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Abstract

Mining maximal groups from spatio-temporal data
of mobile users is a well known problem. However,
number of such groups mined can be very large, de-
manding further processing to come up with a read-
ily usable set of groups. In this paper, we introduce
the problem of mining a set of K maximal groups
which covers maximum number of users. Such a set of
groups can be useful for businesses which plan to dis-
tribute a set of K offers targeting groups of users such
that a large number of users are covered. We propose
efficient methods to solve this hard problem, which
do not mine the total set of groups apriori (avoid-
ing the large amount of time consumed upfront), in-
stead intelligently decide during their execution as to
which area of the search space is to be explored to
mine the next group so that a set of K groups cov-
ering large number of users is quickly produced, and
then improve the K-set as time progresses (anytime
nature). Experimental results on several synthetic
spatio-temporal datasets as well as real datasets that
are publicly available show the efficacy and scalabil-
ity of the proposed methods across various parametric
inputs.

Keywords: Anytime Algorithms, Coverage, Spatio-
Temporal Data Mining, Top K, Valid Groups

1 Introduction

Spatio-temporal mobility data of users consisting of
〈time, location〉 values for each member is of great
value and several kinds of interesting information has
been mined using such data like groups (Wang et al.
2003), trajectories (Lee et al. 2009), events and social-
networks (Lauw et al. 2005), association rules and sig-
nificant locations (Verhein & Chawla 2006), moving
clusters (Kalnis et al. 2005), etc. Specifically, mining
group patterns from mobility data can be very useful
in target marketing (Schafer et al. 2001), social net-
work analysis (Forsyth 2006), crime investigation (Xu
& Chen 2005), habitat monitoring (Davis et al. 2004),
and various other applications.

A criterion for a set of users to be designated
as a valid group is proposed in the work (Wang et
al. 2003), based on the proximity in their spatio-
temporal mobility (see Section 2 for full details).
Later, methods for mining all maximal valid groups
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are proposed in order to avoid redundancy (Wang
et al. 2008) which arises because all subsets of a
valid group also become valid groups. Although the
amount of redundancy is greatly reduced by mining
only the maximal valid groups instead of mining all
the valid groups, the number of groups mined still re-
mains very large to be used readily (order of one mil-
lion for an instance with 6, 000 users, see (Wang et al.
2008)). Also, mining all maximal valid groups can be
extremely time consuming; in our experiments, for an
instance with 5, 000 users, VGBK (Wang et al. 2008),
an efficient algorithm, could not terminate with the
set of all maximal valid groups even after sixty hours.

In this scenario, we propose the problem of finding
a set (of cardinality K) of maximal valid groups which
covers maximum number of users.

Such a set could be extremely useful in reaching
out to a large number of users through a limited set
of groups. For example, a business owner or a polit-
ical outfit can advertise to a large number of people
through a limited set of attractive offers. Note that,
even if the offer itself does not involve all the mem-
bers of a group rather only one person per group is
chosen, it is still extremely likely that the advertise-
ment reaches/influences maximum number of people
by virtue of the groupings. Given the set of all maxi-
mal valid groups, the problem is well known as maxi-
mum coverage problem which is NP-hard (Hochbaum
1997) (the hardness of the maximum coverage prob-
lem holds in our case as well since there exist no
generic relations between the maximal valid groups
which can trivialize its complexity). Therefore, the
search space for finding the set of groups with maxi-
mum coverage is exponential in the size of the set of
all maximal valid groups.

Such a huge search space poses challenge in all as-
pects: time, memory, and solution quality. Therefore
methods which can work within the given amount of
memory and can give a good quality solution within
the given amount of time are needed. None of the
existing methods can be directly used for this pur-
pose and substantial adaptation is needed if they
were to be used. In this work, we explore several
algorithms which are adaptations of existing mining
techniques, and also develop new methods based on
depth-first and best-first search techniques which are
of low memory footprint and yet give good anytime
performance. Anytime (Dean & Boddy 1988), mean-
ing, they readily produce a K-set of groups as soon
as they can and improve upon the K-set as time pro-
gresses, thereby making a good quality K-set available
to use at any time.

Note that, our problem has two aspects to it:
1) mining the maximal valid groups, and 2) choos-
ing the K-set efficiently. For addressing the first as-
pect, efficient algorithms were proposed in the litera-
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ture (Wang et al. 2008), and for addressing the second
aspect, there are no clear recommendations in the lit-
erature, which need to be explored. In this paper, we
identify that best-first search algorithms such as the
ones based on A* (Hart et al. 1968) which are used
for combinatorial optimization can be of help in this
case since the mining algorithms proceed in a search
algorithm like manner as well. Hence, we explore two
types of algorithms, ones which are mining oriented
which we adapt for optimization (BKC, DFRC; ex-
plained in Section 3), and ones which are optimization
oriented which we adapt for mining (ItBC, MAC; ex-
plained in Section 3). We observe that each of these
algorithms has its strengths and weaknesses and is
suited for a particular type of situation. We catego-
rized such cases and identified the corresponding best
algorithms in each case, which can be suitably picked
as per the needs of the application.

A conceptually closely related and well-studied
problem is that of mining frequent itemsets from a
given database with a given minimum support and
confidence (Agrawal & Srikant 1994). Since the num-
ber of such frequent itemsets are usually very large,
mining of closed frequent itemsets (Pei et al. 2000),
non-derivable frequent itemsets (Calders & Goethals
2002), and maximal frequent itemsets (Gouda & Zaki
2005) were explored. Additional criteria such as
support constraints (Wang et al. 2000), item con-
straints (Srikant et al. 1997), etc. were used to nar-
row down the number of itemsets. Mining top-k fre-
quent itemsets was proposed to find the most sig-
nificant itemsets from a database (Han et al. 2002).
Redundancy-aware top-k patterns mining (Xin et al.
2006) was proposed to increase the diversity among
the top-k patterns while maintaining significance.
Compression of itemsets was done by using condensed
representations (Pei et al. 2002). Recent work on fre-
quent itemsets called summarization focuses on ob-
taining a representative set of frequent itemsets which
can act as a summary of the whole set of frequent
itemsets (Afrati et al. 2004). Also, work has been
carried out on mining high utility itemsets (Tseng et
al. 2010) where cost of different items, their count in
a transaction, and the number of transactions they
are involved in are taken into account.

Translation of our objective in the context of fre-
quent itemset mining gives rise to mining K maximal
frequent itemsets which cover maximum number of
items. Perhaps the closest work in spirit to this is
of mining redundancy-aware top-k patterns (Xin et
al. 2006) where diverse itemsets are covered via the
incorporation of pattern redundancy measure. The
proposed coverage problem may be very helpful in
coming up with a limited number of recommenda-
tions/offers that span a wide variety of items. How-
ever, in this paper, we restrict ourselves towards min-
ing the user groups with maximum coverage. Also
note that, mining group patterns is different from
clustering (Ng & Han 1994) and often has relatively
more complex criteria.

This paper makes the following key contributions:

1. We introduce the problem of mining K groups
such that maximum number of users are covered
and explain the utility and importance of such a
set.

2. We propose efficient algorithms for solving this
problem which are of low memory footprint and
which give good anytime performance.

