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Abstract

This paper is devoted to empirical investigation of
novel multi-level ensemble meta classifiers for the de-
tection and monitoring of progression of cardiac au-
tonomic neuropathy, CAN, in diabetes patients. Our
experiments relied on an extensive database and con-
centrated on ensembles of ensembles, or multi-level
meta classifiers, for the classification of cardiac auto-
nomic neuropathy progression. First, we carried out
a thorough investigation comparing the performance
of various base classifiers for several known sets of
the most essential features in this database and de-
termined that Random Forest significantly and con-
sistently outperforms all other base classifiers in this
new application. Second, we used feature selection
and ranking implemented in Random Forest. It was
able to identify a new set of features, which has turned
out better than all other sets considered for this large
and well-known database previously. Random Forest
remained the very best classifier for the new set of
features too. Third, we investigated meta classifiers
and new multi-level meta classifiers based on Random
Forest, which have improved its performance. The re-
sults obtained show that novel multi-level meta classi-
fiers achieved further improvement and obtained new
outcomes that are significantly better compared with
the outcomes published in the literature previously
for cardiac autonomic neuropathy.

Keywords: Random Forest, ensembles of ensembles,
multi-level ensembles, meta classifiers, feature selec-
tion, cardiac autonomic neuropathy.

1 Introduction

The investigation of medical applications of data min-
ing is very important and has been considered, for
example, in recent articles by Al-Oqaily et al. (2008),
Han et al. (2006), Kennedy et al. (2008), Li et al.
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(2009), Liang & Zhang (2011), Sinha et al. (2011),
Shouman et al. (2011), Sun et al. (2011), Tayebi et al.
(2011), Van et al. (2011), where more background in-
formation and further references can be found. In par-
ticular, valuable information concerning cardiac pa-
tients has been obtained using data mining methods,
for example, by Cornforth & Jelinek (2007), Han et al.
(2006), Jelinek et al. (2010) and Van et al. (2011)

This article is devoted to experimental investiga-
tion of several data mining methods for a new appli-
cation to the study of cardiac autonomic neuropathy
(CAN), which is a cardiac condition quite common
in diabetes patients. We used an extensive database
created by the Diabetes Complications Screening Re-
search Initiative (DiScRi) at Charles Sturt University
and concentrated on the particular task of monitoring
the progression of cardiac autonomic neuropathy.

First, we compared the performance of many base
classifiers for various sets of the most essential fea-
tures in this database and determined that Random
Forest significantly and consistently outperforms all
base classifiers in this new application. Second, we
used Random Forest feature selection and found a
new set of features, which has turned out much bet-
ter than all sets of features considered previously for
CAN in the literature. We verified that Random For-
est remained the very best classifier for the new set
of features too. Third, we carried out a systematic
investigation of various ensemble meta classifiers and
found that ensembles based on Random Forest also
outperform ensemble meta classifiers based on other
classifiers, and that ensemble techniques can be used
for further improvement of the performance of Ran-
dom Forest for this dataset.

Many effective applications of ensemble techniques
in data mining have been developed recently. Let us
refer, for example, to Ting et al. (2009), Ting et al.
(2011), Webb (2008), Webb & Zheng (2004), Yang
et al. (2005) In particular, it is well known that var-
ious constructions of meta classifiers creating ensem-
bles of base classifiers are capable of improving the
stability and effectiveness of classifications.

This article concentrates, in particular, on a sys-
tematic empirical investigation of the performance of
novel large multi-level meta classifiers for monitor-
ing of CAN progression in diabetes patients. To the
best of our knowledge such ensembles of ensembles
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or multi-level ensemble meta classifiers have not been
considered in the literature before, probably because
personal computers routinely used in research have
only recently become powerful enough to train them
for data sets large enough to justify the use of such
large classification systems. On the other hand, the
motivation and inspiration for our study originally
came from many different multi-stage procedures that
had been treated previously, for example, by Chris-
ten (2007), Islam & Abawajy (2012), Jiangning et al.
(2012) and Madjarov et al. (2011).

