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Abstract 
In this study, we present the investigations being 
pursued in our research laboratory on magnetic 
resonance images (MRI) of various states of brain by 
extracting the most significant features, and to classify 
them into normal and abnormal brain images. We 
propose a novel method based on deep and extreme 
machine learning on wavelet transform to initially 
decompose the images, and then use various features 
selection and search algorithms to extract the most 
significant features of brain from the MRI images. By 
using a comparative study with different classifiers to 
detect the abnormality of brain images from publicly 
available neuro-imaging dataset, we found that a 
principled approach involving wavelet based feature 
extraction, followed by selection of most significant 
features using PCA technique, and the classification 
using deep and extreme machine learning based 
classifiers results in a significant improvement in 
accuracy and faster training and testing time as 
compared to previously reported studies. 
Keywords: -Deep Machine Learning, Extreme Machine 
Learning, MRI, PCA 

1. INTRODUCTION 

Magnetic Resonance Images (MRI) is an advance 
technique used for medical imaging and clinical 
medicine and an effective tool to stud1y the various 
states of human brain. MRI images provide the rich 
information of various states of brain which can be used 
to study, diagnose and carry out unparalleled clinical 
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analysis of brain to find out if the brain is normal or 
abnormal. However, the data extracted from the images 
is very large and it is hard to make a conclusive 
diagnosis based on such raw data. In such cases, we 
need to use various image analysis tools to analyze the 
MRI images and to extract conclusive information to 
classify into normal or abnormalities of brain. The level 
of detail in MRI images is increasing rapidly with 
availability of 2-D and 3-D images of various organs 
inside the body. 

Magnetic resonance imaging (MRI) is often the medical 
imaging method of choice when soft tissue delineation 
is necessary. This is especially true for any attempt to 
classify brain tissues (Fletcher-Heath, L. M., Hall, L. O., 
Goldgof, D. B. and Murtagh, F.R. 2001). The most 
important advantage of MR imaging is that it is non-
invasive technique (Chaplot, S., Patnaik, L.M. and 
Jagannathan N.R. 2006). The use of computer 
technology in medical decision support is now 
widespread and pervasive across a wide range of 
medical area, such as cancer research, gastroenterology, 
heart diseases, brain tumors etc. (Gorunescu, F. 2007, 
Kara, S. and Dirgenali, F. 2007). Fully automatic 
normal and diseased human brain classification from 
magnetic resonance images (MRI) is of great 
importance for research and clinical studies. Recent 
work (Chaplot, S., Patnaik, L.M. and Jagannathan N.R. 
2006, Maitra, M. and Chatterjee A. 2007) has shown 
that classification of human brain in magnetic resonance 
(MR) images is possible via machine learning and 
classification techniques such as artificial neural 
networks and support vector machine (SVM) (Chaplot, 
S., Patnaik, L.M. and Jagannathan N.R. 2006, Mishra, 
Anurag, Singh, Lavneet and Chetty, Girija 2012), and 
unsupervised techniques such as self-organization maps 
(SOM) (Chaplot, S., Patnaik, L.M. and Jagannathan 
N.R. 2006, Singh, Lavneet and Chetty, Girija. 2012) and 
fuzzy c-means combined with appropriate feature 
extraction techniques (Maitra, M. and Chatterjee A. 
2007). Other supervised classification techniques, such 
as k-nearest neighbors (k-NN), which group pixels 
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based on their similarities in each feature image 
(Fletcher-Heath, L. M., Hall, L. O., Goldgof, D. B. and 
Murtagh, F.R. 2001, Abdolmaleki, P., Mihara, F., 
Masuda, K. and DansoBuadu, Lawrence. (1997), 
Rosenbaum, T., Engelbrecht, V., Krolls, W. and Lenard, 
H. 1999, Cocosco, C., Zijdenbos, Alex P. and Evans, 
Alan C.  2003) can be used to classify the 
normal/pathological T2-wieghted MRI images.  

