
Dynamic index and LZ factorization
in compressed space

Takaaki Nishimoto1, Tomohiro I2, Shunsuke Inenaga1,
Hideo Bannai1, and Masayuki Takeda1

1. Kyushu University, Japan
2. Kyushu Institute of Technology, Japan

1. We proposed a new dynamic index working in
compressed space.

2. We proposed a new Lempel-Ziv 77(LZ77)
factorization algorithm working in compressed
space.

Our contributions

In this presentation, we focus on the first result.

Dynamic text indexing problem

Find(TGT) = 1, 3, 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Text T =TGTGTTATTGGTTTGTCG

Consider a dynamic text T
Find(P) Return all occurrences of a given pattern P in T
Insert(Y, i) Insert a given string Y into T at a given position i
Delete(i, k) Delete a given substring T[i..i+k-1] from T

Dynamic text indexing problem
Consider a dynamic text T
Find(P) Return all occurrences of a given pattern P in T
Insert(Y, i) Insert a given string Y into T at a given position i
Delete(i, k) Delete a given substring T[i..i+k-1] from T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Text T =TAGAGTGT T ATTGGTTTGTCG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617

Text T =TAGAGTTTGGTTTGTCG

Delete(3, 6)

Insert(GTTA, 7)

Dynamic text indexing problem

Find(TGAT) = 9, 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Text T =AGAGTTATTGATTTGATG

Consider a dynamic text T
Find(P) Return all occurrences of a given pattern P in T
Insert(Y, i) Insert a given string Y into T at a given position i
Delete(i, k) Delete a given substring T[i..i+k-1] from T

1 2 3 4 5 6 7 8 9

Text T =TAGAGTTTG

Edit

Ø Pattern matching on strings is a basic operation and is used
by various applications.

ØNon-compressed dynamic indexes require at least
N log σ bits of space, where N is the length of a given text
and σ is the alphabet size. This is inefficient when the text
is large.

ØMany non-compressed dynamic indexes have been
proposed but only a few compressed dynamic indexes exist.

ØHence we propose a new compressed dynamic index.

Background

Previous results

Salson et al, '10 (Dynamic FM-Index)
Experimental result. Although their approach works well in practice,
updates require O(N log N) time in the worst case.

Hon et al, '04
Space O((NH0+N)/ε) bits
Update O((|Y| + √N) log2+ε N) time
Find(P) O(|P| log2 N (logεN + log σ) + occ log1+ε N) time

• N : length of a text T
• |Y| : length of an inserted string or

deleted substring
• σ : alphabet size
• 0 < ε ≤ 1 : parameter

• occ : the number of occurrences of a
given pattern P in T

• H0 : the zeroth order empirical entropy
of T, H0≤ log σ

This work
Space O(min{z log N log* N, N} log N) bits
Update amortized O((|Y| + log N log* N) log w log N log* N) time
Find(P) O(c|P|+ log N log w log |P| (log* N)2 + occ log N) time

Our result

• N : length of a text T
• c : time for predecessor queries
• z : size of LZ77 factorization of T,

z = O(N/logσN) [e.g. Kärkkäinen]
• σ : alphabet size

• |Y| : length of an inserted string or
deleted substring

• occ : the number of occurrences of a
given pattern P in T

• w = O(min{z log N log* N, N})

ØOur amortized update time is better than Hon et al.’s.
ØOur find queries are faster than Hon et al.’s when

the |P| term is dominating in find query time.

1. Our contributions
2. Preliminaries
- Locally Consistent Parsing
- Signature Encoding
- Properties of Signature Encoding

3. Our dynamic index

Table of contents

Locally consistent parsing is an important function in
our dynamic index.

s 1 2 3 5 2 3 4 2 5 1 2 3 5 2 3 4 2 5
⇓ f

d 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0

Locally Consistent Parsing [Mehlhorn+, '97, Alstrup+, '98]

For any m, there exists a function f : [1..m]k → {0,1}k

that satisfies the following properties :
1. the output binary string d = d1..dk can be computed in O(|d|) time;
2. no 1’s appear consecutively in d;
3. at most three 0’s appear consecutively in d;
4. di is locally determined by si – ΔL

, .. , si + ΔR
(ΔL = log*m + 6, ΔR = 4);

provided that the input sequence s = s1..sk does not contain a run.

