
Cartesian Genetic Programming for Trading: A Preliminary
Investigation

Michael Mayo

School of Computing and Mathematical Sciences
University of Waikato, Hamilton, New Zealand

Email: mmayo@waikato.ac.nz

Abstract

In this paper, a preliminary investigation of Cartesian
Genetic Programming (CGP) for algorithmic intra-
day trading is conducted. CGP is a recent new vari-
ant of genetic programming that differs from tradi-
tional approaches in a number of ways, including be-
ing able to evolve programs with limited size and with
multiple outputs. CGP is used to evolve a predic-
tor for intraday price movements, and trading strate-
gies using the evolved predictors are evaluated along
three dimensions (return, maximum drawdown and
recovery factor) and against four different financial
datasets (the Euro/US dollar exchange rate and the
Dow Jones Industrial Average during periods from
2006 and 2010). We show that CGP is capable in
many instances of evolving programs that, when used
as trading strategies, lead to modest positive returns.

Keywords: Cartesian Genetic Programming, Algo-
rithmic Trading, Rule Learning

1 Introduction

Algorithmic trading is the problem of automating de-
cisions to buy and sell financial assets such that, even
after trading costs and losses are taken into account,
the cumulative net return from the decision series is
positive. The main tasks of these decision strate-
gies are (i) market direction prediction and (ii) po-
sition sizing, risk management, and entry/exit man-
agement. The main problem with task (i), of course,
is that markets are notoriously difficult to predict.
In fact, there is a long history of debate about the
efficient market hypothesis (Fama, 1970) and the is-
sue of whether or not market price movements are
essentially random walks (see, for example, Beechey
et al. (2000) for a recent counter-analysis). In spite
of this, past research efforts from computer scien-
tists appear to show that pattern recognition tech-
niques such as machine learning can make profits in
the markets. Recent examples include the works of
Contreras et al. (2012), Lean and Lai (2007), Liu and
Xiu (2009), Ni and Yin (2009), Barbosa and Belo
(2008), Hirabayashi et al. (2009), and Larkin and
Ryan (2010).

Putting aside the debate for a moment, task (ii)
mentioned above (which is concerned with the details
about whether to act on a prediction and if so, how to

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 10th Australasian Data Mining Conference
(AusDM 2012), Sydney, Australia, December 2012. Confer-
ences in Research and Practice in Information Technology (CR-
PIT), Vol. 134, Yanchang Zhao, Jiuyong Li, Paul Kennedy, and
Peter Christen, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

act) is also not without its difficulties. For example,
a market may be quiet one day and volatile the next.
Therefore a strategy that that assigns a large posi-
tion size to a trade on the quiet day (where the risk is
low) may be in violation of its own risk management
rules if it assigns the same position size the follow-
ing day (where the risk is higher due to an increased
likelihood of sharp price movements). Markets be-
haviours are well known to be non-stationary series
(Sewell, 2011) and therefore methods and strategies
that worked in the past cannot be expected to con-
tinue working. Furthermore, non-stationarity applies
not just to prices but also to other important fac-
tors such as volatility and seasonal aspects (where
seasonality includes not only properties that change
with an annual cycle but also those that follow in-
traday, time-of-day-based cycles and weekly cycles).
Non-stationarity probably explains why some techni-
cal strategies that traditionally worked in the past
now may no-longer yield profits.

This paper takes the view that intraday market
prices may be predictable to a small degree, although
that “edge” may be very slim indeed. Financial en-
gineering may be required to actually make such pre-
dictions profitable. We also take the stance that due
to non-stationarity, a large amount of past training
data is not required for learning trading strategies –
in fact, too much data may lead to problems such as
the learning of patterns that are now defunct. We
therefore, in our experiments, use two months of in-
traday data to learn a trading strategy, and test it on
the following month of intraday data.