Out of several debilitating ageing related health 
conditions, white matter lesions (WMLs) are commonly 
detected in elders and in patients with multiple brain 
abnormalities like Alzheimer’s disease, Huntington’s 
disease and other neurological disorders. According to 
previous studies, it is believed that total volume of the 
lesions (lesion load) and their progression relate to the 
aging process as well as disease process. Therefore, 
segmentation and quantification of white matter lesions 
via texture analysis is very important in understanding 
the impact of aging and diagnosis of various brain 
abnormalities. Manual segmentation of WM lesions, 
which is still used in clinical practices, shows the 
limitation to differentiate brain abnormalities using 
human visual abilities.  Such methods can produce a 
high risk of misinterpretation and can also contribute to 
variation in correct classification. Automated texture 
analysis algorithms have been developed to detect brain 
abnormalities using image segmentation techniques and 
machine learning algorithms. The signal of homogeneity 
and heterogeneity of abnormal areas in Region of 
Interest (ROI) in white matter lesions of brain in T2-
MRI images can be quantified by texture analysis 
algorithms [reference]. The ability to measure small 
differences in MRI images is essential and important to 
reduce the diagnosis errors of brain abnormalities. The 
supervised feature classification from T2 MRI images, 
however, suffers from two problems. First, because of 
the large variability in image appearance between 
different datasets, the classifiers need to be retrained 
from each data source to achieve good performances. 
Second, these types of algorithms rely on manually 
labeled training datasets to compute the multi-spectral 
intensity distribution of the white matter lesions making 
the classification unreliable. Inspired by new 
segmentation algorithms in computer vision and 
machine learning, we propose an efficient semi-
automatic and deep learning algorithm for white matter 
(WM) lesion segmentation around ROI based on 
extreme and deep machine learning. Further, we 
compare this novel approach with some of the other 
supervised machine learning techniques reported 
previously. 

Rest of the paper is organized as follows. Next Section 
gives a brief background of materials and methods used 
in Section 2. The details of the feature extraction, and 
feature selection, and other classifiers techniques used is 
described in same Section 2, 3 and Section 4 presents 
some of the experimental work carried. The paper 
concludes with in section 5 with some outcomes of the 
experimental work using proposed approach, and 
outlines plans for future work. 

2. Materials and Methods 

2.1 Datasets 

The input dataset consists of axial, T2-weighted, 256 X 
256 pixel MR brain images (Fig. 1). These images were 
downloaded from the (Harvard Medical School website 
(http:// med.harvard.edu/AANLIB/, Harward Medical 
School 1999). Only those sections of the brain in which 
lateral ventricles are clearly seen are considered in our 
study. The number of MR brain images in the input 
dataset is 60 of which 6 are of normal brain and 54 are of 
abnormal brain. The abnormal brain image set consists of 
images of brain affected by Alzheimer’s and other 
diseases. The remarkable feature of a normal human brain 
is the symmetry that it exhibits in the axial and coronal 
images. Asymmetry in an axial MR brain image strongly 
indicates abnormality. Hence symmetry in axial MRI 
images is an important feature that needs to be considered 
in deciding whether the MR image at hand is of a normal 
or an abnormal brain. A normal and an abnormal T2-
weighted MRI brain image are shown in Fig. 1(a) and 
1(b), respectively. Indeed, for multilayer learning models 
like deep and extreme machine learning algorithms 
needed big datasets for training, however due to lack of 
availability of proper datasets in MRI imaging, we used 
this dataset for examining the performance of proposed 
approaches for this paper, but acquiring other suitable 
datasets for future studies. 

2.2 Coarse Image Segmentation 
 

Color image segmentation is useful in many applications. 
From the segmentation results, it is possible to identify 
regions of interest and objects in the scene, which is very 
beneficial to the subsequent image analysis or annotation. 
However, due to the difficult nature of the problem, there 
are few automatic algorithms that can work well on a 
large variety of data. The problem of segmentation is 
difficult because of image texture. If an image contains 
only homogeneous color regions, clustering methods in 
color space are sufficient to handle the problem. In 
reality, natural scenes are rich in color and texture. It is 
difficult to identify image regions containing color-
texture patterns. The approach taken in this work assumes 
the following:  
• Each region in the image contains a uniformly 
distributed color-texture pattern. 
• The color information in each image region can be 
represented by a few quantized colors, which is true for 
most color images of natural scenes. 
• The colors between two neighboring regions are 
distinguishable - a basic assumption of any color image 
segmentation algorithm. 
 
K-Means clustering based Coarse Image 
Segmentation 
 
K-Means clustering algorithm is a well-known 
unsupervised clustering technique to classify any given 
input dataset. This algorithm classifies a given dataset 
into discrete k-clusters using which k-centroids are 
defined, one for each cluster. The next step is to take each 
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point in the given input data set and associate it to the 
possible nearest centroid. This process is repeated for all 
the input data points, based on which next level of 
clustering and the respective centroids are obtained. This 
procedure is iterated until it converges. This algorithm 
minimizes the following objective function. 