Input

Output

s 1 2 3 5 2 3 4 2 5 1 2 3 5 2 3 4 2 5
⇓ f

d 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0

Locally Consistent Parsing [Mehlhorn+, '97, Alstrup+, '98]

For any m, there exists a function f : [1..m]k → {0,1}k

that satisfies the following properties :
1. the output binary string d = d1..dk can be computed in O(|d|) time;
2. no 1’s appear consecutively in d;
3. at most three 0’s appear consecutively in d;
4. di is locally determined by si – ΔL

, .. , si + ΔR
(ΔL = log*m + 6, ΔR = 4);

provided that the input sequence s = s1..sk does not contain a run.

Input

Output

s 1 2 3 5 2 3 4 2 5 1 2 3 5 2 3 4 2 5
⇓ f

d 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0

Locally Consistent Parsing [Mehlhorn+, '97, Alstrup+, '98]

For any m, there exists a function f : [1..m]k → {0,1}k

that satisfies the following properties :
1. the output binary string d = d1..dk can be computed in O(|d|) time;
2. no 1’s appear consecutively in d;
3. at most three 0’s appear consecutively in d;
4. di is locally determined by si – ΔL

, .. , si + ΔR
(ΔL = log*m + 6, ΔR = 4);

provided that the input sequence s = s1..sk does not contain a run.

Input

Output

s 1 2 3 5 2 3 4 2 5 1 2 3 5 2 3 4 2 5

d 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0

ΔR ΔL

Locally Consistent Parsing [Mehlhorn+, '97, Alstrup+, '98]

For any m, there exists a function f : [1..m]k → {0,1}k

that satisfies the following properties :
1. the output binary string d = d1..dk can be computed in O(|d|) time;
2. no 1’s appear consecutively in d;
3. at most three 0’s appear consecutively in d;
4. di is locally determined by si – ΔL

, .. , si + ΔR
(ΔL = log*m + 6, ΔR = 4);

provided that the input sequence s = s1..sk does not contain a run.

s 1 2 3 5 5 5 4 2 5 1 2 3 5 2 3 4 2 5

s’ 1 2 3 5 2 3 4 2 5 1 2 3 5 2 3 4 2 5
✓

Locally Consistent Parsing [Mehlhorn+, '97, Alstrup+, '98]

For any m, there exists a function f : [1..m]k → {0,1}k

that satisfies the following properties :
1. the output binary string d = d1..dk can be computed in O(|d|) time;
2. no 1’s appear consecutively in d;
3. at most three 0’s appear consecutively in d;
4. di is locally determined by si – ΔL

, .. , si + ΔR
(ΔL = log*m + 6, ΔR = 4);

provided that the input sequence s = s1..sk does not contain a run.

A run is a string of length at least 2
consisting of the same character

Table of contents

Ø A signature encoding is a compressed
representation of a given text.

Ø Our dynamic index has the input text using
signature encodings.

1. Our contributions
2. Preliminary
- Locally Consistent Parsing
- Signature Encoding
- Properties of Signature Encoding

3. Our dynamic index

Signature Encoding (SE) [Mehlhorn et al, ‘97]

1 → C
2 → A
3 → B
4 → 22

5 → 1, 2
6 → 3, 1
7 → 4, 1
8 → 3, 2, 3
9 → 5, 6, 7, 8

Ø SE is essentially a context free grammar, that generates a
single text T.

Ø In SE, a signature represents any of the following;
(1) a character, (2) 2-4 signatures, or (3) a run of a signature.

Ø The SE of T is determined by locally consistent parsing.

