall classification accuracies for detecting 
degrees of valance and arousal respectively from the base 
classifiers and the vote classifiers.  

 

 
Figure 6: Detecting 3-degrees of valence (ITS dataset) 

from physio, face and fusion using vote classfiers 
(AVC, WMV) and their base classfiers  

 

 
Figure 7: Detecting 3-degrees of arousal (ITS dataset) 

from physio, face and fusion using vote classfiers 
(AVC, WMV) and their base classfiers  

The vote classifiers are able to improve the 
classification accuracy in valence and arousal for face, 
physio, and fusion compared to the base classifiers. In 
both valence and arousal, J48 was least useful for physio 
and fusion, whereas SVM was least useful for face. 

Similar to the IAPS dataset, KNN proved to be most 
useful using this dataset for face in both valence and 
arousal. Comparing the vote classifiers, WMV exhibits 
1% improvement over AVC for fusion in valence and 
vice-versa in arousal. AVC shows 1% and 3% 
improvements for face and physio respectively over 
WMV in valence. However, WMV shows 2% and 3% 
improvements for face and physio respectively over AVC 
in arousal. The highest accuracy for detecting the degrees 
of valence is from face with 62% accuracy using AVC 
(similar trend as in (Hussain et al., 2012)). However, 
fusion has the highest accuracy for detecting the degrees 
of arousal also using AVC with 64% accuracy. 

5 Conclusion 
In this study we have evaluated combined classifiers and 
compared their performances with the base classifiers for 
detecting degrees of valence and arousal from multimodal 
features. The vote classifiers considered in this study 
have showed improvement over the base classifiers (J48, 
KNN, SVM) using our dataset, especially by fusing the 
multimodal features. The classifiers that are more 
important for certain modality have been identified, for 
example KNN showed to be more useful and SMV least 
useful for the face modality in both valence and arousal. 
Even though the improvements of the vote classifiers are 
not extremely higher than the base classifiers, they are 
still useful for multimodal features and subject variability 
in behavioural studies.    

As for future work, more base classifiers can be 
explored to replace less useful ones (for modalities and 
individuals) to be used for combined classifiers. The 
classifier selection methods (Kuncheva, 2002) can be 
applied on these datasets, where every classifier can be an 
expert in a specific domain (modality) of the feature 
space for the combined classifier to improve the detection 
accuracy of affects.  
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