� = 	����� � − 
����
�
�

�
�
�

 

Where ��� � − 
��� is a chosen distance measure between 
a data point (xi)

 j and the cluster centre, cj is an indicator 
of the distance of the k data points from their respective 
cluster centers. The proposed unsupervised segmentation 
algorithm uses the principle of K-means clustering. 
The proposed technique segments the region of interest 
(ROI) of an input image (input_img) by an interactive 
user defined shape of square or rectangle to obtain 
select_img. Then, the number of bins for coarse data 
computation (bin size), the size of overlapping kernel to 
partition (w-size) and the maximum number of clusters 
for segmentation (max_class) are fed as input data for the 
computation of coarse data. The coarse data identified by 
each kernel is aggregated to form the final_coarse_data 
which is further clustered using the principle of K-means 
clustering in order to produce the segment_img. The 
algorithmic description of the proposed technique is 
given herein under: 
Algorithm 
1. Read a grayscale image as input_img 
/* Define the area to be segmented as a runtime 
interactive input. The shape of the selection can either be 
a square or a rectangle */ 
2. Let select_img is the selected subimage of input_img 
3. Assign: 
a. binsize=5 
/* number of bins for coarse data computation */ 
b. wsize= 7 
/* wsize is the size of overlapping kernel to partition the 
select_img */ 
c. max_class= 3 
/* maximum number of clusters for segmentation */ 
4. Repeat step 5 and 6 in algorithm until the select_img is 
read 
5. Read select_img in the order of (wsize*wsize) as 
window_img 
6. Compute coarse_img for window_img as 
coarse_win_data 
7. Aggregate coarse_win_data for select_img as 
final_coarse_data 
8. Cluster final_coarse_data using K-means clustering 
technique using max_class in order to obtain 
segment_img 
9. Stop 
This algorithm can segment an object either fully or 
partially based on user’s choice. If the image has a 
background and object(s) then it partitions the object 
from the background and displays its coarse image. If the 
image has no background, then the segmented image 
reveals the inner details of the object.  
 
 
 

 
 
 
 
 
 
 
 
 
Figure 1. (a) Coarse Segmented MRI Image based on 
above algorithm (b) ROI segmented image of White 
Lesions 

3. Decomposition of images Using Wavelets 

Wavelets are mathematical functions that decompose 
data into different frequency components and then study 
each component with a resolution matched to its scale. 
Wavelets have emerged as powerful new mathematical 
tools for analysis of complex datasets. The Fourier 
transform provides representation of an image based 
only on its frequency content. Hence this representation 
is not spatially localized while wavelet functions are 
localized in space.  

 
 
 
 
 
 
 
 
 
(a)                                                      (b)     

 

 

 
 
 
         
              ( c )                                                    (d) 

Fig.2. (a) T2, weighted an axial MRI Brain Image; 
(b) T2, weighted an axial MR brain image as 
abnormal brain; (c) and (d) T2, weighted an axial 
MR brain image as normal and abnormal brain 
after Wavelets Decomposition and denoising 

Discrete wavelets transform (DWT) 

The DWT is an implementation of the wavelet 
transform using a discrete set of the wavelet scales and 
translation obeying some defined rules. For practical 
computations, it is necessary to discretize the wavelet 
transform. The scale parameters are discretized on a 
logarithmic grid. The translation parameter (τ) is then 
discretized with respect to the scale parameter, i.e. 
sampling is done on the dyadic (as the base of the 
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logarithm is usually chosen as two) sampling grid. The 
discretized scale and translation parameters are given 
by, s = 2-m and t = n2-m, where m, n ϵ Z, the set of all 
integers. Thus, the family of wavelet functions is 
represented in Eq. (1) and (2),  

��,���� = 	2����2�� − ��                                         (1) (1) 

����, �� = 	� ���� ∗ � ,!���"�#$#                            (2) 

In case of images, the DWT is applied to each 
dimension separately. This result in an image Y is 
decomposed into a first level approximation component 
Ya

1 and detailed components Yh
1 Yv

1 and Yd
1 

corresponding to horizontal, vertical and diagonal 
details.  Fig.1 depicts the process of an image being 
decomposed into approximate and detailed components. 