The machine learning method of choice in this
paper is Cartesian Genetic Programming (CGP)
(Miller, 2011). We chose this method for a num-
ber of reasons. Firstly, CGP evolves programs that
can have a fixed upper limit on size because they are
represented as a fixed-size array. In contrast, tradi-
tional tree-based Genetic Programming methods have
no limit on size and the problems of bloat are well
known. Secondly, CGP can evolve programs with
multiple outputs as well as multiple inputs. Although
we do not use more than one output in the exper-
iments presented here, in the future this would be
advantageous for learning trading strategies because
the multiple outputs can be used to emit different as-
pects of the strategy. For example one output may
be a prediction of direction, and the second output
may be a position size indicator (with a zero indicat-
ing “no trade”). A third output could possibly be a
distance to a stop loss price.

The third and final reason for CGP being inter-
esting from a trading perspective is that as learning
proceeds over time (in generations), programs tend to
reduce in complexity whenever fitness hits a plateau
(Miller, 2011). That is, in the absence of further im-

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

149

provements, CGP programs tend to have less active
nodes due to the genetic drift feature of CGP. For a
trading strategy, this is a very desirable property be-
cause smaller programs are easier for humans to un-
derstand, making them more like “traditional” indi-
cators. Furthermore, smaller programs are less prone
to overfitting.

2 Background

In this section, a brief review is given of the important
concepts used in this paper. In particular, we describe
the CGP approach used, and overview the important
financial ideas.

2.1 Cartesian Genetic Programming

CGP is a relatively new field of genetic programming.
It has found application in areas either where there
is a significant amount of low-level data to be pro-
cessed (e.g. in the evolution of image processing filters
(Sekanina et al., 2011a)) or where the programs must
adhere to significant physical constraints (e.g. the
layout of circuits on a board (Sekanina et al., 2011b)).
Financial applications are more related to the image
processing scenario, because a trading strategy can
be thought of as a “filter” on data that produces an
output (that being signal to trade or not to trade),
where the data is not 2D image data but is instead a
stream of historical 1D price series data.

The canonical CGP algorithm (described more
fully in (Miller, 2011)) is defined as follows. Firstly,
a small number of fixed parameters must be speci-
fied. The first is the population size popsize, which
in canonical CGP is set to 5. This very small popula-
tion size is offset by the fact that it is customary for
CGP to run for a very large number of generations,
maxgens, which may have a value in the millions.

Further parameters describe the fixed features of
each program, such as the number of inputs, nin; the
number of outputs, nout; and the maximum number
of function call instructions (or nodes) in a program,
nl. Typically there also needs to be a fixed arity
parameter that specifies the number of inputs each
function/node takes. We also in this research fix the
number of point mutations per offspring to nm, al-
though in general this parameter need not be fixed.

Next, a table Functions must be defined. A pro-
gram in CGP is defined as a linear array of func-
tion calls of length nl. Traditionally, basic numerical
functions such as addition, subtraction, sin, cosine,
square root, etc are used; alternatively, if the domain
is logic circuits, low level AND and OR gates are sen-
sible choices for functions. In our domain, we are
interested in learning programs that resemble finan-
cial indicators, so the functions chosen are similar to
the basic components used in those traditional indi-
cators, such as comparison (greater than, less than,
min, max), basic arithmetic operators, and the mean
function. We also include functions that use none of
their inputs at all, but instead have a fixed constant
output such as 1 or -1. These resemble “bias” nodes
from neural networks and often have an impact on the
performance of CGP. The complete list of functions
used in this paper are given in Table 1.

Once the parameters and Functions table have
been specified, the next step is to give the algorithm a
value function Fitness() with which to evaluate each
individual program. The basic CGP algorithm can
then proceed, and it does so as a simple 1 + λ evo-
lutionary strategy (Miller, 2011) where λ = 4. In

Table 1: Functions used to construct individual pro-
grams. Functions either take two inputs x and y, or
they ignore the inputs and produce a constant value.