C A B C A A C B A B

1 2 3 1 4
2

1 3 2 3
5 6 7 8

9

2
Text T =Signature list

The derivation tree of T
w.r.t. Signature Encoding

Signature Encoding construction(1/5)

T0= 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 1 1 1 1 2 3 2 3 2 3 2 3
Text T=C A B C A B A B A B A B A B A B C C C C A B A B A B A B

1 → C
2 → A
3 → B

Assign a new signature to each distinct character of T.
While |Ti| > 1
1. Assign a new signature to each distinct run.
2. Compute blocks by locally consistent parsing.
3. Assign a new signature to each distinct block.

Signature Encoding construction(2/5)

T0= 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 1 1 1 1 2 3 2 3 2 3 2 3
Text T=C A B C A B A B A B A B A B A B C C C C A B A B A B A B

4

1 → C
2 → A
3 → B
4 → 14

Assign a new signature to each distinct character of T.
While |Ti| > 1
1. Assign a new signature to each distinct run.
2. Compute blocks by locally consistent parsing.
3. Assign a new signature to each distinct block.

Signature Encoding construction(3/5)

1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
T0= 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 4 2 3 2 3 2 3 2 3

Text T=C A B C A B A B A B A B A B A B C C C C A B A B A B A B

locally consistent parsing

1 → C
2 → A
3 → B
4 → 14

Assign a new signature to each distinct character of T.
While |Ti| > 1
1. Assign a new signature to each distinct run.
2. Compute blocks by locally consistent parsing.
3. Assign a new signature to each distinct block.

Signature Encoding construction(4/5)

T1= 5 6 8 10 7 7 7 11 9 10 7
T0= 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 4 2 3 2 3 2 3 2 3

Text T=C A B C A B A B A B A B A B A B C C C C A B A B A B A B

1 → C
2 → A
3 → B
4 → 14

5 → 1, 2
6 → 3, 1

7 → 2, 3
8 → 2, 3, 2
9 → 3, 2
10 → 3, 2, 3
11 → 4, 2

Assign a new signature to each distinct character of T.
While |Ti| > 1
1. Assign a new signatures to each distinct run.
2. Compute blocks by locally consistent parsing.
3. Assign a new signatures to each distinct block.

T3= 16
T2= 13 14 15
T1= 5 6 8 10 12 11 9 10 7
T0= 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 4 2 3 2 3 2 3 2 3

Text T=C A B C A B A B A B A B A B A B C C C C A B A B A B A B

Signature Encoding construction(5/5)
Assign a new signature to each distinct character of T.
While |Ti| > 1
1. Assign a new signatures to each distinct run.
2. Compute blocks by locally consistent parsing.
3. Assign a new signatures to each distinct block.

1 → C
...
12 → 73

13 → 5, 6, 8, 10

14 → 12, 11
15 → 9, 10, 7
16 → 13, 14, 15

C A B C A B A B A B B A B A B A B

1 2 3 1 2 3 2 3 2 3 3 2 3 2 3 2 3

5 6 8 10 9 10 7

13 15

16

1 → C
2 → A
3 → B
4 → 14

5 → 1, 2
6 → 3, 1
7 → 2, 3
8 → 2, 3, 2
9 → 3, 2
10 → 3, 2, 3
11 → 4, 2
12→ 73

13→ 5, 6, 8, 10
14 → 12, 11
15 → 9, 10, 7
16 → 13, 14, 15

The derivation tree of T

Signature list

The size of derivation tree of T is O(N), however, we can
represent the derivation tree by the signature list of size w.