Diabetes is a condition requiring continuous ev-
eryday monitoring of medical tests to adjust the diet,
administer medication, update or modify treatment
plans and provide further assistance (Wickramas-
inghe et al. 2011). These tasks make the development
of data mining algorithms for the analysis of test re-
sults for diabetes patients particularly valuable. To
monitor the progression of a specific clinical condition
one has to find a small set of features to be collected
and efficient algorithms for the processing of these
features.

Experimental research comparing various algo-
rithms applied to particular areas is important, since
previous experience of such investigations can be used
to guide further implementations and achieve bet-
ter performance in future practical applications. In-
deed, there does not exist a single algorithm that is
best for all application domains. The effectiveness of
any given category of algorithms depends on the size
of a data set, number and types of attributes, and
the nature of functional relations and dependencies
among the attributes. This is also confirmed by the
so-called “no-free-lunch” theorems, which imply that
there does not exist one algorithm, which is best for
all problems (Wolpert 1996). The present paper con-
centrates on testing multi-level meta classifiers for the
classification of cardiac autonomic neuropathy pro-
gression, see Section 3 for details. Our experiments
included multi-level meta classifiers combining diverse
meta classifiers on two levels. These new results show,
in particular, that Random Forest performed best in
this setting, and that novel multi-level meta classi-
fiers can be used to achieve further improvement of
the classification outcomes for cardiac autonomic neu-
ropathy progression. The multi-level meta classifiers
based on Random Forest achieved better performance
compared with the results published in the litera-
ture (Huda et al. 2010, Kelarev, Dazeley, Stranieri,
Yearwood & Jelinek 2012, Kelarev, Stranieri, Year-
wood & Jelinek 2012).

The paper is organised as follows. Section 2
describes the Diabetes Complications Screening Re-
search Initiative (DiScRi) organised at Charles Sturt
University,2 and the corresponding data set. Sec-
tion 3 contains background information on cardiac au-
tonomic neuropathy. Section 4 deals with the meth-
ods used in our experiments. Section 6 presents the
experimental results and discussion comparing the
efficiencies of several base classifiers and multi-level
meta classifiers based on Random Forest for this ap-
plication. The conclusions are presented in Section 7.

2 Diabetes Complications
search Initiative

Screening Re-

In order to investigate the data mining algorithms
for diabetes patients, we used a large database of
test results and health-related parameters collected at
the Diabetes Complications Screening Research Ini-
tiative (DiScRi) organised at Charles Sturt University
(Cornforth & Jelinek 2007). Many patients suffering
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from diabetes develop complications that require 24/7
cardiac monitoring.

The collection and analysis of data in the project
has been approved by the Ethics in Human Research
Committee of the university. The participants were
instructed not to smoke and refrain from consuming
caffeine containing drinks and alcohol for 24 hours
preceding the tests as well as to fast from midnight of
the previous day until tests were complete. The mea-
surements were conducted from 9:00am until 12mid-
day and were recorded in the DiScRi database along
with various other clinical data including age, sex and
diabetes status, blood pressure (BP), body-mass in-
dex (BMI), blood glucose level (BGL), and choles-
terol profile. Reported incidents of a heart attack,
atrial fibrillation and palpitations were also recorded.
The most important set of features recorded for CAN
determination is the Fwing battery (Ewing et al.
1980, 1985). There are five Ewing tests in the bat-
tery: changes in heart rate associated with lying to
standing, deep breathing and valsalva manoeuvre and
changes in blood pressure associated with hand grip
and lying to standing. In addition features from the
ten second samples of 12-lead ECG for all partici-
pants were extracted from the database. These in-
cluded the QRS, PQ, QTc and QTd intervals, heart
rate and QRS axis explained below. The QRS com-
plex reflects the depolarization of the ventricles of the
heart. The duration of the QRS complex is called the
QRS duration. The time from the beginning of the
P wave until the start of the next QRS complex is
called the PQ interval. The longest distance from the
Q wave to the next T wave is called the QT interval.
The period from the beginning of the QRS complex
to the end of the T wave is denoted by QT interval,
which if corrected for heart rate becomes the QTc. It
represents the so-called refractory period of the heart.
The difference of the maximum QT interval and the
minimum QT interval over all 12 leads is known as
the QT dispersion denoted by QTd. It is used as an
indicator of repolarisation of ventricular. The deflec-
tion of the electrical axis of the heart measured in
degrees to the right or left is called the QRS axis.