Function Description
+ Returns x+ y
− Returns x− y
× Returns x ∗ y
/ Returns x/y, or 1.0 on divide-by-

zero error
> Returns 1 if x > y, -1 otherwise
< Returns 1 if x < y, -1 otherwise
MAX Returns max(x, y)
MIN Returns min(x, y)
MEAN Returns (x+ y)/2
C1 Returns 1
C−1 Returns -1
C0 Returns 0

other words, the search starts from randomly gener-
ated programs, and proceeds generationally. In each
generation, only the best program is retained and the
others in the population are replaced by mutated off-
spring of the best program. There is no crossover in
canonical CGP.

One interesting facet of the algorithm that differ-
entiates CGP from other evolutionary algorithms is
its method of selecting the parent for the next gen-
eration. In CGP, an offspring replaces its parent if
its fitness is greater than or equal to its parent’s fit-
ness. That is, even if there is no improvement in
fitness, the search algorithm can adopt a new “best
program” and parent for the next generation as long
as the offspring’s fitness is at least equal to its par-
ents. This mechanism permits neutral mutations that
allow for genetic drift, a feature that adds random di-
versity into the population without any cost. It has
been shown previously such diversity significantly im-
proves the search performance of CGP.

An example of a program evolved using CGP in
the experiments reported here is shown in Figure 1.

This example illustrates the phenomenon of
non-coding regions in CGP quite well. Each
node/function call in a program may be coding or
non-coding. If a node is defined as coding, this means
that it is connected to the inputs either directly or in-
directly. In the case of indirect connection, the con-
nection is via the outputs of another function. Fur-
thermore, in order to be a coding node, the node’s
own output must also be used to compute the final
outputs of the program. Any other function nodes
are essentially useless and constitute “junk” regions
of the genotype. In Figure 1, the example program
has 7 coding and 23 non-coding function nodes. Note
that CGP programs are directed acyclic graphs as op-
posed to trees or linear sequences of instructions.

2.2 Financial Concepts

The main financial trading concepts will be explained
briefly in this subsection.

The first important concept to understand is the
notion that assets can be bought and sold as well as
sold short. Short selling is different from selling an
asset that you already own, because rather than re-
ducing your (positive) quantity of the asset by selling
it, you actually sell your asset first (i.e. acquire a
negative quantity of the asset) and gamble that the
price will go down so that you can buy it back later

CRPIT Volume 134 - Data Mining and Analytics 2012

150

at a lower price, thus making a profit. Short sell-
ing is therefore the opposite of normal “long” buying
and selling. In all of our experiments we assume that
a trading strategy can both buy long and sell short,
and that a trade (buying or selling) is closed with the
opposite action.

Another important concept to understand is the
way that trading strategies are evaluated. Whereas
normal machine learning classifiers are evaluated via
standard measures such as accuracy or ROC, in fi-
nance these concepts have very little relevance if the
strategy’s financial performance is also not consid-
ered. For example, a strategy with a 60% accuracy
rate in picking direction will consistently lose money
if its average loss per trade in dollar terms is twice
its average win, even though the accuracy is greater
than random.

We therefore utilise in this research the following
three measures of a trading strategy’s performance:
cumulative return, i.e. the sum of the consecutive
small wins and losses that a strategy makes over its
testing period; maximum drawdown, which is defined
as the maximum drop in cumulative return over the
same period; and recovery factor, which is defined as
the ratio of the first of these quantities to the second.

To illustrate, suppose that a strategy yields a
profit of $50 in the first week, but loses it all plus
a further $25 in the second week (yielding a balance
of $-25). In the third week, the strategy earns $35
profit, thus ending the three weeks with a $10 profit.
The cumulative return in this case is $10; the maxi-
mum drawdown is $75; and the recovery factor is $10

$75
or 0.133.

Note that the recovery factor essentially nor-
malises the return against maximum drawdown;
strategies with both high returns and drawdowns
should yield the same recovery factor as those with
low returns but correspondingly low maximum draw-
downs. A negative recovery factor indicates that the
strategy made a loss, while a recovery factor of less
than 1 indicates that the strategy’s drawdown was
greater than its eventual profit. Strategies with a re-
covery factors of 1 or more are therefore desirable.