3. We present extensive empirical analysis using
synthetic as well as real spatio-temporal datasets

which are publicly available. We vary the differ-
ent mining parameters, the simulator parameters
in case of synthetic data, K value, and data size.
We analyze the anytime performance (solution
quality, time taken) as well as memory consump-
tion. Thereby thoroughly testing the efficacy and
scalability of the proposed methods.

The rest of the paper is organized as follows: Sec-
tion 2 presents the required background on the valid
group definition, existing algorithms for mining all
maximal valid groups, and the best first search algo-
rithms. In Section 3, we present the proposed meth-
ods for mining groups with maximum coverage along
with their properties. In Section 4, we present the em-
pirical results demonstrating the efficacy of the pro-
posed methods. We conclude in Section 5.

2 Background

In this section, we briefly present the required back-
ground on the definition of valid group, algorithms
for mining maximal valid groups, and some best first
search approaches that are used later.

Valid group (Wang et al. 2003). The following
definitions related to a set of users G lead to the def-
inition of a valid group.

Valid Segment: A valid segment is a set of con-
secutive timepoints [ta, tb] where the set of users G
are within max dis distance of each other at each
timepoint and the length of the segment is at-least
min dur (also the segment has to be maximal, mean-
ing, all users of G are not together at ta−1 and tb+1).

Group Pattern: A set of users G, thresholds
max dis, min dur form a group pattern if G has a
valid segment.

Weight: Weight of a group pattern is the sum of
the lengths of all valid segments of that group.

Valid Group: A set of users G is called a valid
group if they are part of a group pattern whose weight
exceeds a threshold min wei.

Maximal Valid Group: A valid group is called a
maximal valid group if it is not a subset of any other
valid group.

6 PM 6:30 7 7:30 8 8:30 9 PM

C

B

D

A

Figure 1: Valid groups example: Lines indicate the time
spent by the users A, B, C, and D at a restaurant.

Figure 1 shows the time spent by four users at
a restaurant. Assume that the restaurant is identi-
fied as a single location (they will be within max dis
whenever they are at the restaurant) and the values
of min dur and min wei to be 30 Min. and 1 Hour
respectively. In such a scenario, the maximal valid
groups are: {A,B,C}, {B,C}, {B,D}, and {C,D} (note
that, B, C, and D are not all together for min wei
time for them to become a valid group).

Mining maximal valid groups (Wang et al.
2008). Two efficient methods, namely, VGMax and
VGBK were proposed for mining all the maximal
valid groups.

VGMax works as follows: A graph known as VG-
graph is formed where the vertices represent the users
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{a,b,c,d}

{a} {b} {c} {d}

{a,b,c} {a,b,d} {a,c,d}

{a,b} {a,d}{a,c} {b,c} {b,d}

{b,c,d}

{c,d}

Figure 2: Set enumeration tree consisting of four users.

and each edge represents the set of valid segments be-
tween each pair of users. An edge is present between
a pair of vertices in VG-graph iff the corresponding
users form a valid group (i.e., the total length of their
valid segments must be at-least min wei). Next, a
vertex is extracted from the graph, and a new graph
called conditional VG-graph is generated. The condi-
tional VG-graph contains those vertices which form a
valid group with the extracted vertex/user. Edges are
updated to contain those sets of valid segments which
are also shared by the extracted user. This process is
repeated in a depth-first manner to generate condi-
tional VG-graphs by extracting vertices one at a time
(using the recent conditional VG-graph) until a condi-
tional VG-graph that contains no edges is generated.
Whenever a vertex is generated in the conditional
VG-graph which does not have any edges incident on
it, the extracted set of users and that vertex/user
constitute a potential maximal valid group. Since the
algorithm traverses the set enumeration tree (Rymon
1992), subgroups of a maximal group will also be rec-
ognized as potential maximal valid groups. For exam-
ple, in Figure 2, if {a,b,d} is found to be a maximal
valid group, then later on {b,d} will also be recognized
as a potential maximal valid group. Therefore, Max-
imalityChecking is performed which checks whether
any superset already exists in the solution set before
adding a potential maximal group to it.

VGBK, inspired by the Bron-Kerbosch algo-
rithm (Bron & Kerbosch 1973), also works in similar
manner as VGMax but gets away with Maximality-
Checking by carefully keeping track of the users (say
S) that are ignored by VGMax in its traversal but
can form a valid group with the current extracted
set. Before adding a valid group g to the set of max-
imal valid groups, it checks whether S is empty or
not. If it is not empty, it means that there exists
users which can form a valid group with g, implying
g to be non-maximal, and vice-versa.

Best-first search/Heuristic search. Given a
search graph/tree, it can be mainly explored in three
ways: depth-first, breadth-first, or best-first. Best-
first exploration involves an estimation/value corre-
sponding to each node denoting its promise towards
leading to a goal node. Based on such heuristic esti-
mates, most promising node is selected and expanded
until a goal node is found, at which point either the
search is terminated or continued to find better/other
solutions.

There are several best-first search based anytime
algorithms (Zhou & Hansen 2005, Aine et al. 2007,
Thayer & Ruml 2010, van den Berg et al. 2011, Vadla-
mudi et al. 2012) that are potential candidates which
can be used here. However, our situation demands
that the algorithms should be able to work within
the given memory on large sized problems in which
case the following two methods appear to be more
promising (which we will adapt to solve our problem
later in the paper):

Beam search (Bisiani 1987). It is one of the sim-
plest heuristic search methods. Given a beam-width
b, it expands b most promising nodes at each level of
the search tree in breadth-first manner until a goal-
node is found. It uses 2 ∗ b nodes of memory for its
execution on a search tree.

MAWA* (Vadlamudi et al. 2011). Memory-
bounded Anytime Window A* is a memory bounded
anytime heuristic search algorithm based on Anytime
Window A* (AWA*) (Aine et al. 2007) and Memory-
bounded A* (MA*) (Chakrabarti et al. 1989). Since
A* (Hart et al. 1968) proceeds in a purely best-first
manner, it takes a long time for finding a solution.
AWA* adds a depth-component to A* using a win-
dow based restriction while exploring in a best-first
manner so that good quality solutions can be found
quickly. However, like A*, AWA* also runs out of
memory while exploring large search spaces. MAWA*
was developed by effectively combining AWA* and
MA* to give good anytime performance while working
within the given amount of memory. It was shown to
be effective on diverse search spaces, especially, when
using very low memory.

3 Proposed Methods

In this section, we present the proposed algorithms for
mining K maximal valid groups that cover maximum
number of users, which guarantee maximal coverage.
Firstly, we present a generic routine which is used
by all the proposed methods for managing the K-set,
then we present the methods based on existing mining
techniques, followed by the methods based on depth-
first search, followed by the methods based on best-
first search.

Maximizing coverage. All algorithms can be
viewed to be having two parts in-built, one that mines
maximal valid groups, and the other which takes the
mined maximal valid groups as they are produced and
updates the current best solution (the set of K groups)
so as to maximize the coverage. Here, we introduce
the latter part which takes in a maximal valid group
and updates the current solution set.

