Counting Lyndon Subsequences

<u>Ryo Hirakawa</u>,Yuto Nakashima, Shunsuke Inenaga, and Masayuki Takeda Kyushu University, Japan

Background

- Lyndon factors enjoy a rich class of algorithmic and stringology applications.
 - counting and finding the maximal repetitions in a string [Bannai et al., 2017]
- One of the mathematical interests for Lyndon words is counting the number of Lyndon words in a string.
 - Glen et al. (2017) studied # of Lyndon factors in strings.
 - We study # of Lyndon subsequences in strings.

Lyndon word [Lyndon, 1954]

Definition

A word w is a **Lyndon word** if w is lexicographically smaller than all of its non-empty proper suffixes.

 \triangleright w = aabab is a Lyndon word.

$$w = aabab$$
$$w \prec abab$$
$$w \prec bab$$
$$w \prec ab$$
$$w \prec bb$$

w's non-empty proper suffixes

Lyndon factor/subsequence

Definition

- A factor f of string w is called a Lyndon factor if f is a Lyndon word.
- A subsequence s of string w is called a Lyndon subsequence if s is a Lyndon word.
- ▶ f = aab is a Lyndon factor of w = baabab.
- \triangleright s = aabb is a Lyndon subsequence of w = b**aab**ab.

Maximum number of distinct Lyndon factors

- ▷ Glen et al. counted the maximum number of distinct Lyndon factors in ∑ⁿ.
- w = bcabaababa contains 7 distinct Lyndon factors.

w = b c a b a a b a b a
1: b c a b a a b a b a
2: b c a b a a b a b a
3: b c a b a a b a b a
4: b c a b a a b a b a
5: b c a b a a b a b a
6: b c a b a a b a b a

Maximum number of distinct Lyndon factors

$$\begin{array}{l} \underline{\text{Theorem 1}} \text{ [Glen et al., 2017]} \\ MDF(\sigma,n) \coloneqq \max_{w \in \Sigma^n} (\text{ the number of distinct Lyndon factors in } w) \\ &= \binom{n+1}{2} - (\sigma-1) \binom{q+1}{2} - r \binom{q+2}{2} + \sigma \\ \\ \text{One of the strings that gives this value is } w = a_1^{q+1} \cdots a_r^{q+1} a_{r+1}^q \cdots a_{\sigma}^q \\ & \text{where } a_1 \prec a_2 \prec \cdots \prec a_{\sigma}, n = q\sigma + r \ (0 \leq r < \sigma). \end{array}$$

For example if ∑ = {a,b,c}, n = 10 then, MDF(3,10) = 36.
 One of such strings is w = aaaabbbccc.

Total number of Lyndon factor occ.

▹ Glen et al. counted the total number of Lyndon factors appearing in all strings in ∑ⁿ.

▶
$$\Sigma = \{a,b\}, n = 3$$

$\{a,b\}^3$	ааа	aab	aba	abb	baa	bab	bba	bbb	
Lyndon	aaa	aab	aba	abb	baa	bab	bba	bbb	
	aaa	aab	aba	abb	baa	bab	bba	bbb	
	aaa	aab	aba	abb	baa	bab	bba	bbb	
Taciors		aab	aba	abb		bab			
		aab		abb					
number	3	5	4	5	3	4	3	3	30

This implies that the <u>expected number</u> of Lyndon factors in a string in $\{a,b\}^3$ is 30/8.

Total number of Lyndon factor occ.

Theorem 2 [Glen et al., 2017] $TF(\sigma, n) \coloneqq \sum_{w \in \Sigma^n} ($ the total number of Lyndon factor occ. in w) $=\sum_{m=1}^{n} (L(\sigma, m) (n - m + 1) \sigma^{n-m})$ <u>Lemma 1</u> [Lothaire, 1997] Let $L(\sigma, m)$ be the number of Lyndon words in Σ^m . Then, $L(\sigma,m) = \frac{1}{m} \sum_{d \mid m} \mu\left(\frac{m}{d}\right) \sigma^d$ μ is the Möbius function.

Total number of Lyndon factor occ.

Theorem 2 [Glen et al., 2017]

$$TF(\sigma, n) \coloneqq \sum_{w \in \Sigma^n} (\text{ the total number of Lyndon factor occ. in } w)$$

 $= \sum_{m=1}^n (L(\sigma, m) (n - m + 1) \sigma^{n-m})$

▶ The expected total number of Lyndon factors $ETF(\sigma, n)$ is given as follows.

$$ETF(\sigma, n) = \frac{TF(\sigma, n)}{\sigma^n}$$

Total number of distinct Lyndon factors

- ▷ Glen et al. counted the total number of distinct Lyndon factors in all strings in ∑ⁿ.
- ▶ $\Sigma = \{a, b\}, n = 3$

$\{a,b\}^3$	ааа	aab	aba	abb	baa	bab	bba	bbb	
distinct Lyndon factors	aaa	aab aab aab aab	aba aba aba	abb abb abb abb	baa baa	bab bab bab	bba bba	bbb	
number	1	4	3	4	2	3	2	1	20

This implies that the <u>expected number</u> of distinct Lyndon factors in a string in $\{a,b\}^3$ is 20/8.