3 Experimental Setup

In this section, the datasets used in the experiments
are described. We then move on to outlining the way
in which CGP programs were evaluated for fitness
estimation purposes.

3.1 Datasets

Four datasets from two different major markets were
utilised in our evaluation of CGP for trading strategy
learning. The two markets selected were deliberately
chosen because they are highly liquid, meaning that
there is simply a larger number of traders. The “herd-
ing behaviour” of the crowd may therefore more easily
become apparent in these markets. Smaller markets,
on the other hand, are less liquid and therefore more
prone to sudden large price movements arising from
single trades and other such noise. The two markets
that we chose are quite disparate in order to ensure
that our approach was tested rigorously.

The chosen markets were (i) the market for US
currency, as determined by the Euro/US dollar ex-
change rate, and (ii) the US share market, as mea-
sured by the Dow Jones Industrial Average. Both
markets have quite different characteristics. We also
chose two quite distinct time-periods from their mar-
ket price series, namely pre-recession 2006 and post-

recession 2010. The two time periods combined with
the two markets yielded four datasets.

Each dataset consisted of three month’s worth of
data, of which the first two months were used for
training and the last month for out-of-sample test-
ing. The exact dates and details of the datasets are
given in Table 2.

The data we used is available from a financial
data firm, Pi Trading1 and comes in the form of an
EST time-stamped series of open, high, low and close
prices for every minute that a market is open. There
are no records for minute bars where there are no
transactions (i.e. where the open, low, high and close
values are identical), so the actual number of records
in the dataset is less than the number of minutes that
the markets were open for. For the exchange rate
data, this amounts to about 80,000 minute records
in both the 2006 and 2010 periods, and for the Dow
Jones data (which is open during US business hours
only) this comprises approximately 25,000 records.

3.2 Trading Simulation using CGP Programs

In order to evaluate a trading strategy with historical
data, it must be simulated. However, a simulation of
a trading strategy can only ever be a rough approxi-
mation, simply because real trading has many other
factors that are beyond the scope of a simulation. For
example, brokers usually charge transaction costs on
trades, but the charging scheme may vary from bro-
ker to broker and across time. Likewise, live data
may contain errors that are subsequently cleaned in
historical datasets. Historical data also does not con-
tain information about slippage and other order fill-
ing problems. In the simulations described here, we
assume no transaction costs and that there are no
complications with order filling such as slippage or
incorrect prices.

Given the assumptions, each CGP program was
evaluated in the following way. The data (either the
in-sample split during learning or the out-of-sample
split during testing) was divided into days. It was as-
sumed that each strategy would make one trade per
day, at the start of the day, and that the trade would
remain open until the last minute of same day. At
that point it would be closed and the cumulative re-
turn or loss of the strategy updated. We do not sim-
ulate position sizes in these experiments – instead,
the cumulative return is measured in points, which
are a standard unit for measuring market prices. In
the Euro/US dollar market, the standard point size is
0.0001, whereas for the Dow it is 0.01. This method of
recording performance is ideal because it is indepen-
dent of the size of the trades, which depends on many
other factors (such as whether the amount invested is
fixed or compounding, etc).

How does the CGP program decide which action
(buy or sell) to take? Refer again to Figure 1. Each
program has a single output node for each program,
which if positive indicates a buy or long position for
the following day, and if negative, indicates a sell or
short position. There are seven inputs for each pro-
gram corresponding to the closing prices of minute
bars during the day prior to the trade. The exact
minute bars are -1 (i.e. the closing price of the imme-
diately previous day), -60 (the price 60 minute bars
ago), -120, -180, -240, -300, and -360. Note that we
skip minutes bars for which there is no trading activ-
ity or price change. These closing prices are mapped
onto the input variables for the program, namely i1,
i2, etc, which Figure 1 depicts as an example. The

1http://pitrading.com/, data obtained 2011

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

151

Table 2: Datasets used in the experiments (EURUSD=Euro/US dollar exchange rate; INDU=Dow Jones
Industrial Average).