The MaximizeCoverage routine (see next page)
presents the strategy for maximizing coverage. Ini-
tially, the solution set is empty, coverage is zero, and
the counts of coverage for each user are all zero. The
method keeps on adding a new group (if it is not
already present) to the solution set until size K is
reached. Then onwards, upon getting invoked with
a new maximal group, it efficiently replaces a group
from the solution set with the new group such that the
overall coverage is maximized. Note that the overall
coverage c is only increased (by 1) when an individual
user coverage count in A raises from 0 to 1. Simi-
larly, c is only decreased (by 1) when an individual
user coverage count in A drops from 1 to 0. c remains
unaffected at all other times.

3.1 VGBK based Algorithm

Algorithm BKC. Given the above methodology for
obtaining the best possible set of K groups1, any algo-
rithm mining the maximal valid groups can be linked
to it to form a mining algorithm that finds K groups
with maximum coverage.

Algorithm 1 presents the routine which combines
VGBK and MaximizeCoverage methods to mine K
groups with maximum coverage. MineVGgraph and

1In this paper, we use the terms group, maximal group, valid

group and maximal valid group synonymously unless otherwise
being specified in the context.
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MaximizeCoverage

1: INPUT :: A maximal valid group g, current so-
lution set of maximal valid groups G, number of
groups K, number of users covered by G– c, and
an array A holding the counts of how many times
each user is covered in G.

2: if |G| < K then
3: G← G∪ g; Update the counts in A and cover-

age c if G is changed;
4: Return G, c,A;
5: end if
6: old c← c;
7: G← G∪ g; Update the counts in A and coverage

c;
8: if c− old c = 0 then
9: G← G \ g; Update the counts in A;
10: Return G, c,A;
11: end if
12: max gain← 0; max g ← g;
13: for each g′ ∈ G other than g do
14: G ← G \ g′; Update the counts in A and cov-

erage c;
15: if c− old c > max gain then
16: max gain← c− old c; max g ← g′;
17: end if
18: G ← G ∪ g′; Update the counts in A and cov-

erage c;
19: end for
20: G ← G \ max g; Update the counts in A and

coverage c;
21: Return G, c,A;

Algorithm 1 VGBK based algorithm for Coverage
(BKC)

1: INPUT :: A spatio-temporal data set 〈ui, ti, li〉,
max dis, min dur, min wei, and K.

2: vg ← MineVGgraph(); G ← φ; c ← 0;
∀iA(i)← 0; old c← −1;

3: while c 6= old c do
4: old c← c;
5: Invoke VGBK() with vg and use Maximize-

Coverage() to update G, c,A whenever a new
maximal valid group g is mined;

6: end while
7: Return G, c;

VGBK routines are borrowed from (Wang et al.
2008). VG-graph contains information on all valid
groups of size 2. VGBK algorithm involves mining
VG-graph as its first step, based on which conditional
VG-graphs are generated, used and dissolved in future
steps. We separate the VG-graph mining in order to
avoid re-generating it in each invocation of VGBK
routine. G denotes the set of K maximal valid groups
with coverage c. We choose VGBK against VGMax
as it does not require MaximalityChecking (Wang et
al. 2008) (which needs all the currently mined max-
imal valid groups to be stored in the memory which
can be very large) used in VGMax in order to produce
maximal valid groups.

Since VGBK involves a depth-first like traversal
of the generic set enumeration tree (Rymon 1992),
the above algorithm may take a long time in order
to produce a good quality set G (especially when the
groups being mined are of large size which results
in large unuseful subset space). Usually, one may
expect to complete at-least one full traversal of the
set enumeration tree in order to attain good cover-
age. Also, VG-graph mining can take quite a lot of

time for data of large number of users, without which
the group mining process does not begin, which can
hamper the anytime performance (as it causes a large
delay at the beginning).

3.2 Depth-First Search based Algorithm

Depth-First search algorithm for mining all Maximal
valid groups (DFMax)

1: INPUT :: A spatio-temporal data set 〈ui, ti, li〉,
max dis, min dur, min wei, solution set G (ini-
tially empty), and the current set of users which
form a valid group g (initially empty).

2: if g = φ then
3: for i = 1 to NUM USERS do
4: DFMax(group with single member i);
5: end for
6: Return;
7: end if
8: for i = (largest uid of g) + 1 to NUM USERS

do
9: if g ∪ i is a valid group then
10: DFMax(g ∪ i);
11: end if
12: end for
13: if no i could form a valid group with g then
14: MaximalityChecking(g,G);
15: end if

The DFMax routine presents how all the maximal
valid groups could be mined using a depth-first mech-
anism on the set enumeration tree (Rymon 1992) or
a lexicographic tree similar to that of (Agarwal et
al. 2000). MaximalityChecking routine is borrowed
from (Wang et al. 2008). Testing whether the addi-
tion of i to g will form a valid group can be done ef-
ficiently by storing the valid segments for each group
in the data-structure of that group. Then, one can
simply perform intersections among the valid seg-
ments of the group and the valid segments of 2-groups
〈i, j〉∀j ∈ g to get the valid segments of g ∪ i. If the
weight of resulting valid segments at any point drops
below min wei while performing intersections, then
g ∪ i could be right away declared as not valid. Note
that, valid segments of all groups of size 2 are handled
via dynamic programming. This is essentially similar
to VG-graph except that it is generated on demand
and stored for later use, avoiding big lapse in time
early. There are no conditional VG-graphs generated
which distinguishes DFMax from VGMax.

The algorithm as such is not as efficient as VG-
Max or VGBK. However, it requires less amount of
memory than VG-graph based algorithms because of
not having to generate conditional VG-graphs. It is
exactly for this reason it involves a large duplication
effort in generating valid segments of groups of sizes
> 2, which ultimately amounts to larger time for min-
ing all maximal valid groups. In spite of this or we
can say because of this, it could be very apt for use
in mining groups with maximum coverage. Since it
does not require to generate conditional VG-graphs,
it reports the first maximal group very quickly. We
use this property effectively to come up with our next
algorithm for coverage.

Algorithm DFRC. Algorithm 2 presents the
DFMax based method for solving the coverage prob-
lem. The idea is to traverse through those set of ver-
tices/users first in each iteration which are not cur-
rently covered, which would ensure quick coverage of
all the users. Whenever a maximal group is mined
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{}

{b} {d} {a} {c}

{b,d} {b,a} {b,c} {d,a} {d,c} {a,c}

{b,d,a} {b,d,c} {b,a,c} {d,a,c}

{b,d,a,c}
Figure 3: Working of DFRC: Set enumeration tree consisting
of four users when they are reordered assuming that a and c
are covered.

that increases the overall coverage, the current ex-
ecution of DFMax is aborted and a new execution
is begun which focuses on the new set of uncovered
users first. For example, as shown in Figure 3, as-
suming that a and c are covered currently, set enu-
meration tree is traversed such that groups involving
b and d are mined next. Here, we may need to keep
all the maximal valid groups being mined in mem-
ory which are necessary for the MaximalityChecking
routine. However, since we are only interested in K
groups here, we may want to get away with this type
of MaximalityChecking operation to save space and
time. One way is to follow similar strategy as that of
VGBK (which is inspired from the not set of Bron-
Kerbosch algorithm (Bron & Kerbosch 1973)), but
that can become costly to maintain as DFMax does
not have conditional VG-graphs for efficiently han-
dling it.