N

w

Text T =

T0=

T1=

T2=

T3=

Table of contents
1. Our contributions
2. Preliminaries
- Locally Consistent Parsing
- Signature Encoding
- Properties of Signature Encoding

3. Our dynamic index

Common sequence [Sahinalp and Vishkin, '95]

25
22 23 24

16 17 18 19 20 18 21
6 7 8 15 10 15 10 11 12 13 15 10 15 10 13

1 1 1 1 2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3 2 3 4 1 1 1 1 2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3 2 3 4 2
ZZZZABCBCABCBCBABCBCBABCZZZZABCBCABCBCBABCBCBABCA

P

common sequence of P
(O(log |P| log* N) signatures)

P

Every occurrence of substring P in a text T of length
N is represented by a unique sequence of

O(log |P| log* N) signatures

Proof of existence of common sequence(1/6)

2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3 2 3 4 3 4 3 4 2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3
ZZZZABCBCABCBCBABCBCBABCBCBCABCBCABCBCBABCBCBZZZZ

P

Is determined only by P

Every occurrence of substring P in a text T of length
N is represented by a unique sequence of

O(log |P| log* N) signatures

Proof of existence of common sequence(2/6)

0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0
2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3 2 3 4 3 4 3 4 2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3

ZZZZABCBCABCBCBABCBCBABCBCBCABCBCABCBCBABCBCBZZZZ

P

ΔR ΔL

Is determined only by P

locally consistent parsing

Every occurrence of substring P in a text T of length
N is represented by a unique sequence of

O(log |P| log* N) signatures

Proof of existence of common sequence(3/6)

P

5 6 7 6 8 9 10 11 10 5 6
2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3 2 3 4 3 4 3 4 2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3

ZZZZABCBCABCBCBABCBCBABCBCBCABCBCABCBCBABCBCBZZZZ

at most ΔL + 3
Is determined only by P

at most ΔR + 4

Every occurrence of substring P in a text T of length
N is represented by a unique sequence of

O(log |P| log* N) signatures

Proof of existence of common sequence(4/6)

P

1 0 0 1
5 6 7 6 8 9 10 11 10 5 6

2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3 2 3 4 3 4 3 4 2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3
ZZZZABCBCABCBCBABCBCBABCBCBCABCBCABCBCBABCBCBZZZZ

ΔR ΔL

Is determined only by P

locally consistent parsing

Every occurrence of substring P in a text T of length
N is represented by a unique sequence of

O(log |P| log* N) signatures

Proof of existence of common sequence(5/6)

P

12
5 6 7 6 8 9 10 11 10 5 6

2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3 2 3 4 3 4 3 4 2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3
ZZZZABCBCABCBCBABCBCBABCBCBCABCBCABCBCBABCBCBZZZZ

common sequence of P
at most ΔL + 3 at most ΔR + 4

Every occurrence of substring P in a text T of length
N is represented by a unique sequence of

O(log |P| log* N) signatures

Proof of existence of common sequence(6/6)

P

12
5 6 7 6 8 9 10 11 10 5 6

2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3 2 3 4 3 4 3 4 2 3 4 3 4 2 3 4 3 4 3 2 3 4 3 4 3
ABCBCABCBCBABCBCBABCBCBCABCBCABCBCBABCBCB

at most 8 at most log* N + 9O(log |P|)

O(log |P| log* N) signatures

ΔL = log* N + 6, ΔR = 4

Every occurrence of substring P in a text T of length
N is represented by a unique sequence of

O(log |P| log* N) signatures

Properties of Signature Encoding
1. [LCE Query]The signature encoding of a text T supports

lexicographical comparison of two suffixes of T
in O(log N log* N) time. [Nishimoto et al, 16]

2. The size w of the signature encoding of T is
O(min{z log N log* N, N}) space. [Sahinalp and Vishkin, '95]

3. The signature encoding of T supports update operations in
O(c(|Y| + log N log* N)) time. [Alstrup et al, '98]

• N : length of a given text
• c : time for predecessor queries
• z : size of LZ77 factorization of T

• ℓ : LCE length, ℓ ≤ N
• |Y| : length of an inserted string or

deleted substring

We archive a dynamic index working in compressed
space using these properties.

Table of contents
1. Our contributions
2. Preliminaries
3. Our dynamic index
- Basic idea of pattern search[e.g., Claude+ ‘08]
- Faster pattern search
- Data structures & Update

• Our dynamic index finds patterns using signature
encoding.

• We follow an approach from literature, e.g., Claude
et al.’s.

To simplify the explanation of our approach, we assume
that every internal node has two children in the derivation
tree of signature encoding of T.