Dataset In-Sample Period Out-of-Sample Period Out-of-Sample Size
EURUSD1 1/5/2006 - 31/6/2006 2/7/2006 - 31/7/2006 26 days
EURUSD2 3/1/2010 - 28/2/2010 1/3/2010 - 30/3/2010 27 days
INDU1 1/5/2006 - 31/6/2006 2/7/2006 - 31/7/2006 20 days
INDU2 3/1/2010 - 28/2/2010 1/3/2010 - 30/3/2010 23 days

Table 3: Parameters used by the canonical CGP al-
gorithm.

Parameter Value
nin 7
nout 1
nl 30
nm 6
popsize 5
maxgens 100,000

inputs are thus a sample of the prices that occurred
during the day leading up to the trade.

Besides the number of inputs and outputs, CGP
also has a number of other parameters that must
be specified. During initial experiments, we discov-
ered that setting maxgens to a very high value such
as 10,000,000 (as suggested in some references) re-
sulted in programs that grossly overfitted the training
data and therefore performed poorly on out-of-sample
data. We therefore reduced the number of generations
to 100,000 and obtained far better results.

We also found that a relatively high mutation was
effective. In our setup, the total number of alleles is
91 (that being 30 function nodes plus 2 × 30 inputs
per node plus 1 output node specification). We set the
mutation rate nm=6, which corresponds to approxi-
mately 6.5% of the alleles. Although this is higher
than the recommended mutation rate (Miller, 2011),
it resulted in better performance than a lower muta-
tion rate. A summary table of the CGP parameter
settings used in our experiments are shown in Table
3.

Finally, because CGP is a randomised algorithm,
it is insufficient to run CGP only once per train-
ing/testing dataset and expect the results to be sig-
nificant statistically. Instead, we repeated each ex-
periment 100 times (i.e. we perform 100 independent
trials per train/test split) and calculated the average
and standard error of each of the three performance
measures. We then used these values to calculate the
99% upper and lower confidence limits for each mea-
sure.

4 Results

In this section, we report on the results of our exper-
iments and examine the types of program that CGP
evolves for trading.

4.1 CGP Trading Strategy Performance

Before considering how strategies learned using CGP
performed on the out-of-sample data, it is prudent
to firstly consider how simplistic strategies perform.
The most commonly used baseline method in trading
strategies research is the buy and hold strategy; the

Table 4: Out-of-Sample Returns for Simple Positive
and Negative Strategies, expressed in market points
(0.0001 for EURUSD and 0.01 for INDU).

Dataset Rtn(Pos) Rtn(Neg)
EURUSD1 -0.0077 0.0077
EURUSD2 -0.0192 0.0192
INDU1 -58 58
INDU2 280 -280

equivalent of this in our context is a strategy that
buys every day, which we refer to as a positive sim-
ple strategy. The opposite strategy to this is the sell
everyday strategy, or negative simple strategy. We
simulated these simple strategies and calculated the
returns (in cumulative points) over the test period,
which are given in Table 4.

Because these simplistic strategies are essentially
opposites, one simplistic strategy is likely to make
a profit and the other will make an equivalent loss,
as the table demonstrates. The main problem in ac-
tually applying these simplistic strategies is deciding
which one to take. As the table shows, if a unilateral
decision were taken to follow the positive simple strat-
egy (i.e. just buy every day), then a loss would have
been incurred in three out of the four out-of-sample
market periods.

Having covered the simple baselines, we now turn
to the performance of CGP for trading strategy learn-
ing.

We assessed three different value/fitness measures.
In each case, the objective of evolution was to find an
individual that maximized the measure. The mea-
sures were: total cumulative return (i.e. net profit);
negative maximum drawdown (negating drawdown
makes small drawdowns more desirable); and the re-
covery factor.