Algorithm 2 DFMax based Re-ordering algorithm
for Coverage (DFRC)

1: INPUT :: A spatio-temporal data set 〈ui, ti, li〉,
max dis, min dur, min wei, and K.

2: G← φ; c← 0; ∀iA(i)← 0; old c← −1;
3: while c 6= old c do
4: old c← c;
5: Re-order users in the increasing order of A(i);
6: Invoke DFMax() to traverse the set enumer-

ation tree in the above order and use Maxi-
mizeCoverage() to update G, c,A whenever
a new maximal valid group g is mined. Abort
DFMax when c is increased;

7: end while
8: Return G, c;

Another way is to perform MaximalityChecking in
a different manner, namely, by checking whether any
user could be added to the potential group and con-
sider all the users in doing so. Previous knowledge of
whether an user was already found to be not compati-
ble with the group (or its parent) during DFMax (line
9) can also be used to speed up MaximalityChecking.

Interestingly, here, one may skip maximality
checking methods entirely once the first K-set is ob-
tained and directly use MaximizeCoverage to check
for improvement in the coverage of K-set since the
first group to improve the coverage will always be
maximal (note that, supersets are always explored
first in the set enumeration tree). Though this in-
volves invoking MaximizeCoverage with a number of
non-maximal groups, this strategy has been proved to
be the best in our experiments and hence preferred.

Note that, a BKC like version (traversing entire
set enumeration tree) using DFMax would not be ef-
fective since it would not have the advantage of condi-
tional VG-graphs for quick traversal. Also, a DFRC

like version (restarting after first improvement) us-
ing VGBK/VGMax would not be effective since it
would have the unnecessary overhead of conditional
VG-graphs which will be thrown away after each iter-
ation as they will not be of any use when the traversal
order changes.

3.3 Heuristic Search based Algorithms

In the following, we present the five components us-
ing which, one can use any heuristic-search method
to mine a valid group covering most number of un-
covered users (based on the input):

Start state. The start state is same as the root
node of the set enumeration tree which we have also
used in DFMax. It consists of empty set of users.

Child generation. Child generation also follows
closely with the set enumeration tree and DFMax
where exactly one more (and each) lexicographically
superior user is added to the set of users in the current
state, and the child state is generated if that group is
valid.

f-value computation. This is the crucial element
which guides the search. f -value is obtained by the
addition of two values, namely, g (denoting the cost
from start node to current node) and h (denoting the
estimated cost from current node to a goal node). We
obtain g-value by counting the number of uncovered
users in the current set. The h-value is set as the
number of uncovered users among the lexicographi-
cally eligible set that can form a valid group with the
set of users in current node. Note that, this num-
ber over-estimates the ideal h-value as all those users
may not simultaneously form a valid group with the
current set of users (we only know that they form a
valid group with the current set individually). Over-
estimating heuristics (in case of a maximization prob-
lem) are also called admissible heuristics since they do
not undermine the significance of a node. The h-value
estimation can be quickened by using the informa-
tion about users which are known to be not forming
valid groups with the parent (and ancestors) of cur-
rent node (such information is already obtained dur-
ing h-calculation of its ancestors). Finally, f = g+h.
(f -value of start state is NUM USERS). Figure 4
shows the set enumeration tree along with g and h
values of different nodes when a and c are already
covered via maximal valid group {a, c} and assuming
that any user can form a valid group with any current
set of nodes other than {a, c}. Note that, only valid
children are shown in the figure so that their g and
h-values make sense.

{a,b}

(2+0)
{a,b,d}

{}

{a} {b} {c}

{a,d}{a,c} {b,c} {b,d}

{b,c,d}

{c,d}

(0+2)

(1+0)

(2+0)

(1+1)

(1+1)

(2+0) (1+0)

{d}
(0+1) (1+0)

(0+2)

(0+0)(1+1)

Figure 4: Search tree consisting of four users. f -values corre-
sponding to best-first search are given for each node as (g+h),
assuming that a and c are covered via maximal valid group
{a, c} and any user can form a valid group with any set of
users other than {a, c}.

Goal condition. A node is said to be a goal node if
it can not have any valid children (the node itself and
its ancestors (except for start node) must all be valid
children). Note that, since the traversal is on a set
enumeration tree (which has all possible sets as its leaf
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nodes), a goal node obtained via anytime best-first
search need not translate into a maximal valid group
at all times. Therefore either maximality checking
like mechanisms (like the ones presented in previous
subsection) can be used to determine the maximality
of a group or further processing may be done to pro-
duce a maximal group containing the current set of
users of goal node. The former is good for use in BKC
or DFRC as a maximal group is always mined ahead
of its subgroups, and therefore we may like to ignore
the subgroups. Whereas here, the heuristic-search al-
gorithm in a way promises that the goal node is good
in terms of coverage (though may not be maximal),
and hence we may like to use it rather than throw-
ing away. The technique for making the set of users
of goal node into a maximal valid group is similar to
that of the maximality checking used in DFRC ex-
cept that here we keep on adding all eligible users to
the set which form a valid group (instead of reporting
whether the current group is maximal or not).

Admissible pruning mechanism. This is not an es-
sential part to use heuristic search algorithms but a
very important part in order to speedup the search.
Admissible pruning refers to the deletion of certain
nodes (and therefore their subtrees) which does not
effect the results of the search, in other words, the
pruning of nodes that are guaranteed to be of no use.
Here, we can prune all the nodes whose f -value is
zero, as they will not be able to increase the coverage
(we can guarantee this since we have used an admis-
sible heuristic for computing the f -value).

Now, we explain how two efficient heuristic-search
algorithms, namely, beam search (Bisiani 1987) and
MAWA* (Vadlamudi et al. 2011) can be adapted to
mine groups with maximum coverage. The choice of
these two particular algorithms has been explained in
Section 2.

We have managed the valid segments of all groups
of size 2 via dynamic programming, similar to how
we did it in case of DFRC.

As explained in Section 2, beam search expands
beam-width number of nodes at each level until a goal
node is found. For mining a group quickly that in-
creases coverage, we may like to start with beam-
width value 1, and increase the beam-width to ex-
plore more search space only if needed. The ItB rou-
tine presents this technique which stops as soon as
coverage is improved.

Iterative Beam search (ItB)

1: INPUT :: A spatio-temporal data set 〈ui, ti, li〉,
max dis, min dur, min wei, K, MAX BEAM ,
solution set G, its coverage c, and array A with
counts of number of times each user is covered in
G.

2: old c← c;
3: for i = 1 to MAX BEAM do
4: Invoke Beam(i) with the aforementioned

heuristic-search components such that the final
maximized goal node is fed to MaximizeCov-
erage() to update G, c,A;

5: if c > old c then
6: Return;
7: end if
8: end for

Algorithm ItBC. Given a set of groups G, the
above mining algorithm finds a group which increases
its coverage. Now, we iteratively invoke the above al-
gorithm to come up with ItBC (similar to how we
iteratively used VGBK). Algorithm 3 presents this
technique. Since it may take a while to produce a

starting solution due to the heuristic calculations in-
volved, it is initialized with DFRC which can give
the first K-set quickly and also blend in easily as it
too uses dynamic programming strategy for managing
valid segments of groups of size 2. Initialization with
DFRC improved the anytime performance of best-
first search based algorithms.