Preparation of our explanation

a b a b a b a b a a b b a

1 2 1 2 1 2 1 2 1 1 2 2 1
3

4

6 7

3

4

3

8

5

9

1 0

5

a b a b a b a b a a b b a

1 2 1 2 1 2 1 2 1 1 2 2 1
3

4

6 7

3

4

3

8

5

9

1 0

5

Oh, it’s raining.

a b a b a b a b a a b b a

1 2 1 2 1 2 1 2 1 1 2 2 1
3

4

6 7

3

4

3

8

5

9

1 0

5

We need umbrellas. A signature has its umbrella.

U U

Basic idea of pattern search[e.g., Claude+ ‘08]

a b a b a b a b a a b b a

1 2 1 2 1 2 1 2 1 1 2 2 1
3

4

6 7

3

4

3

8

5

9

1 0

5

left/right left/right

A signature derives left and right strings.

U U

Basic idea of pattern search[e.g., Claude+ ‘08]

a b a b a b a b a a b b a

1 2 1 2 1 2 1 2 1 1 2 2 1
3

4

6 7

3

4

3

8

5

9

1 0

5

A substring of length at least 2 is divided by left and
right strings of a signature.

Basic idea of pattern search[e.g., Claude+ ‘08]

a b a b a b a b a a b b a

1 2 1 2 1 2 1 2 1 1 2 2 1
3

4

6 7

3

4

3

8

5

9

1 0

5

left/right left/right

aba
ababa

ababababa
b

ab 4

6

5 7
8

9
10

Lexicographic order

Right

Left

We can arrange signatures on 2-Dimensional plane by
left and strings.

Basic idea of pattern search[e.g., Claude+ ‘08]

a b a b a b a b a a b b a

1 2 1 2 1 2 1 2 1 1 2 2 1
3

4

6 7

3

4

3

8

5

9

1 0

5

aba
ababa

ababababa
b

ab 4

6

5

Lexicographic order

7
8

9
10

a|ba

ab|a

We can compute all signatures dividing a substring P
by |P| - 1 range queries on the 2D plane

X

Y
Dynamic 2D Range Reporting(2DRR)[Blelloch, '11]

n : the number of points
k : the number of output points

Space O(n log n) bits
Insert/Delete amortized O(log n) time
Range report 𝑂(log 𝑛 + 𝑘)*+ ,

)*+)*+ ,)time

query rectangle

Our dynamic index uses this data structure.

Table of contents
1. Our contributions
2. Preliminaries
3. Our dynamic index
- Basic idea of pattern search
- Faster pattern search[main contribution]
- Data structures & Update

We can quickly find patterns in a given text using
signature encoding.

Faster pattern search

1 2 3 4 5 6 7 8 9

Pattern P

(|P| - 1) × range queries

O(log |P| log* N) × range queries

Reduce

Faster pattern searching idea(1/6)

Pattern P

P

Common sequence of P

P P

Signature tree of T

The common sequence of P occurs on every
occurrence of P in T.

Faster pattern searching idea(2/6)

Pattern P

Common sequence of P
(O(log |P| log* N) signatures)

P P

Signature tree of T

P

The common sequence of P consists of
O(log |P| log* N) signatures.

Faster pattern searching idea(3/6)

eℓ

ei → eℓ er

er

Left string Right string
P

✓

ei

Each of O(log |P| log* N) signatures occurs in the left
or right string of a signature.

Faster pattern searching idea(4/6)

Left string Right string
P

✓

ei → eℓ er

er

ei

eℓ

Each of O(log |P| log* N) signatures occurs in the left
or right string of a signature.

Faster pattern searching idea(5/6)

Left string Right string
P

ei → eℓ er

er

ei

eℓ

Each of O(log |P| log* N) signatures occurs in the left
or right string of a signature.