CGP was run 100 times on each of the four in-
sample datasets using one of each of the three differ-
ent fitness measures just described. This yielded a to-
tal of 100×4×3 = 100×12 individual CGP runs. The
in-sample best-of-run individual program was then
tested on the corresponding out-of-sample data, and
the average and standard error of the performance
over 100 runs per combination of dataset/measure
was calculated. We also calculated the 99% upper
and lower confidence bounds for the average (which
by definition is 2.58 standard errors above and below
the sample mean). The results are given in Tables
5-8.

Examining these tables, we can make a number of
observations.

Firstly, consider the recovery factor. Recovery fac-
tor is a ratio and therefore comparable across all mar-
kets despite their different units and different charac-
teristics such as volatility. In every case, the aver-
age recovery factor is positive. Furthermore, in terms
of statistical significance, the lower 99% confidence

CRPIT Volume 134 - Data Mining and Analytics 2012

152

Table 5: Out-of-Sample results for EURUSD1 using three different in-sample optimization methods, 100 inde-
pendent runs per method.

Return Opt. Negative MaxDD Opt. Recovery Opt.
-MaxDD Return Rec. -MaxDD Return Rec. -MaxDD Return Rec

Avg 0.0216 0.0173 1.10 0.0263 0.0099 0.83 0.0226 0.0180 1.19
StdErr 0.0007 0.0016 0.13 0.0010 0.0023 0.17 0.0009 0.0018 0.17
Upper 0.0234 0.0215 1.43 0.0288 0.0158 1.26 0.0248 0.0227 1.64
Lower 0.0199 0.0130 0.78 0.0238 0.0039 0.41 0.0203 0.0133 0.75

Table 6: Out-of-Sample results for EURUSD2 using three different in-sample optimization methods, 100 inde-
pendent runs per method.

Return Opt. Negative MaxDD Opt. Recovery Opt.
-MaxDD Return Rec. -MaxDD Return Rec. -MaxDD Return Rec

Avg 0.0374 0.0006 0.36 0.0344 0.0048 0.61 0.0263 0.0099 0.83
StdErr 0.0015 0.0028 0.10 0.0015 0.0031 0.13 0.0010 0.0023 0.17
Upper 0.0413 0.0078 0.63 0.0383 0.0128 0.96 0.0288 0.0158 1.26
Lower 0.0335 -0.0066 0.10 0.0304 -0.0032 0.27 0.0238 0.0039 0.41

bound on recovery factor, in all but one case, is also
positive. This is a strong indication that the CGP
method is effective.

However, the mean recovery factor is not always
more than 1.0, which is desirable. For the 2006 EU-
RUSD dataset, the average recovery factor is around
1.0, but it is much lower in the 2010 EURUSD dataset
and the 2006 Dow Jones dataset. Surprisingly, the
recovery factor is on average greater than 1.0 for the
2010 Dow Jones dataset.

The second result we will consider is the average
return. Again, examining the tables, we see that
while the returns are positive, they are often quite
modest. For example, in the EURUSD 2006 dataset
result shown in Table 5 the best return is 0.0031 or
31 points, which would only be significantly profitable
if a significant investment was made (for a standard
lot size of $100,000, this would amount to about $31
profit.) However, the simple negative strategy results
shown in Table 4 are also quite modest at only 77
points, indicating that the market did not move far
during the testing period.

Where the market did move a significant amount
(for example, the Dow Jones 2010 dataset where the
simple positive strategy records a $280 profit), the
CGP strategies capture a significant chunk of that
movement – a little over half of it with a net return
of $169.35 on average.

Which of the three optimization measure is op-
timal in the experiments? An examination of the
results shows that for the Euro/US dollar datasets,
it is optimization of recovery factor that leads to
the best on-average cumulative returns (those being
0.0180 and 0.099 for the 2006 and 2010 datasets re-
spectively). For the Dow Jones datasets, optimizing
negative maximum drawdown leads to the best cu-
mulative returns.