The approximation component (Ya) contains low 
frequency components of the image while the detailed 
components (Yh, Yv and Yd) contain high frequency 
components. Thus, 

Y = Ya
1 + { Yh

1 + Yv
1 + Yd

1}                                      (3) 

At each decomposition level, the length of the 
decomposed signals is half the length of the signal in the 
previous stage. Hence the size of the approximation 
component obtained from the first level decomposition 
of an NXN image is N/2 X N/2, second level is N/4 X 
N/4 and so on. As the level of decomposition is 
increased, compact but coarser approximation of the 
image is obtained. Thus, wavelets provide a simple 
hierarchical framework for interpreting the image 
information. 

4. Deep Belief Nets 

DBNs (Hinton, G.E. and Salakhutdinov, R.R. 2006) are 
multilayer, stochastic generative models that are created 
by learning a stack of Restricted Boltzmann Machines 
(RBMs), each of which is trained by using the hidden 
activities of the previous RBM as its training data. Each 
time a new RBM is added to the stack, the new DBN 
has a better variation lower bound on the log probability 
of the data than the previous DBN, provided the new 
RBM is learned in the appropriate way (Hinton, G.E. 
and Osindero, S. 2006). 

A Restricted Boltzmann Machine (RBMs) is a complete 
bipartite undirected probabilistic graphical model. The 
nodes in the two partitions are referred as hidden and 
visible units. An RBM is defined as  

%�&, ℎ� = 	 ()*�+,,�∑ ∑ ()*�.,/�/.                                              (4) 

  

Where v ϵ V are the visible nodes and h ϵ H are the 
latent random variables. The energy function E (v,h,W) 
is described as  

0 = 	−∑ ∑ &����ℎ�1�
�2�
�                                           (5) 

  

Where W ϵ RDXK  are the weights on the connections, 
and where we assume that the visible and hidden units 
both contain a node with value of 1 that acts to 
introduce bias. The conditional distribution for the 
binary visible and hidden units are defined as 

%�&� = 1 ℎ⁄ ,�� = 	5�∑ ���ℎ��1�
�                           (6) 

%6ℎ� = 1 &⁄ ,�7 = 	5�∑ ���&��2�
�                           (7)     
  

Where 5 is the sigmoid function. Using above 
equations, it easy to go back and forth between the 
layers of RBM.  While training, it consists of some 
input to the RBM on the visible layer, and updating the 
weights and the biases such that p(v) is high. In 
generalized way, in as set of C training cases {vcІc ϵ 
{1,….,C}}, the objective is to maximize the average log 
probability defined as 

∑ logp�v=� = 	∑ log ∑ >)?6@A,B7B∑ ∑ >)?�C,B�BCD=
�EF
�                     (8) 

The whole training process involves updating the 
weights with several numbers of epochs and the data is 
split in 20 batches which we take it randomly and the 
weights are update at the end of every batch. We use the 
binary representation of hidden units’ activation pattern 
for classification and visualization. The activation of 
each hidden unit is defined as 

f(x) = g(Wx + b)                                                        (9) 

Where g(z) = 1=1/(1 + exp(-z)) is the logistic sigmoid 
function, applied component-wise to the vector z, W is a 
weight vector between visible nodes and hidden nodes 
and b is a bias. The autoencoder with Nh hidden nodes is 
trained and fine-tuned using back-propagation to 
minimize squared reconstruction error, with a term 
encouraging low average activation of the units. 

5. Extreme Machine Learning  

The Extreme Learning Machine (Lin, M.B., Huang, 
G.B., Saratchandran P. and Sudararajan N. 2005, 
Huang, G.B., Zhu, Q.Y. and Siew, C.K. 2006, Huang, 
G.B., Zhu, Q.Y. and Siew, C.K. 2002, Mishra, Anurag, 
Singh, Lavneet and Chetty, Girija 2012, Singh, Lavneet 
and Chetty, Girija 2012 is a Single hidden Layer Feed 
forward Neural Network (SLFN) architecture. Unlike 
traditional approaches such as Back Propagation (BP) 
algorithms which may face difficulties in manual tuning 
control parameters and local minima, the results 
obtained after ELM computation are extremely fast, 
have good accuracy and has a solution of a system of 
linear equations. For a given network architecture, ELM 
does not have any control parameters like stopping 
criteria, learning rate, learning epochs etc., and thus, the 
implementation of this network is very simple. The 
main concept behind this algorithm is that the input 
weights (linking the input layer to the hidden layer) and 
the hidden layer biases are randomly chosen based on 
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some continuous probability distribution function such 
as uniform probability distribution in our simulation 
model and the output weights (linking the hidden layer 
to the output layer) are then analytically calculated 
using a simple generalized inverse method known as 
Moore – Penrose generalized pseudo inverse (Serre, D. 
2002). 