Several expert editing rules were used to reduce
the number of missing values in the database. These
rules were collected during discussions with the ex-
perts maintaining the database. Preprocessing of
data using these rules produced 1029 complete rows
with complete values of all fields, which were used
for the experimental evaluation of the performance
of data mining algorithms. The whole database con-
tained over 200 features.

3 Cardiac Autonomic Neuropathy

Cardiac autonomic neuropathy (CAN) is a condition
associated with damage to the autonomic nervous sys-
tem innervating the heart (Ewing et al. 1980, 1985,
Khandoker et al. 2009). The classification of disease
progression associated with CAN is important, be-
cause it has implications for planning of timely treat-
ment, which can lead to an improved well-being of
the patients and a reduction in morbidity and mortal-
ity associated with cardiac arrhythmias in diabetes.
The most important tests required for identification
of CAN rely on assessing responses in heart rate and
blood pressure to various activities, usually consisting
of tests described by Ewing et al. (1980, 1985): lying
to standing heart rate change (LSHR), deep breath-
ing heart rate change (DBHR), valsalva manoeuvre
heart rate change (VAHR), hand grip blood pres-
sure change (HGBP), lying to standing blood pres-
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sure change (LSBP). QRS width has also been shown
to be indicative of CAN (Fang et al. 2004) and is also
included. For discussion of the outcomes of our exper-
iments we use the acronyms for the DiScRi features
listed in Figure 1. The same acronyms are used in
the original DiScRi database.

Acronym Feature

LSHR Lying to standing heart rate change

LSHRresu | Categorical variable based on LSHR
defined by Ewing et al. (1980)

DBHR Deep breathing heart rate change

DBHRresu | Categorical variable based on LSHR
defined by Ewing et al. (1980)

VAHR Valsalva manoeuvre heart rate
change

VAHRresu | Categorical variable based on LSHR
defined by Ewing et al. (1980)

HGBP Hand grip blood pressure change

LSBP Lying to standing blood pressure
change

QRSaxis QRS axis degree 10sec

SLHR Standing to lying heart rate

QRS 10sec | QRS duration

PQ 10sec | PQ duration

QTc 10sec | Corrected QT interval duration

QTd 10sec | QT dispersion

Figure 1: Acronyms for several features in DiScRi
database

We investigated three original classifications of
cardiac autonomic neuropathy progression introduced
by Ewing et al. (1980, 1985). They have 2, 3 and
4 classes, respectively. The first one divides all pa-
tients into two classes allocating each patient either
to the ‘normal’ class, or to ‘definite’ class. The second
one divides all patients into three classes allocating
each patient to one of the following classes: ‘normal’,
‘early’, ‘definite’. The fourth classification divides all
patients into four classes, allocated each patient to
one of the following classes: ‘normal’, ‘early’, ‘defi-
nite’, and ‘severe’.

4 Methods

Level 2 Meta Classifier

Level 1 Meta
Classifier

Level 1 Meta
Classifier

Base Base Base Base
Classifier Classifier Classifier Classifier

Figure 2: Multi-level meta classifiers

4.1 Random Forest

Random Forest plays a special role in this paper, and
so we introduce it in a separate subsection. Ran-
dom Forest is an ensemble meta classifier hardwired
to a particular base classifier, Random Tree. It con-
structs a forest of random trees following Breiman
(2001) building many decision tree predictors with
randomly selected variable subsets and utilizing a dif-
ferent subset of training and validation data for each
individual model. After generating many trees, the
resulting class prediction is based on votes from the
single trees. Consequently, lower ranked variables are
eliminated based on empirical performance heuristics
(Han et al. 2006). We used Random Forest feature
selection in R (version 2.15.1) with Rattle (Williams
2009, 2011). Weka implementation of Random For-
est was used to combine it with other meta classifiers
available in Weka via SimpleCLI. (This implemen-
tation can handle missing values.) In applying the
Random Forest classifier and its feature selection we
followed the recommendations and conclusions based
on previous experiments for a different database of
cardiac patients presented by Van et al. (2011).