Algorithm 3 ItB for Coverage (ItBC)

1: INPUT :: A spatio-temporal data set
〈ui, ti, li〉, max dis, min dur, min wei, K, and
MAX BEAM .

2: G← φ; c← 0; ∀iA(i)← 0;
3: Run DFRC() until K groups are found;
4: old c← 0;
5: while c 6= old c do
6: old c← c;
7: ItB(G, c,A,MAX BEAM);
8: end while
9: Return G, c;

Algorithm MAC. We now present the algorithm
when MAWA* is adapted for mining K groups with
maximum coverage. MAWA* can be used iteratively
to obtain the K-set similar to how Iterative Beam
Search has been used. This works fine as long as the
first solution produced by MAWA* keeps on improv-
ing the K-set. However, when the first solution does
not improve the K-set and other solutions need to be
searched to improve the K-set, MAWA* can some-
times get into an infinite loop driving towards the
same solution. This situation does not arise when it
finds more than one solution to give anytime perfor-
mance in case of traditional optimization problems
because, there the solution paths already seen will
be cutoff based on f-value as better solutions are be-
ing looked for, so the previous solutions will not be
found again. However, in our case, we do not obtain
any particular cutoff upon discovering the first solu-
tion or nth solution to prune previously explored goal
nodes.

The solution to this is as follows: one needs to in-
form the parent of a goal node that the child be no
longer considered in future once it is processed. That
is, for the rest of the search (of that iteration), that
child is always completely ignored. However, upon
deleting the parent node itself due to memory limit,
this information may get lost and the same goal node
may again be generated in future, and the algorithm
can still get into an infinite loop. Upon careful ob-
servation, it can be seen that this situation is similar
to the problem faced when the memory given is lim-
ited where same path is explored again and again. To
handle this, we use the same remedy used by MA*,
the backup operation (see (Chakrabarti et al. 1989,
Vadlamudi et al. 2011) for details). Therefore, one
also needs to perform the backup operation after pro-
cessing the goal node and informing the parent. It in-
volves updating the f -value of parent with maximum
of f -values of all its children other than the node(s)
to be ignored, and recursively backing up all its an-
cestors. This will ensure that the algorithm though
may sometimes regenerate a same goal node, will not
do so infinitely often before finding another solution.
Detailed proof for this can be obtained on the similar
lines of the termination proof of MA* (Chakrabarti
et al. 1989). We call MAWA* with the above modi-
fication as Modified-MAWA*. Algorithm 4 shows
how this can be iteratively used to construct MAC.
Like in ItBC, here too we use DFRC for initialization
for good anytime performance.
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Algorithm 4 MAWA* based algorithm for Coverage
(MAC)

1: INPUT :: A spatio-temporal data set 〈ui, ti, li〉,
max dis, min dur, min wei, K, and MAX
(memory limit in terms of number of nodes).

2: G← φ; c← 0; ∀iA(i)← 0;
3: Run DFRC() until K groups are found;
4: old c← 0;
5: while c 6= old c do
6: old c← c;
7: Invoke Modified-MAWA*(G, c,A,MAX)

with the aforementioned heuristic-search
components such that the final maximized
goal node is fed to MaximizeCoverage() to
update G, c,A. Abort Modified-MAWA* when
c is increased.

8: end while
9: Return G, c;

3.4 Properties

No maximal valid group exists which can replace a
valid group from the K-sets produced by BKC, DFRC,
and MAC at termination.

This is easy to observe as all these three algo-
rithms (being complete in nature) sweep the entire
space of maximal valid groups in their last iteration
to find any maximal valid group which can replace a
group from their current K-sets improving the cover-
age. However, note that, these K-sets may be differ-
ent, because replacing one group at a time from the
K-set can only mean that the K-set produced is a local
maxima (hence the algorithms guarantee to produce
maximal solutions only), which can be many. ItBC
on the other hand does not hold this property as it is
not complete for any fixed beam-width.

4 Experimental Results

We now present the experimental results obtained on
various spatio-temporal datasets. These include the
ones obtained from three data generators (also called
as mobility simulators or simply simulators): Random
Waypoint model (Broch et al. 1998) based simulator,
Oporto simulator (Saglio & Moreira 2001), and Net-
work based data generator (Brinkhoff 2002). It may
be noted that, IBM city simulator used in (Wang
et al. 2008) is no longer available online. Real
datasets are scarcely available due to privacy con-
cerns. We present experiments with one real dataset–
the popular Geolife dataset collected and provided by
Microsoft (MicrosoftResearchAsia 2012) for research
purposes. All the algorithms are implemented in
C++. All the experiments have been performed on a
machine with Intel Core2 Duo CPU at 2.93-GHz and
2.92-GB RAM.

4.1 With Random Waypoint Simulator Data

For generating synthetic data, we developed a sim-
ple yet effective simulator inspired from random way-
point model (Broch et al. 1998), whose details are as
follows:

The place of activity is square shaped integer grid
whose dimensions are calculated as per the population
density and number of users. For example, area of
the square grid for 1000 users at a density of 25,000
users/sq.km. is 40,000 sq.m. which results in length
of each side of the square to be 200 metres (units).
Starting location for each user is chosen randomly

on the integer grid. For each timepoint, each user
stays at his/her previous location with a probability
of 0.5. When the user moves, he/she moves a single
step (unit) along x/y-axis in one of the four directions
with equal probability (note that, they may slightly
get off the grid while moving, no restriction is put).

Factors affecting performance. We observed
that the performance of the algorithms is mainly af-
fected by three things: group size distribution of all
the maximal valid groups (especially the presence of
large sized groups), number of groups K to be mined,
and the size of the data (number of users, and num-
ber of timepoints). We show representative results on
each of the related aspects (results with all possible
combinations of parameter values are skipped due to
space constraint).

There are several parameters which can be var-
ied: number of users, number of timepoints, popu-
lation density, max dis, min dur, min wei, and K.
Group size is mainly affected by population density,
max dis, min dur, and min wei. However, we show
results with varying max dis only (affect of variation
in other parameters leading to different group sizes is
observed to be similar). We also present results with
variation in K and with different sizes of data varying
both number of users and timepoints.

Performance measures. The performance of
the algorithms can be measured on three fronts: so-
lution quality, time, and memory. The first two are
covered by studying the plots showing anytime per-
formance and we provide details on the memory used
separately.

Upper bound and Estimate for Coverage.
An upper bound for the coverage obtained by K
groups can be the sum of sizes of K largest groups
(amongst all maximal valid groups). A rough esti-
mate for the coverage can be K * Average group size.
These values can only be known for small datasets
where one can mine all groups and can then test the
quality of coverage attained. In case of large datasets,
the estimate can be K * Expected average group size.

Environment settings. Density is set to
25, 000/sq.km. (which is a typical value of a city in
today’s world2), no. of timepoints: 1000, min dur : 3
timepoints (30Min.; assuming 10Min. spacing), and
min wei : 1% (of total number of timepoints; equals
10 timepoints) in all the cases. We use a simpler
closeness metric than Euclidean distance to quicken
the algorithms, namely, two users are declared close
if both x-axis and y-axis distances between them are
not more than max dis. The ItBC algorithm is run
with 200 beam-width (corresponds to 200×2 nodes of
memory as discussed in Section 2), and the MAC al-
gorithm is run with 100 node memory (sufficient as its
expected to be greater than maximum depth (group
size)) in all our experiments.