Given a series of training samples (xi, yi) i=1, 2 …N and GH 
the number of hidden neurons where xi = (xi1,….xin) ϵ 
Rn  and yi = (yi1,….yin) ϵ R

m , the  actual outputs of the 
single-hidden-layer feed forward neural network 
(SLFN) with activation function g(x) for these N 
training data is mathematically modeled as  

∑ I�J6�K� , ��� + ��7 = 0�NH�
� , ∀	= 1, … . . , G         (10)     

Where wk = (wk1,…..,wkn) is a weight vector connecting 
the kth hidden neuron, βk = (βk1,…… βkm) is the hidden 
neuron. The weight vectors wk are randomly chosen. 
The term (wk, xi) denotes the inner product of the 
vectors wk and xi and g is the activation function. The 
above N equations can be written as Hβ = O and in 
practical applications GH is usually much less than the 
number N of training samples and Hβ ≠ Y, where 

R
= 	S J6�K�, ��� + ��7 ⋯ J6�KNH , ��� + �NH7⋮ ⋱ ⋮J6�K�, ��N� + ��7 ⋯ J6�KNH , �N� + �NH7WNXNH 

 I = 	 SI�..INHWNHX� O	 = 	 S
Z�..ZNWNX� [	 = 	 S

[Z�..[ZNWNX�     11) 

The matrix H is called the hidden layer output matrix. 
For fixed input weights wk = (wk1,…..,wkn)  and hidden 
layer biases bk, we get the least-squares solution I\ of the 
linear system of equation Hβ = Y  with minimum norm 
of output weights β, which gives a good generalization 
performance. The resulting I\ is given by I\ = R +[where matrix H+ is the Moore-Penrose generalized 
inverse of matrix H (Serre, D. 2002). 

6. Trained Classifiers 

In this study, apart from deep learning based on 
Restricted Boltzmann machines and extreme machine 
learning based on Single hidden Layer Feed forward 
Neural Network (SLFN) architecture as classifiers, 
several other classifiers are also examined in terms of 
accuracy and performance, including K-nearest 
neighbor (Wang, Jun. and Zucker, Daniel J. 2000), 
SVM (Vapnik, V. 1995), Naive Bayes George, H. and 
John, Pat Langley. 1995), MultiboostAB (Webb, 
Geoffrey. 2000), RotationForest (Rodriguez, Juan J., 
Kuncheva, Ludmila I. and Alonso, Carlos J. 2006), VFI 
(Quinlan, Ross. 1993), J48 (Breiman, Leo. 2001) and 
Random Forest (Hall, M. A. 1998). 

J48 (Kohavi, Ron and John, George H. 1997) is an 
implementation of C4.5 algorithm that produces 

decision trees from a set of labeled training data using 
the concept of information entropy. It examines the 
normalized information gain (difference in entropy) that 
results from choosing an attribute for splitting the data 
into smaller subsets. To make the decision, the attribute 
with the highest normalized information gain is used. 
The KNN algorithm (Wang, Jun. and Zucker, Daniel J. 
2000) compares the test sample with the available 
training samples and finds the ones that are more similar 
(“nearest”) to it. When the k-nearest training samples 
are found, the class label in majority is assigned to the 
new sample. Learning in the VFI algorithm (Quinlan, 
Ross. 1993) is achieved by constructing feature intervals 
around each class for each attribute (basically 
discretization) on each feature dimension.  Class counts 
are recorded for each interval on each attribute and 
classification is performed by a voting scheme.  

The Naïve Bayesian Classifier (George, H. and John, 
Pat Langley. 1995) assumes that features are 
independent. Given the observed feature values for an 
instance and the prior probabilities of classes, the a 
posteriori probability that an instance belongs to a class 
is estimated. The class prediction is the class with the 
highest estimated probability. The SVMs (Vapnik, V. 
1995) first map the attribute vectors into a feature space 
(possibly with higher dimensions), either linearly or 
nonlinearly, according to the selected kernel function. 
Then, within this feature space, an optimized linear 
division is sought; i.e., a hyper plane is constructed 
which separates two classes (this can be extended to 
multiple classes). MultiBoosting (Webb, Geoffrey. 
2000) is an extension to the highly successful AdaBoost 
technique for forming decision committees. 
MultiBoosting can be viewed as combining AdaBoost 
with wagging. It is able to harness both AdaBoost's high 
bias and variance reduction with wagging's superior 
variance reduction. Using C4.5 as the base learning 
algorithm, Multi-boosting is demonstrated to produce 
decision committees with lower error than either 
AdaBoost or wagging significantly more often than the 
reverse over a large representative cross-section of data 
set. It offers the further advantage over AdaBoost of 
suiting parallel execution. 