4.2 Base Classifiers

We tested many preliminary base classifiers available
in Weka (Hall et al. 2009) and have chosen the fol-
lowing classifiers for a series of complete tests with
outcomes presented in this paper. These robust clas-
sifiers performed well for DiScRi data set during our
initial testing. They represent several essential cate-
gories of classifiers.

e DecisionTable builds and uses a decision table
majority classifier (Kohavi 1995).

e FURIA is a fuzzy unordered rule induction algo-
rithm due to Huehn & Huellermeier (2009).

e J/8 generates a pruned or unpruned C4.5 deci-
sion tree (Quinlan 1993).

e NBTree uses a decision tree with naive Bayes
classifiers at the leaves (Kohavi 1996).

e SMO uses Sequential Minimal Optimization for
training a support vector classifier (Hastie & Tib-
shirani 1998, Keerthi et al. 2001, Platt 1998). Ini-
tially, we tested all kernels of SMO available in
Weka and used it with polynomial kernel that
performed best for our data set.

4.3 Meta Classifiers

We investigate the performance of the following meta
classifiers: Bagging, Boosting, Dagging, Decorate,
Grading, HBGF, MultiBoost and Stacking.

e Bagging (bootstrap aggregating), generates a
collection of new sets by resampling the given
training set at random and with replacement.
These sets are called bootstrap samples. New
classifiers are then trained, one for each of these
new training sets. They are amalgamated via
a ma)jority vote (Breiman 1996, Liang & Zhang
2011).

e Boosting trains several classifiers in succession.
Every next classifier is trained on the instances
that have turned out more difficult for the pre-
ceding classifier. To this end all instances are
assigned weights, and if an instance turns out
difficult to classify, then its weight is increased
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at the next boosting step. We used highly suc-
cessful AdaBoost classifier described by Freund
& Schapire (1996).

e (Consensus functions can be used as a replace-
ment for voting to combine the outputs of clas-
sifiers in the ensemble. Here we used the HBGF
consensus function, following the recommenda-
tions of Fern & Brodley (2004) and our previ-
ous experience with consensus functions for other
data sets (Yearwood et al. 2009). It utilizes a bi-
partite graph with two sets of vertices: clusters
and elements of the data set. A cluster C' and
an element d are connected by an edge in this
bipartite graph if and only if d belongs to C.
An appropriate graph partitioning algorithm is
then applied to the whole bipartite graph, and
the final clustering is determined by the way it
partitions all elements of the data set.

e Dagging is useful in situations where the base
classifiers are slow. It divides the training set into
a collection of disjoint (and therefore smaller)
stratified samples, trains copies of the same base
classifier and averages their outputs using vote
(Ting & Witten 1997).

e Decorate constructs special artificial training ex-
amples to build diverse base classifiers (Melville
& Mooney 2005).

e (Grading trains meta-classifiers, which grade the
output of base classifiers as correct or wrong la-
bels, and these graded outcomes are then com-
bined (Seewald & Fuernkranz 2001).

e MultiBoost extends the approach of AdaBoost
with the wagging technique (Webb 2000). Wag-
ging is a variant of bagging where the weights
of training instances generated during boosting
are utilized in selection of the bootstrap samples
(Bauer & Kohavi 1999).

e Stacking can be regarded as a generalization of
voting, where meta-learner aggregates the out-
puts of several base classifiers (Wolpert 1992).

4.4 Multi-level Meta Classifiers

The main focus of this paper is on a systematic in-
vestigation of several novel multi-level meta classi-
fiers for DiScRi data set. These classifiers have not
been considered in the literature before, since per-
sonal computers regularly used in research have only
recently become powerful enough to train them for
large data sets. It turns out easy to set up and use
these multi-level meta classifiers in Weka SimpleCLI
command line. To demonstrate how such classifiers
can be set up and executed, we include Figure 7 with
complete commands used in SimpleCLI to run two
very best options in our experiments and Figure 8,
which shows how to enter these commands, see also
Section 6. Our experiments compared several multi-
level meta classifiers with two levels and various base
classifiers. However, the best results were obtained
by classifiers, which can also be viewed as multi-level
meta classifiers with three levels of ensembles, since
they are based on Random Forest, see Section 6 and
Subsection 4.1.