Faster pattern searching idea(6/6)

Pattern P
X

YCommon sequence of P
(O(log |P| log* N) signatures)

Hence O(log |P| log* N) × range queries

Table of contents
1. Our contributions
2. Preliminaries
3. Our dynamic index
- Basic idea of pattern search
- Faster pattern search
- Data structures & Update

Data structures of our dynamic index

w

Signature list
O(w log N) bits

1→ a
2→ b
3→ 1, 2
4→ 3, 1
5 → 2, 1
6→ 4, 5
7→ 2, 4
8→ 3, 5
9 → 6, 7
10 → 9, 8

aba
ababa

ababababa
b

ab 4

6

5 7
8

9
10

2DRR data structure
O(w log w) bits

Sorted
left/right strings
O(wN log σ) bits

Total O(wN log σ) bits?

Data structures of our dynamic index

w

1→ a
2→ b
3→ 1, 2
4→ 3, 1
5 → 2, 1
6→ 4, 5
7→ 2, 4
8→ 3, 5
9 → 6, 7
10 → 9, 8 1 8 754

4
6
9
2
3 4

6

5 7
8

9
10

Sorted
left/right strings

O(wN log σ) → O(w log w) bits

Total O(w log N) bits

Signature list
O(w log N) bits

2DRR data structure
O(w log w) bits

Update(1/3)

w

Signature list

1→ a
2→ b
3→ 1, 2
4→ 3, 1
5 → 2, 1
6→ 4, 5
7→ 2, 4
8→ 3, 5
9 → 6, 7
10 → 9, 8 1 8 754

4
6
9
2
3 4

6

5 7
8

9
10

2DRR data structure

Sorted left/right strings

remove

insert

We can efficiently update the signature encoding of T
by using Alstrup et al.’s technique.

Update(2/3)

w

Signature list

1→ a
2→ b
3→ 1, 2
4→ 3, 1
5 → 2, 1
6→ 4, 5
7→ 2, 4
8→ 3, 5
9 → 6, 7
10 → 9, 8 1 8 754

4
6
9
2
3 4

6

5 7
8

9
10

2DRR data structure

Sorted left/right strings

remove

insert

We can efficiently update the 2DRR data structure
proposed by Blleloch.

Update(3/3)

w

Signature list

1→ a
2→ b
3→ 1, 2
4→ 3, 1
5 → 2, 1
6→ 4, 5
7→ 2, 4
8→ 3, 5
9 → 6, 7
10 → 9, 8 1 8 754

4
6
9
2
3 4

6

5 7
8

9
10

2DRR data structure

Sorted left/right strings

remove

insert

We can efficiently update the sorted left/right strings
by using binary search and LCE queries.

Conclusion

Thank you!

This work
Space O(w log N) = O(min{z log N log* N, N} log N) bits
Update amortized O((|Y| + log N log* N) log w log N log* N) time
Find(P) O(c|P|+ log N log w log |P| (log* N)2 + occ log N) time

• N : length of a text T
• c : time for predecessor queries
• z : size of LZ77 factorization of T,

z = O(N/logσN) [e.g. Kärkkäinen]
• σ : alphabet size

• |Y| : length of an inserted string or
deleted substring

• occ : the number of occurrences of a
given pattern P in T

• w = O(min{z log N log* N, N})

Conclusion

This work
Space O(w log N) = O(min{z log N log* N, N} log N) bits
Update amortized O((|Y| + log N log* N) log w log N log* N) time
Find(P) O(c|P|+ log N log w log |P| (log* N)2 + occ log N) time

• N : length of a text T
• c : time for predecessor queries
• z : size of LZ77 factorization of T,

z = O(N/logσN) [e.g. Kärkkäinen]
• σ : alphabet size
• |Y| : length of an inserted string or

deleted substring
• occ : the number of occurrences of a

given pattern P in T
• w = O(min{z log N log* N, N})
• H0 : the zeroth order empirical entropy

of T, H0≤ log σ

Hon et al, '04
Space O((NH0+N)/ε) bits
Update O((|Y| + √N) log2+ε N) time
Find(P) O(|P| log2 N (logεN + log σ) + occ log1+ε N) time