7. Feature Selection 

In machine learning, during the training of the 
classifiers, if the numbers of image features are large, it 
can lead to ill-posing and over fitting, and reduce the 
generalization of the classifier. One way to overcome 
this problem is to reduce the dimensionality of features. 
To reduce the dimensionality of the large set of features 
of dataset, in our study, we propose the use of three 
optimal attribute selection algorithms: correlation based 
feature selection (CFS) method (Kohavi, Ron and John, 
George H. 1997), which evaluates the worth of a subset 
of attributes by considering the individual predictive 
ability of each feature along with the degree of 
redundancy between them, secondly an approach based 
on wrappers (Hughes, N.P. and Tarassenko, L. 2003)  
which evaluates attribute sets by using a learning 
scheme. Also in this study, three search methods are 
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also examined: the Best First, Greedy Stepwise and 
Scatter Search algorithms. These search algorithms are 
used with attribute selector’s evaluators to process the 
greedy forward, backward and evolutionary search 
among attributes of significant and diverse subsets. In 
total, these feature selection algorithms were tested to 
select nearly 10 optimal and significant features out of 
1024 features. 
When we do PCA, we need to do an eigen-decomposition 
of the covariance matrix. The procedure of PCA is as 
follows: 

1. Compute the mean: 

�̅ = 1̂ ��_��
�
�

	 
2. Generate the zero-mean data matrix: �� = �_� − �̅ 

A = (x1, x2…………. xm) 
3. Construct the covariance matrix: 

C=AAT 
The covariance matrix C is symmetric and positive 
definite. So the eigenvalues of C is real and non-negative. 

4. Eigen-decomposition: 
The eigenvalues ʎi and the eigenvectors vi of C 
satisfy 
Cvi =ʎvi 

5. So we have the eigen-decomposition of the 
covariance matrix: 
C = VʌV-1 = VʌVT 

Figure 3. (a) Eigen values of segmented MRI images 
(b) Eigen vectors after PCA 

 

 

8. Experiments and Results 

8.1 Level of wavelet decomposition 

We obtained wavelet coefficients of 60 brain MR 
images, each of whose size is 256 X 256. Level-1 HAR 
wavelet decomposition of a brain MR image produces 
16384 wavelet approximation coefficients; while level-2 

and level-3 produce 4096 and 1024 coefficients, 
respectively. The third level of wavelet decomposition 
greatly reduces the input vector size but results in lower 
classification percentage. With the first level 
decomposition, the vector size (16384) is too large to be 
given as an input to a classifier. The preliminary 
experimental analysis of the wavelet coefficients 
through simulation in Matlab 7.10., we showed that 
level-2 features are the best suitable for different 
classifiers, whereas level-1 and level-3 features results 
in lower classification accuracy. The second level of 
wavelet decomposition not only gives virtually perfect 
results in the testing phase, but also has reasonably 
manageable number of features (4096) that can be 
handled without much hassle by the classifier. We also 
use the DAUB-4 (Daubachies) as mother wavelets to 
get decomposition coefficients of MRI images at Level 
2 for comparative evaluation of two wavelets 
decomposition methods in terms of classification 
accuracy. 

8.2 Attribute Selection and Classification 

Table 1 shows the  accuracy of classification 
(percentage of correctly classified samples), True 
Positive Rate (TP), False Positive Rate (FP) and 
Average Classification Accuracy (ACC) over all pair-
wise combination with different feature evaluators and 
search algorithms with respect to multi-class 
classification.  

Table 1 shows the performance of several learning 
classifiers, including K-nearest neighbor, SVM, Naive 
Bayes, MultiboostAB, Rotation Forest, VFI, J48 and 
Random Forest. Among the pair-wise classification, the 
lowest accuracy is observed for the classification VFI 
classifiers of 74.16% and the highest accuracy for the 
classification by Rotational forest of 97.06%. Moreover, 
the combination of CFS feature evaluator with the of 
Best First search algorithm gives the highest 
classification accuracy.            