5 Measures of Performance of Classifiers

We looked at several standard measures of perfor-
mance of classifiers: Area Under Curve, accuracy,
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precision, recall, sensitivity and specificity. Follow-
ing Van et al. (2011), we used the Area Under Curve,
AUC, as the main measure of performance of clas-
sifiers. It is also known as the Receiver Operating
Characteristic or ROC area. Let us refer to Van
et al. (2011) for more detailed discussion of measures
of performance and references to other relevant arti-
cles. In the rare cases where two classifiers produced
equal AUC, or where one classifier performed with
the same AUC for two sets of features, to finetune
the ordering of such cases we used accuracy of the
classification as the second important metric to guide
our experiments. The tables presenting the results of
our experiments in this paper contain only AUC as
the main measure of performance.

Here we include only a brief overview of the mea-
sures we used conducting our experiments, since there
is a variety of terms used to discuss clinical exper-
iments. Notice that for multi-class classifiers, like
those considered in the present article, weighted av-
erage values of the performance metrics are usually
used. This means that they are calculated for each
class separately, and a weighted average is found then.
In particular, our tables in this paper include the
weighted average values of AUC over all classes. In
contrast, the accuracy is defined for the whole clas-
sifier as the percentage of all patients classified cor-
rectly, which means that this definition does not in-
volve weighted averages in the calculation. The ac-
curacy can be expressed as the probability that the
prediction of the classifier for an individual patient is
correct.

The Area Under Curve, AUC, for a given class, is
an area under the ROC graph that plots true pos-
itive rates for this class against false positive rates
for a series of cut-off values. Equivalently, the ROC
graph can be defined as a curve graphically display-
ing the trade-off between sensitivity and specificity
for each cut-off value. Sensitivity is the proportion
of positives (patients with CAN) that are identified
correctly. Specificity is the proportion of negatives
(patients without CAN) that are identified correctly.

Sensitivity and specificity are measures evaluating
binary classifications. For multi-class classifications
they can be also used with respect to one class and its
complement. Sensitivity is also called True Positive
Rate. Fualse Positive Rate is equal to 1 - specificity.
These measures are related to recall and precision.
Precision of a classifier, for a given class, is the ratio
of true positives to combined true and false positives.
Recall is the ratio of true positives to the number of all
positive samples (i.e., to the combined true positives
and false negatives). The recall calculated for the
class of patients with CAN is equal to sensitivity of
the whole classifier.

For example, in the case of the two-class classifi-
cation of CAN For the class of patients with CAN,
the precision is the ratio of the number of patients
correctly identified as having CAN to the number of
all patients identified as having CAN. For the cohort
of patients without CAN, the precision is the ratio
of the number of patients correctly identified as hav-
ing no CAN to the number of all patients identified
as free from CAN. The precision of the classifier as a
whole is a weighted average of its precisions for these
classes.

Likewise, for the class of patients with CAN, the
recall is the ratio of the number of patients correctly
identified as having CAN to the number of all pa-
tients with CAN. For the cohort of patients without
CAN, the recall is the ratio of the number of patients
correctly identified as being free from CAN to the
number of all patients without CAN. The recall of
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the classifier is a weighted average of its recalls for
both classes.

6 Experiments and Discussion

We used Rattle (Williams 2009) and R soft-
ware (Williams 2011) for Random Forest feature se-
lection, and Weka SimpleCLI command line to train
and test classifiers and meta classifiers. One of the
standard options for preventing overfitting is 10-fold
cross validation. It is implemented in Weka and is
invoked in SimpleCLI by default as stratified 10-fold
cross validation. (Default stratified 10-fold cross val-
idation can be switched off or modified by indicat-
ing command line arguments -no-cv, -split-percentage
and -preserve-order in SimpleCLI.) It divides data
into ten stratified folds and creates training sets and
hold out testing sets ten times for ten consequtive
tests with hold out sets automatically. Thus, we
used 10-fold cross validation to assess the perfor-
mance of various base classifiers, meta-classifiers and
multi-level meta classifiers. All tables with outcomes
included in this paper contain average performance
against the validate sets found in stratified 10-fold
cross validation.

First, we tested the performance of DecisionTable,
FURIA, J48, NBTree, RandomForest and SMO for
all subsets of the Ewing battery, which is the set of
the most important features. All of these base classi-
fiers are available in Weka Explorer, and we use Weka
to test them. These experiments demonstrated that
Random Forest consistently outperformed all other
classifiers for all of these subsets of features. To illus-
trate these results, we include only Table 1.