Results on a Small dataset. No. of users: 100.
For this set, the total number of valid groups mined
are (using VGBK): 2828 with an average group size
of 6.026. The distribution of the groups is as follows:
2: 13, 3: 179, 4: 462, 5: 628, 6: 549, 7: 343, 8: 290,
9: 209, 10: 74, 11: 49, 12: 18, 13: 11, 14: 3, where
x : y denotes that there are y groups of size x. The
time taken is just 2 seconds.

Now, we find the top K groups for coverage using
the proposed algorithms on the same dataset. Table 1
shows the coverage attained by different algorithms
and the time taken for different values of K.

Note that, the time taken to produce the K-sets is
less than the total time taken for mining all maximal

2http://www.citymayors.com/statistics/
largest-cities-density-125.html
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Table 1: Coverage attained by the proposed algorithms and
the time taken in brackets (Seconds) for different values of K
on Random Waypoint simulator data.

Algo. K
20 24 25 26 30

BKC 95 (2) 99 (2) 98 (3) 100 (3) 99 (3)
DFRC 92 (0) 97 (0) 98 (0) 99 (0) 100 (0)
ItBC 93 (5) 99 (5) 98 (0) 99 (0) 100 (0)
MAC 94 (0) 99 (0) 98 (0) 99 (0) 100 (0)

valid groups in most cases. Also, different algorithms
terminate with different local maxima solutions as de-
scribed in Section 3.4. This also results in an inter-
esting scenario where the local maxima correspond-
ing at a lower value of K may be higher than that of
the one corresponding to higher value of K, which ex-
plains BKC terminating with 99 coverage with K= 30
whereas it terminated with 100 coverage with K= 26,
and similar cases.

Results on Larger datasets. The plots show
the coverage values of different algorithms from the
instant when the first set of K groups are reported
by them. All algorithms are given a fixed time of one
hour. Size of each node is around 80KB for 5,000
users (though the size of each node is proportional
to the number of users, it will not be problematic as
the number of nodes needed is very low as described
previously in this subsection).
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Figure 5: NUM USERS : 1, 000, max dis : 10m, and K : 5
on Random Waypoint simulator data.
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Figure 6: NUM USERS : 1, 000, max dis : 20m, and K : 5
on Random Waypoint simulator data.

Figures 5 & 6 display the results on a dataset con-
sisting of 1000 users when K = 5. max dis is set to
10 in one set of experiments and 20 in another, result-
ing in different group size distributions, one with low
average group size and the other with high average
group size respectively. Note that, when the group

sizes are small (Figure 5) BKC is performing better,
and when the group sizes are large (Figure 6) MAC
is performing better.
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Figure 7: NUM USERS : 1, 000, max dis : 10m, and K : 50
on Random Waypoint simulator data.
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Figure 8: NUM USERS : 1, 000, max dis : 20m, and K : 50
on Random Waypoint simulator data.

Figures 7 & 8 display the results on the same
dataset consisting of 1000 users when K = 50. Once
again, max dis is set to 10 in one set of experiments
and 20 in another, resulting in different group size dis-
tributions, on the lower side and on the higher side re-
spectively. Note that, when the group sizes are small
(Figure 7) BKC is performing better, and when the
group sizes are large (Figure 8) MAC is performing
better, similar to what is noted previously.

We now repeat similar set of experiments with
larger number of users, 5000. Figures 9 and 10 display
the results obtained for different values of max dis.
Note that, the relative performance of various algo-
rithms is similar to what has been observed with the
1000 user dataset, depending only on the group size
distribution.

We would like to mention that, when higher values
of K are used such that all the users are covered, the
algorithms terminated within very few minutes (de-
tails not given here), showing their efficacy. The hard-
ness of the problem effects their performance most
when the K value is such that a strict subset of users
can only be covered which needs to be maximized, as
one may rightly expect.

For even larger number of users, the algorithms
slow down a bit but we have not noticed memory
problems on our machine up-to 15000 users which is
remarkable. However, for best performance, its advis-
able to devise efficient parallel or distributed methods
for NUM USERS > 5, 000.
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Figure 9: NUM USERS : 5, 000, max dis : 10m, and K :
500 on Random Waypoint simulator data.
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Figure 10: NUM USERS : 5, 000, max dis : 20m, and
K : 300 on Random Waypoint simulator data.

Experience with Clustering based Initializa-
tion. We have also experimented with clustering
methods for obtaining a good quality K-set quickly
which could be used for initialization of proposed al-
gorithms. We have used a variation of K-means algo-
rithm where an user is clustered with a node (set of
users) with whom (any member of the set) its total
length of valid segments is highest. Other nearness
criteria, such as, cluster with most number of valid
edges (weight ≥ min wei), highest sum of weights,
highest sum of weights ratio (with cluster size), and
number of valid edges ratio, were also tried. After ob-
taining clusters, we ran DFMax with ordering based
on clusters, each time, nodes of a different cluster be-
ing put at the front. Highest weight (shared with any
user of the cluster) criterion turned out to be the best
one among clustering based methods. However, the
basic DFRC produced a better starting point in lesser
time. This is due to valid group definition being not
so close to clustering mechanism which does not help
produce a similar group as that of a cluster, making
clustering ineffective.

4.2 With Oporto Simulator Data

Now, we present the results obtained using the
Oporto simulator (Saglio & Moreira 2001). It tries to
model the movement of fishing ships where the ships
go in the direction of the most attractive shoals of fish
while trying to avoid storm areas. Shoals are them-
selves attracted by plankton areas. Ships are moving
points; plankton or storm areas are regions with fixed
center but moving shape; and shoals are moving re-
gions. We used the default parametric settings which
come with the simulator provided by them online to

generate datasets consisting of 1000 shoals, and mined
for K-sets with different max dis values.
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Figure 11: NUM USERS : 1, 000, max dis : 30000, and
K : 100 on Oporto Simulator Data.
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Figure 12: NUM USERS : 1, 000, max dis : 60000, and
K : 100 on Oporto Simulator Data.

Figures 11 and 12 show the results obtained on
a 1000 user dataset when max dis is 30000 and
60000 respectively (NUM TIMEPOINTS : 3, 001,
min dur : 3, min wei : 1%). Note that, these two
scenarios correspond to the group size being smaller
in the first case and the group size being larger in the
second case. And as expected, BKC performs bet-
ter in the first case and MAC performs better in the
second case.

4.3 With Brinkhoff Simulator Data

Here, we present the results obtained on the data gen-
erated using the network based mobility simulator
of objects proposed by Brinkhoff (Brinkhoff 2002).
Salient aspects of the simulator include, the maxi-
mum speed and the maximum capacity of connec-
tions, the influence of other moving objects on the
speed and the route of an object, the influence of
external events, time-scheduled traffic, etc. We have
run their data generator which is provided online with
maximum value for the number of object classes and
got the data for 105 points (objects) moving inside a
single time interval of 21 timepoints on the Oldenburg
city map.