Interestingly, in none of the four experimental
datasets does direct optimization for in-sample return
lead to the best out-of-sample return. Additionally,
optimization for return is the only strategy that leads
to a negative out-of-sample return, that being $-31.03
for the 2006 Dow Jones dataset. The lesson to be
learned here seems to be that it is better to optimize
for minimal drawdowns than it is to optimize directly
for maximum return.

4.2 Analysis of Programs

In addition to the performance of CGP-based pro-
grams as trading strategies, we were also interested in
the composition of the programs that were evolved.
Figure 1 gives one specific example of a program
that was evolved. To perform a more general anal-
ysis, we examined, for each of four datasets, the 100
best-of-run programs that were tested out-of-sample.
Our analysis primarily concerned the frequency with
which individual functions appeared in these pro-
grams. These frequencies are given in Table 9.

An examination of this table shows that that by
far the most frequently selected operator is the sub-
traction − operator, followed closely the comparison
< and > operators, and then the MEAN and MIN
operators. These are indeed the type of operators
that one would expect to see if designing an indicator-
based trading system. Interestingly, functions repre-
senting constant outputs (C1, C−1, and C0) are used
very infrequently.

We also computed the average size of each best-
of-run program for all four of the datasets. Those
averages, in terms of the number of active nodes, are
6.16 and 6.21 for the EURUSD datasets and 4.58 and
5.34 for the INDU datasets. This shows that whereas
programs of length up to 30 could have evolved, that
many functions were not required and that the result-
ing programs were actually reasonably simple.

5 Conclusion

To conclude, an investigation of Cartesian Genetic
Programming (CGP) with different objective func-
tions for the purpose of learning trading strategies
has been undertaken. CGP has been shown to be ef-
fective at learning strategies that often make a mod-
est but significant net positive returns on data from
two different markets and two different time periods.
Furthermore, the method produces rules that are rel-
atively simple, containing on average 5-6 functions
per rule.

References

Barbosa R., Belo O. (2008)Autonomous Forex Trad-
ing Agents, in Proc. 2008 International Conference

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

153

Table 7: Out-of-Sample results for INDU1 using three different in-sample optimization methods, 100 indepen-
dent runs per method.

Return Opt. Negative MaxDD Opt. Recovery Opt.
-MaxDD Return Rec. -MaxDD Return Rec. -MaxDD Return Rec

Avg 494.32 -31.03 0.29 354.85 232.30 1.01 440.02 56.71 0.35
StdErr 18.30 33.85 0.14 11.58 39.42 0.14 13.46 26.78 0.10
Upper 541.54 56.29 0.65 384.73 334.00 1.39 474.75 125.80 0.61
Lower 447.10 -118.36 -0.07 324.97 130.60 0.64 405.30 -12.39 0.08

Table 8: Out-of-Sample results for INDU2 using three different in-sample optimization methods, 100 indepen-
dent runs per method.

Return Opt. Negative MaxDD Opt. Recovery Opt.
-MaxDD Return Rec. -MaxDD Return Rec. -MaxDD Return Rec

Avg 148.49 118.63 1.18 142.37 169.35 1.59 146.27 140.30 1.36
StdErr 5.55 13.68 0.14 4.32 11.09 0.21 5.67 14.03 0.16
Upper 162.80 153.92 1.55 153.52 197.95 2.14 160.89 176.49 1.76
Lower 134.18 83.34 0.81 131.22 140.74 1.04 131.66 104.11 0.96

on Data Mining, ICDM 2008, P. Perner Ed., LNAI
5077, pp. 389-403.

Beechey M., Gruen D., Vickrey J. (2000). The Effi-
cient Markets Hypothesis: A Survey. Reserve Bank
of Australia.

Contreras I., Hidalgo J., Nunez-Letamendia L.
(2012), A GA combining technical and fundamental
analysis for trading the stock marking. In EvoAp-
plications 2012, Springer, pp.. 174-183.

Fama, E. (1970), Efficient Capital Markets: A Re-
view of Theory and Empirical Work. Journal of
Finance 25 (2): 383417. doi:10.2307/2325486. JS-
TOR 2325486.