Number of classes
2 3 4
DecisionTable | 0.905 | 0.900 | 0.897
FURIA 0.942 | 0.936 | 0.932
J48 0.933 | 0.930 | 0.922
NBTree 0.923 | 0.917 | 0.914
RandomForest | 0.982 | 0.977 | 0.973
SMO 0.861 | 0.856 | 0.854

Table 1: AUC of base classifiers for the subset LSHR,
DBHR, VAHR, LSBP of Ewing features

Then we used Random Forest feature selection in
Rattle (Williams 2009). It produced feature ranking
presented in Figure 3. We tested the performance of
Random Forest for all sets beginning with the most
significant feature and adding more features in the or-
der of their significance. This demonstrated that the
best set of features consists of the first 8 attributes:
DBHR, VAHRresu, VAHR, DBHRresu, LSHRresu,
LSHR, HGBP, QRS axis (degree) 10sec.

We tested all base classifiers for this set of 8 fea-
tures too. The results of these experiments are given
in Table 2 and Figure 4. The outcomes show that
Random Forest remains the best classifier for this
set of attributes too. Thus, in all our tests Ran-
dom Forest has consistently performed as the very
best base classifier for all sets of features of DiScRi
database. We see that Random Forest feature selec-
tion has made it possible to improve the outcomes
significantly.

Next, we used SimpleCLI command line in Weka
to investigate the performance of meta classifiers in
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"HR resu.
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T
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Figure 3: Random Forest feature ranking

Number of classes
2 3 4
DecisionTable | 0.963 | 0.960 | 0.956
FURIA 0.979 | 0.976 | 0.968
J48 0.967 | 0.964 | 0.959
NBTree 0.980 | 0.975 | 0.972
RandomForest | 0.990 | 0.987 | 0.981
SMO 0.954 | 0.949 | 0.944

Table 2: AUC of base classifiers for the best subset
DBHR, VAHRresu, VAHR, DBHRresu, LSHRresu,
LSHR, HGBP, QRS axis (degree) 10sec.

their ability to achieve further improvement to per-
formance. We tested the following meta classifiers:
AdaBoost, Bagging, Dagging, Decorate, Grading,
HBGF, MultiBoost, and Stacking. Our tests have
also shown that the outcomes remained better when
Random Forest was used as a base classifier for these
meta classifiers and that the results became worse
when Random Forest was replaced by other base clas-
sifiers. We conduced complete set of evaluations of
the meta classifiers based on Random Forest. These
results are included in Table 3 and Figure 5. We see
that AdaBoost, Bagging, Decorate and MultiBoost
performed better than other meta classifiers.

Finally, for the four meta classifiers that performed
well in the previous step, we investigated all their
multi-level combinations. The experimental results
comparing the performance of multi-level meta clas-
sifiers are presented in Table 4 and Figure 6. To pro-
vide more details on how these multi-level classifiers
can be set up and executed, we include Figure 7 with
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Figure 4: Base classifiers

Number of classes
2 3 4
AdaBoost | 0.987 | 0.984 | 0.979
Bagging 0.995 | 0.990 | 0.987
Dagging 0.971 | 0.967 | 0.964
Decorate 0.996 | 0.993 | 0.988
Grading 0.969 | 0.965 | 0.960
HBGF 0.974 | 0.969 | 0.967
MultiBoost | 0.988 | 0.984 | 0.981
Stacking 0.978 | 0.976 | 0.969

Table 3: AUC of meta classifiers based on Random
Forest

SimpleCLI command line arguments used to run two
very best options given in our Table 4. These results
show that several multi-level combinations of ensem-
ble classifiers made additional improvements and pro-
duced very good outcomes in Table 4. The very best
result was obtained by two options combining Bag-
ging and Decorate into one multi-level ensemble clas-
sifier. In the first option Bagging was used in the 2nd
level after applications of Decorate based on Random
Forest in the first level. In the second option Deco-
rate was used in the 2nd level to combine the results
of Bagging applied to Random Forest as a base clas-
sifier.