For our experiments, min dur and min wei are
set to 3 timepoints. With max dis =3000, a total of
204 groups are mined by VGBK whose average group
size is 4.166667 in 0 seconds. Their size distribution
is given by: 1: 10, 2: 14, 3: 38, 4: 60, 5: 52, 6: 17, 7:
8, 8: 5, where x : y denotes that there are y groups of
size x. Table 2 shows the results obtained with this
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max dis value for different values of K. On such small
datasets, all the algorithms are fairly competitive.

Table 2: Coverage attained by the proposed algorithms and
the time taken in brackets (Seconds) for different values of K,
when max dis is 3000 on Brinkhoff Simulator Data.

Algo. K
25 30 35 40 45

BKC 89 (0) 95 (0) 97 (0) 101 (1) 105 (0)
DFRC 87 (0) 93 (0) 98 (0) 103 (0) 105 (0)
ItBC 88 (0) 93 (0) 98 (0) 103 (0) 105 (0)
MAC 87 (0) 93 (0) 98 (0) 103 (0) 105 (0)

With max dis =6000, a total of 469 groups
are mined by VGBK whose average group size is
10.650320 in 67 seconds. Their size distribution is
given by: 1: 10, 3: 4, 4: 9, 5: 20, 6: 20, 7: 36, 8:
31, 9: 43, 10: 39, 11: 63, 12: 59, 13: 47, 14: 20, 15:
12, 16: 11, 17: 22, 18: 19, 19: 4, where x : y denotes
that there are y groups of size x. Table 3 shows the
results obtained with this max dis value for different
values of K. Note that, the time taken by BKC is
significantly larger than the other algorithms owing
to the large sized groups present in the search space,
which is consistent with our previous observation that
the performance of BKC degrades with the presence
of large sized groups (which it actually inherits from
VGBK (Wang et al. 2008)).

Table 3: Coverage attained by the proposed algorithms and
the time taken in brackets (Seconds) for different values of K,
when max dis is 6000 on Brinkhoff Simulator Data.
Algo. K

10 15 20 25 30
BKC 86 (78) 94 (122) 98 (73) 103 (82) 105 (74)
DFRC 85 (5) 94 (0) 97 (0) 102 (0) 105 (0)
ItBC 82 (3) 93 (3) 97 (0) 102 (0) 105 (0)
MAC 85 (2) 94 (0) 97 (0) 102 (0) 105 (0)

4.4 With Geolife Trajectories Data

Finally, we present the results on a real dataset, albeit
small. The GPS trajectory dataset was collected in
(Microsoft Research Asia) Geolife project (Microsoft-
ResearchAsia 2012) of 182 users in a period of over
five years (from April 2007 to August 2012). For our
experiments, we have processed this data to identify a
period of 30 days in which most users were active. We
found that in the peak month, the number of users ac-
tive were 41. We processed the data of these 41 users
for that month at a sampling rate of 100 timepoints
per day (resulting in a total of 3000 timepoints).

Table 4: Coverage attained by the proposed algorithms and
the time taken in brackets (Seconds) for different values of K
on Geolife Trajectories data.

Algo. K
10 15 20 25

BKC 31 (0) 37 (0) 40 (0) 41 (0)
DFRC 31 (0) 39 (0) 41 (0) 41 (0)
ItBC 32 (1) 39 (0) 41 (0) 41 (0)
MAC 32 (0) 39 (0) 41 (0) 41 (0)

We set the values of min dur and min wei to 2
timepoints (corresponds to approximately 30 Min-
utes time; using larger values such as min wei = 1%
resulted in just a single valid group of size 2) and
max dis to 500 (using smaller values reduced the
number of groups drastically). VGBK reported a to-
tal of 154 maximal valid groups with average group
size of 3.097403 in 0 seconds. The size distribution is
as follows: 1: 1, 2: 44, 3: 61, 4: 37, 5: 9, 6: 2, where
x : y indicates that there are y groups of size x. Ta-
ble 4 presents the results obtained upon running the
proposed algorithms on this dataset with the above

parameters. We note that all the algorithms are fairly
competitive on this small real dataset. Also, the cov-
erage estimate given in Section 4.1 can be observed
to be working well in this case. For example, for K =
10, K * average group size = 31 and so is the coverage
attained.

Overall Observations: We observe the following
points from the above sets of experiments (and based
on related experiments carried out by us which are
not shown due to space constraint):

1. BKC gives the best performance when the ex-
pected group size is small (≤ 10). For exam-
ple, in cases where one is set out to mine groups
of close friends, using a small max dis value or
large min wei value. However, its performance
degrades severely when the expected group size
is large.

2. MAC and ItBC give the best performance when
the expected group size is large (> 10). For
example, in cases where one is set out to mine
groups of people living/working in a nearby re-
gion, using a large max dis value; or in densely
populated regions.

We also measured the time taken for mining all
maximal valid groups using VGBK (Wang et al. 2008)
which ranged from 2 Minutes to 30 Minutes on a 1000
user dataset depending on the other input parame-
ters, the time taken increasing further with the group
size, no. of users (up-to hours and days). We have got
219057maximal valid groups for the 1000 user Oporto
dataset where the algorithms successfully found top K
groups for coverage in quick time (showing almost no
mining overhead before producing the first solution
or in improving it).

5 Conclusion

In this paper, we introduced the problem of find-
ing K groups with maximum coverage in the context
of spatio-temporal data mining. We have proposed
several efficient methods to solve this hard prob-
lem, based on existing mining techniques, depth-first
search and heuristic-search techniques. The meth-
ods can work within the given amount of memory,
produce solutions in anytime manner and guarantee
terminating with maximal solutions. This paper also
demonstrates a new way of applying best-first search
methods to solve newer and more difficult problems.
Experimental results show that different methods are
effective under different conditions which are clearly
categorized for selection as per user application. The
methods can also be used when mining groups with
other group definitions involving other types of data.
The problem also opens up several interesting future
directions, including better algorithms, parallel adap-
tations, and extending to other domains such as fre-
quent itemsets.

Acknowledgment

This work was carried out as part of the Xerox
India Innovation university research projects at In-
dian Institute of Technology Kharagpur. We thank
Dr. Nathan Gnanasambandam of Xerox for his valu-
able comments and suggestions.

References

Afrati, F., Gionis, A. & Mannila, H. (2004), Approximating a
collection of frequent sets, in ‘Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery

CRPIT Volume 134 - Data Mining and Analytics 2012

218



and data mining’, KDD ’04, ACM, New York, NY, USA,
pp. 12–19.

Agarwal, R. C., Aggarwal, C. C. & Prasad, V. V. V. (2000),
Depth first generation of long patterns, in ‘Proceedings of
the sixth ACM SIGKDD international conference on Knowl-
edge discovery and data mining’, KDD ’00, ACM, New York,
NY, USA, pp. 108–118.

Agrawal, R. & Srikant, R. (1994), Fast algorithms for mining
association rules in large databases, in ‘Proceedings of the
20th International Conference on Very Large Data Bases’,
VLDB ’94, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, pp. 487–499.

Aine, S., Chakrabarti, P. P. & Kumar, R. (2007), AWA* - A
window constrained anytime heuristic search algorithm, in
‘IJCAI’, pp. 2250–2255.