Hirabayashi A., Aranha C., Iba H. (2009), Optimiza-
tion of the Trading Rule in Foreign Exchange using
Genetic Algorithm, in Proc. GECCO’09, pp. 1529-
1536.

Larkin F. and Ryan C. (2010), Modesty is the Best
Policy: Automatic Discovery of Viable Forecasting
Goals in Financial Data. In Proc. EvoApplications
2010, Part II, pp. 202-211.

Lean Y., Lai K. (2007), Foreign Exchange Rate Fore-
casting with Artificial Neural Networks. Springer-
Verlag.

Liu Z., Xiu D. (2009), An automated trading system
with multi-indicator fusion based on D-S evidence
theory in forex market, in Proc. Sixth International
Conference on Fuzzy Systems and Knowledge Dis-
covery, IEEE, pp. 239-243.

Miller J., ed. (2011), Cartesian Genetic Program-
ming. Springer.

Ni H., Yin H. (2009), Exchange rate prediction us-
ing hybrid neural networks and trading indicators,
Neurocomputing72:2815-2832.

Sekanina L., Harding S., Banzhaf W., Kowaliw T.
(2011), Image Processing and CGP. In Miller
(2011), pp. 181-216.

Sekanina L., Walker J, Kaufmann P, Platzner M.
(2011), Evolution of Electronic Circuits. In Miller
(2011), pp. 125-180.

Sewell, M. (2011), Characterization of Financial
Time Series. Research Note RN/11/01, Dept. of
Computer Science UCL.

CRPIT Volume 134 - Data Mining and Analytics 2012

154

Table 9: Percentage probability of a function being selected for a node in a best-of-run individual by dataset,
over 100 independent runs per dataset.

Function EURUSD1 EURUSD2 INDU1 INDU2

+ 6.15% 4.94% 9.29% 6.31%
− 15.05% 10.37% 15.55% 11.87%
× 8.58% 7.97% 6.91% 7.61%
/ 11.33% 8.13% 8.86% 11.50%
> 11.97% 16.91% 12.96% 11.32%
< 12.30% 13.24% 12.53% 12.80%
MAX 10.36% 9.89% 5.40% 8.16%
MIN 8.25% 12.92% 8.86% 14.66%
MEAN 12.14% 7.97% 13.61% 10.39%
C1 1.46% 1.91% 2.38% 2.97%
C−1 1.29% 2.71% 1.94% 1.30%
C0 1.13% 3.03% 1.73% 1.11%

Figure 1: An example of a program evolved using CGP. Function node 17 is the output node. Each function
call has two inputs. Inputs may be input data (denoted by i0, i1, etc) or the output of another function node
(denoted by an integer identifying the node). In the array representation in figure (a), active nodes are marked
by marked by *. Figure (b) is the corresponding evaluation graph.

Node F Inputs Node F Inputs Node F Inputs
0* + i5,i6 10 − 6,i1 20 MAX i4,i7
1* − i7,0 11 MIN 2,6 21 × 3,5
2* MAX i2,i6 12* / 1,i1 22 MIN i3,10
3 + i7,0 13 − 10,10 23 MEAN 4,3
4 C1 i5,i4 14 MAX 5,i6 24 MEAN 3,i5
5 × i5,2 15* + i5,9 25 < 8,15
6 MAX 0,4 16 / i1,2 26 × 0,4
7 × i7,0 17* / 15,12 27 > i1,24
8 C1 1,2 18 MEAN i3,11 28 + 8,11
9* MIN i5,2 19 > 8,3 29 + 4,2

i5

!!DDDDDDDDD

$$

%%

i6

�� $$IIIIIIIIII i2

yytttttttttt

i7

!!DDDDDDDDD +

��

MAX

�����������������

−

$$IIIIIIIIIII i1

yytttttttttttt

MIN

��

/

��
+ /// //Output

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

155

CRPIT Volume 134 - Data Mining and Analytics 2012

156