1.000

0.990

0.980

0970 - "2
0.960 -

0.950 -

0.940 -

Figure 5: Meta classifiers based on Random Forest

98

Number of classes
Level 2 Level 1 2 3 4
AdaBoost | Bagging 0.990 | 0.987 | 0.984
AdaBoost Decorate 0.992 | 0.988 | 0.986
AdaBoost MultiBoost | 0.989 | 0.987 | 0.982
Bagging AdaBoost | 0.994 | 0.990 | 0.987
Bagging Decorate 0.997 | 0.993 | 0.990
Bagging MultiBoost | 0.994 | 0.992 | 0.988
Decorate AdaBoost 0.996 | 0.992 | 0.989
Decorate Bagging 0.997 | 0.994 | 0.990
Decorate MultiBoost | 0.996 | 0.992 | 0.990
MultiBoost | AdaBoost 0.989 | 0.986 | 0.983
MultiBoost | Bagging 0.985 | 0.982 | 0.979
MultiBoost | Decorate 0.990 | 0.987 | 0.983

Table 4: AUC of multi-level meta classifiers based on
Random Forest

Figure 6: Multi-level meta classifiers

2 levels

SimpleCLI command line

Decorate,
Bagging

java weka.classifiers.meta.Decorate
-E 10 -R 1.0 -S 1 -I 10 -W
weka.classifiers.meta.Bagging — -P
100 -S 1 -num-slots 1 -I 10 -W
weka.classifiers.trees. RandomForest
--110-K0-S1

Bagging,
Decorate

java  weka.classifiers.meta.Bagging
-P 100 -S 1 -num-slots 1 -I 10
-W  weka.classifiers.meta.Decorate
- -E 10 -R 1.0 -S 1 -I 10 -W
weka.classifiers.trees. RandomForest
--J10-K0-S1

Figure 7: SimpleCLI command lines with parameters
of two best multi-level meta classifiers
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Welcome to the WEKA SimpleCLI

Enter commands in the textfield at the bottom of
the window. Use the up and down arrows to move
through previous cormands.

Command completion for classnames and files is
initiated with <Teb>. In order to distinguish
between files and classnames, file names must

be either absolute or start with '.\" or '~/'

(the latter is a shortcut for the home directory).
<Alt+BackSpace> is used for deleting the text

in the commandline in chunks.

m

> help I

Cormand must be cne of:
java <classname> <args> [ > file]
break
ki1l
capabilities <classname> <args>
cls
history
exit =

jreka.classifiers.meta.Decorate -E 10 -R 1.0 -S 1 -I 10 -W weka.classifiers.meta.Bagging

Figure 8: Multi-level meta classifier in SimpleCLI

7 Conclusion

Our experiments demonstrated that for DiScRi data
set Random Forest consistently produced better out-
comes than all other base classifiers. Feature selec-
tion based on the ranking obtained by the implemen-
tation of Random Forest in Rattle further improved
the outcomes of all classifiers, and again Random For-
est produced the best outcomes for the set of features
obtained. Finally, the results show that meta classi-
fiers and multi-level ensemble meta classifiers can be
used to improve the classifications even more. The
best outcomes have been obtained by the novel com-
bined multi-level ensemble classifiers combining Bag-
ging and Decorate based on Random Forest. These
methods can be recommended for the monitoring of
cardiac autonomic neuropathy progression in those
situations where the energy and memory used are not
an issue. In situations where it is very important to
conserve the energy and use less memory, as it is the
case for example, in mobile applications, then Ran-
dom Forest can be recommended, since it has also
produced excellent outcomes.

DiScRi is a very large and unique data set con-
taining a comprehensive collection of tests related
to CAN. Using Random Forest feature selection and
multi-level meta classifiers has made it possible to
achieve a serious improvement in performance com-
pared with outcomes obtained in previous publica-
tions using only basic decision trees for classification.

The level of performance of multi-level classifiers
for DiScRi data set is also quite good in comparison
with the outcomes obtained recently for other data
sets in closely related areas using different methods,
for example, by Kang et al. (2006), Kelarev et al.
22006 , Jelinek et al. (2010, 2011), Yearwood et al.

2008).

In conclusion, let us note that Random Forest is
also an ensemble classifier hard wired to a particular
base classifier, Random Tree. Therefore, in fact the
multi-level meta classifiers included in Table 4 can
be considered as ensemble classifiers with three levels
where ensemble methods are used.
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