Bisiani, R. (1987), ‘Beam search’, Encyclopedia of Artificial
Intelligence pp. 56–58.

Brinkhoff, T. (2002), ‘A framework for generating network-
based moving objects’, Geoinformatica 6(2), 153–180.

Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C. & Jetcheva,
J. (1998), A performance comparison of multi-hop wireless
ad hoc network routing protocols, in ‘Proceedings of the
4th annual ACM/IEEE international conference on Mobile
computing and networking’, MobiCom ’98, ACM, New York,
NY, USA, pp. 85–97.

Bron, C. & Kerbosch, J. (1973), ‘Algorithm 457: Finding all
cliques of an undirected graph’, Commun. ACM 16, 575–
577.

Calders, T. & Goethals, B. (2002), Mining all non-derivable
frequent itemsets, in ‘Proceedings of the 6th European Con-
ference on Principles of Data Mining and Knowledge Discov-
ery’, PKDD ’02, Springer-Verlag, London, UK, UK, pp. 74–
85.

Chakrabarti, P. P., Ghose, S., Acharya, A. & Sarkar, S. C. D.
(1989), ‘Heuristic search in restricted memory.’, Artificial
Intelligence 41(2), 197–221.

Davis, R., Hagey, W. & Horning, M. (2004), ‘Monitoring the
behavior and multi-dimensional movements of weddell seals
using an animal-borne video and data recorder’, Memoirs of
the National Institute of Polar Research (Japan) Special

Issue 58, 148–154.

Dean, T. & Boddy, M. S. (1988), An analysis of time-dependent
planning, in ‘AAAI’, pp. 49–54.

Forsyth, D. R. (2006), Group dynamics, 4 edn, Thom-
son/Wadsworth, Belmont, CA.

Gouda, K. & Zaki, M. J. (2005), ‘Genmax: An efficient al-
gorithm for mining maximal frequent itemsets’, Data Min.
Knowl. Discov. 11, 223–242.

Han, J., Wang, J., Lu, Y. & Tzvetkov, P. (2002), Mining top-k
frequent closed patterns without minimum support, in ‘Data
Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE Interna-
tional Conference on’, pp. 211–218.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968), ‘A formal ba-
sis for the heuristic determination of minimum cost paths’,
IEEE Transactions on Systems Science and Cybernetics
4(2), 100–107.

Hochbaum, D. S., ed. (1997), Approximation algorithms for
NP-hard problems, PWS Publishing Co., Boston, MA, USA.

Kalnis, P., Mamoulis, N. & Bakiras, S. (2005), On discover-
ing moving clusters in spatio-temporal data, in ‘In SSTD’,
Springer, pp. 364–381.

Lauw, H. W., Lim, E.-P., Pang, H. & Tan, T.-T. (2005), ‘So-
cial network discovery by mining spatio-temporal events’,
Comput. Math. Organ. Theory 11, 97–118.

Lee, A. J. T., Chen, Y.-A. & Ip, W.-C. (2009), ‘Mining frequent
trajectory patterns in spatial-temporal databases’, Inf. Sci.
179, 2218–2231.

MicrosoftResearchAsia (2012), ‘Geolife gps trajectories’,
http://research.microsoft.com/en-us/projects/geolife/.

Ng, R. T. & Han, J. (1994), Efficient and effective clustering
methods for spatial data mining, in ‘Proceedings of the 20th
International Conference on Very Large Data Bases’, VLDB
’94, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, pp. 144–155.

Pei, J., Dong, G., Zou, W. & Han, J. (2002), On computing
condensed frequent pattern bases, in ‘Data Mining, 2002.
ICDM 2003. Proceedings. 2002 IEEE International Confer-
ence on’, pp. 378–385.

Pei, J., Han, J. & Mao, R. (2000), Closet: An efficient algo-
rithm for mining frequent closed itemsets, in ‘ACM SIG-
MOD Workshop on Research Issues in Data Mining and
Knowledge Discovery’, pp. 21–30.

Rymon, R. (1992), Search through Systematic Set Enumera-
tion, Morgan Kaufmann, pp. 539–550.

Saglio, J.-M. &Moreira, J. (2001), ‘Oporto: A realistic scenario
generator for moving objects’, Geoinformatica 5(1), 71–93.

Schafer, J. B., Konstan, J. A. & Riedl, J. (2001), ‘E-commerce
recommendation applications’, Data Min. Knowl. Discov.
5, 115–153.

Srikant, R., Vu, Q. & Agrawal, R. (1997), Mining association
rules with item constraints, in ‘KDD’, pp. 67–73.

Thayer, J. T. & Ruml, W. (2010), Anytime heuristic search:
Frameworks and algorithms, in ‘SOCS’.

Tseng, V. S., Wu, C.-W., Shie, B.-E. & Yu, P. S. (2010), Up-
growth: an efficient algorithm for high utility itemset min-
ing, in ‘Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining’, KDD
’10, ACM, New York, NY, USA, pp. 253–262.

Vadlamudi, S. G., Aine, S. & Chakrabarti, P. P. (2011),
‘MAWA*—A memory-bounded anytime heuristic-search al-
gorithm’, IEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics 41(3), 725–735.

Vadlamudi, S. G., Gaurav, P., Aine, S. & Chakrabarti, P. P.
(2012), Anytime column search, in ‘Australasian Conference
on Artificial Intelligence’, pp. 254–265.

van den Berg, J., Shah, R., Huang, A. & Goldberg, K. Y.
(2011), Anytime nonparametric A*, in ‘AAAI’.

Verhein, F. & Chawla, S. (2006), Mining spatio-temporal as-
sociation rules, sources, sinks, stationary regions and thor-
oughfares in object mobility databases, in ‘of Lecture Notes
in Computer Science’, Springer, pp. 187–201.

Wang, K., He, Y. & Han, J. (2000), Mining frequent itemsets
using support constraints, in ‘Proceedings of the 26th In-
ternational Conference on Very Large Data Bases’, VLDB
’00, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, pp. 43–52.

Wang, Y., Lim, E.-P. & Hwang, S.-Y. (2008), ‘Efficient algo-
rithms for mining maximal valid groups’, The VLDB Jour-
nal 17, 515–535.

Wang, Y., peng Lim, E. & yih Hwang, S. (2003), On mining
group patterns of mobile users, in ‘Proceedings of the 14th
International Conference on Database and Expert Systems
Applications—-DEXA 2003’, pp. 287–296.

Xin, D., Cheng, H., Yan, X. & Han, J. (2006), Extracting
redundancy-aware top-k patterns, in ‘Proceedings of the
12th ACM SIGKDD international conference on Knowledge
discovery and data mining’, KDD ’06, ACM, New York, NY,
USA, pp. 444–453.

Xu, J. J. & Chen, H. (2005), ‘Crimenet explorer: a framework
for criminal network knowledge discovery’, ACM Trans. Inf.
Syst. 23, 201–226.

Zhou, R. & Hansen, E. A. (2005), Beam-stack search: Inte-
grating backtracking with beam search., in ‘Proceedings of
the 15th International Conference on Automated Planning
and Scheduling (ICAPS-05)’, Monterey, CA, pp. 90–98.

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

219



CRPIT Volume 134 - Data Mining and Analytics 2012

220