While Table 1 shows the performance of indivual 
classifiers, Table 2 defines the comparative results of 
various combined search techniques and feature 
evaluators using above prescribed classifiers. Table 3 
compares the proposed method against a popular 
dimensionality reduction method, known as Principal 
Component Analysis (PCA). PCA applies an orthogonal 
linear transformation that transforms data to a new 
coordinate system of uncorrelated variables called 
principal components. We have applied PCA to reduce 
the number of attributes or feature to 18 attributes and 
plotted the ROC curves using several above mentioned 
learning classifiers in terms of True Positive and False 
Positive Rate, as seen in figure 4. As can be seen in 
figure 4, ROC curves for all the trained learning 
classifiers examined in this study, the curves lie above 
the diagonal line describing the better classification 
rather than any other random classifiers. The optimal 
points of various trained classifiers are indicated by bold 
solid circles as False Positive rate (FP) and True 
Positive rate (TP). These optimal points in ROC curves 
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show the maximum optimal value (FP, TP) of all trained 
classifiers. 

Table 1. Various Classifiers comparision with 
respect Average Classification Accuracy(%) and 

other  parameters 
Classifie

r 
TP 

Rate 
FP 

Rate 
Pr
eci
sio
n 

Reca
ll 

F-
Measu

re 

ACC 
(%) 

KNN 0.93
5 

0.91
7 

0.
82
6 

0.85
3 

0.839 91.04 

SVM 0.91
2 

0.91
2 

0.
83
1 

0.91
2 

0.87 91.17 

Naive 
Bayes 

0.86
8 

0.91
6 

0.
82
8 

0.86
8 

0.847 86.76 

Multibo
ostAB 

0.91 0.91 0.
82
9 

0.91 0.868 91.04 

Rotation 
Forest 

0.97
1 

0.28
5 

0.
97
1 

0.97
1 

0.968 97.06 

VFI 0.74
2 

0.04
9 

0.
93 

0.74
2 

0.796 74.16 

J48 0.96 0.31
4 

0.
95
8 

0.96 0.957 95.98 

Random 
Forest 

0.97 0.27
1 

0.
97 

0.97 0.968 97.01 

Table 2. Comparison of pair wise combination of 
various Attribute Selectors and classifiers with 

respect to ACC (%) 
Evaluator Search 

Algorithm 
Classifier N ACC 

(%) 
CFS Best First K-NN 6 91.04 
CFS Greedy 

Stepwise 
K-NN 2 89.70 

CFS Scatter 
Search 

K-NN 4 88.23 

Wrapper Best First K-NN 5 89.32 
Wrapper Greedy 

Stepwise 
K-NN 4 87.56 

Wrapper Scatter 
Search 

K-NN 4 88.20 

CFS Best First SVM 6 91.17 
CFS Greedy 

Stepwise 
SVM 6 89.23 

CFS Scatter 
Search 

SVM 4 91.04 

Wrapper Best First SVM 2 90.65 
Wrapper Greedy 

Stepwise 
SVM 2 90.65 

Wrapper Scatter 
Search 

SVM 5 89.56 

CFS Best First Naive Bayes 8 86.76 
CFS Greedy 

Stepwise 
Naive Bayes 8 82.78 

CFS Scatter 
Search 

Naive Bayes 7 82.12 

Wrapper Best First Naive Bayes 4 85.44 
Wrapper Greedy 

Stepwise 
Naive Bayes 2 85.44 

Wrapper Scatter 
Search 

Naive Bayes 2 80.12 

CFS Best First MultiboostAB 5 91.04 
CFS Greedy 

Stepwise 
MultiboostAB 5 91.04 

CFS Scatter 
Search 

MultiboostAB 4 86.54 

Wrapper Best First MultiboostAB 5 89.39 
Wrapper Greedy 

Stepwise 
MultiboostAB 5 90.45 

Wrapper Scatter MultiboostAB 4 88.76 

Search 
CFS Best First Rotation Forest 9 97.06 
CFS Greedy 

Stepwise 
Rotation Forest 9 96.21 

CFS Scatter 
Search 

Rotation Forest 8 91.66 

Wrapper Best First Rotation Forest 5 93.78 
Wrapper Greedy 

Stepwise 
Rotation Forest 6 93.78 

Wrapper Scatter 
Search 

Rotation Forest 6 89.54 

CFS Best First VFI 3 74.16 
CFS Greedy 

Stepwise 
VFI 2 71.01 

CFS Scatter 
Search 

VFI 4 71.01 

Wrapper Best First VFI 3 72.22 
Wrapper Greedy 

Stepwise 
VFI 2 72.85 

Wrapper Scatter 
Search 

VFI 4 72.85 

CFS Best First J48 7 95.98 
CFS Greedy 

Stepwise 
J48 7 95.98 

CFS Scatter 
Search 

J48 6 91.41 

Wrapper Best First J48 7 95.98 
Wrapper Greedy 

Stepwise 
J48 7 95.98 

Wrapper Scatter 
Search 

J48 6 91.41 

CFS Best First Random Forest 8 97.01 
CFS Greedy 

Stepwise 
Random Forest 8 95.47 

CFS Scatter 
Search 

Random Forest 8 95.47 

Wrapper Best First Random Forest 5 96.25 
Wrapper Greedy 

Stepwise 
Random Forest 6 96.25 

Wrapper Scatter 
Search 

Random Forest 5 90.01 

Table 3. Classification Comparison using PCA and 
other feature attribute evaluators in terms of ACC 

(%) 
Classifier PCA CFS-Best 

First 
Wrapper-Best 

First 
KNN 91.38 91.04 89.32 
SVM 96.24 91.17 90.65 

Naive Bayes 85.63 86.76 85.44 
MultiboostAB 94.52 91.04 89.39 
Rotation Forest 97.06 97.06 93.78 

VFI 77.12 74.16 72.22 
J48 95.34 95.98 95.98 

Random Forest 97.34 97.01 96.25 
 

Fig.4. Shows the ROC curve of the above mentioned 
trained classifiers. 

 

Table 4 describes the classification results using 
Extreme Machine Learning and Deep Machine 
Learning. In table 4, we compared the training time, 
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testing time and classification error using extreme and 
deep machine Learning. As we can see in the table both 
learning algorithms are processed to many hidden layers 
and their evaluations is done in terms of various factors. 
As depicted in Table 4, it clearly shows that deep 
machine learning plays a major role in reducing the 
classification error. As Deep and extreme machine 
learning are designed to work on large datasets for it is 
difficult to compare the performance. However, they 
result in acceptable accuracy levels, and we are 
currently examining several other publicly available 
large MRI datasets for enhancing the performance of 
these two novel approaches (Deep learning and Extreme 
machine learning approaches).  

Table 4. describes the classification results using 
Extreme Machine Learning and Deep Machine 

Learning. 
 Training Time(s) Classification Error 

Hidden 
Layers 

10 15 20 10 15 20 

Deep 
Learning 

0.56 0.47 0.72 0.083 0.065 0.071 

Extreme 
Learning 

0.31 0.31 0.61 0.042 0.042 0.061 

 
The good factor in using deep and extreme learning 
classification algorithms is that the model is skipped by 
using dimension reduction evaluators and can be used 
on unlabeled datasets of MRI brain images where the 
ROI are classified as unlabeled and can be labeled and 
classified using these algorithms. But, still on small 
datasets of our current study is positive and encouraging 
in terms of low classification error and computation 
time for training and testing of data.  

9. Conclusions 

In this study, we have presented a principled approach for 
investigating brain abnormalities based on wavelet based 
feature extraction, PCA based feature selection and deep 
and extreme machine learning based classification 
comparative to various others classifiers. Experiments on 
a publicly available brain image dataset show that the 
proposed principled approach performs significantly 
better than other competing methods reported in the 
literature and in the experiments conducted in the study. 
The classification accuracy of more than 93% in case of 
deep machine learning and 94% in case of extreme 
machine learning demonstrates the utility of the proposed 
method. In this paper, we have applied this method only 
to axial T2-weighted images at a particular depth inside 
the brain. The same method can be employed for T1-
weighted, proton density and other types of MR images. 
With the help of above approaches, one can develop 
software for a diagnostic system for the detection of brain 
disorders like Alzheimer’s, Huntington’s, Parkinson’s 
diseases etc. Further, the proposed approach uses reduced 
data by incorporating feature selection algorithms in the 
processing loop and still provides an improved 
recognition and accuracy. The training and testing time 
for the whole study used by deep and extreme machine 
learning is much less as compared to SVM and other 

traditional classifiers reported in the literature. Further 
work will be pursued to classify different type of 
abnormalities, and to extract new features from the MRI 
brain images on various parameters as age, emotional 
states and their feedback.  
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