Total number of distinct Lyndon factors

<u>Theorem 3</u> [Glen et al., 2017] $DF(\sigma, n) \coloneqq \sum_{w \in \Sigma^n} (\text{ the number of distinct Lyndon factors in } w) = \sum_{m=1}^n \left(L(\sigma, m) \sum_{k=1}^{\lfloor n/m \rfloor} (-1)^{k+1} {n-km+k \choose k} \sigma^{n-km} \right)$ $L(\sigma, m) \text{ is the number of Lyndon words in } \Sigma^m.$

▶ The expected number of distinct Lyndon factors $EDF(\sigma, n)$ is given as follows.

$$EDF(\sigma, n) = \frac{DF(\sigma, n)}{\sigma^n}$$

Previous work

▶ Glen et al. showed three theorems in table below.

	factor	subsequence
max. distinct	$\binom{n+1}{2} - (\sigma-1) \binom{q+1}{2} - r \binom{q+2}{2} + \sigma$	
max. total		
expected total	$\sum_{m=1}^{n} (L(\sigma,m) (n-m+1) \sigma^{-m})$	
expected distinct	$\sum_{m=1}^{n} \left(L(\sigma,m) \sum_{k=1}^{\lfloor n/m \rfloor} (-1)^{k+1} \binom{n-km+k}{k} \sigma^{-km} \right)$	

n: length of string , σ : alphabet size, $L(\sigma,m)$: # of Lyndon words in Σ^m $n = q\sigma + r \ (0 \le r < \sigma)$

Our work

We obtained four theorems below.

	factor	subsequence
max. distinct	$\binom{n+1}{2} - (\sigma-1) \binom{q+1}{2} - r \binom{q+2}{2} + \sigma$	
max. total	$\binom{n+1}{2} - (\sigma-1)\binom{q+1}{2} - r\binom{q+2}{2} + n$	$2^n - (r + \sigma)2^q + n + \sigma - 1$
expected total	$\sum_{m=1}^{n} (L(\sigma,m) (n-m+1) \sigma^{-m})$	$\sum_{m=1}^{n} \left(L(\sigma,m) \binom{n}{m} \sigma^{-m} \right)$
expected distinct	$\sum_{m=1}^{n} \left(L(\sigma,m) \sum_{k=1}^{\lfloor n/m \rfloor} (-1)^{k+1} \binom{n-km+k}{k} \sigma^{-km} \right)$	$\sum_{m=1}^{n} \left(L(\sigma,m) \sum_{k=m}^{n} {n \choose k} (\sigma-1)^{n-k} \right) \sigma^{-n}$

n: length of string , σ : alphabet size, $L(\sigma,m)$: # of Lyndon words in Σ^m $n = q\sigma + r \ (0 \le r < \sigma)$

Our work

We obtained four theorems below.

	factor	subsequence
max. distinct	$\binom{n+1}{2} - (\sigma-1) \binom{q+1}{2} - r \binom{q+2}{2} + \sigma$	
max. total	$\binom{n+1}{2} - (\sigma-1)\binom{q+1}{2} - r\binom{q+2}{2} + n$	$2^n - (r + \sigma)2^q + n + \sigma - 1$
expected total	$\sum_{m=1}^{n} (L(\sigma,m) (n-m+1) \sigma^{-m})$	$\sum_{m=1}^{n} \left(L(\sigma,m) \binom{n}{m} \sigma^{-m} \right)$
expected distinct	$\sum_{m=1}^{n} \left(L(\sigma,m) \sum_{k=1}^{\lfloor n/m \rfloor} (-1)^{k+1} \binom{n-km+k}{k} \sigma^{-km} \right)$	$\sum_{m=1}^{n} \left(L(\sigma,m) \sum_{k=m}^{n} {n \choose k} (\sigma-1)^{n-k} \right) \sigma^{-n}$

n: length of string , σ : alphabet size, $L(\sigma,m)$: # of Lyndon words in Σ^m $n = q\sigma + r \ (0 \le r < \sigma)$

Maximum total number of Lyndon subsequence occ.

 $\frac{\text{Theorem 4}}{MTS(\sigma, n)} \coloneqq \max_{w \in \Sigma^n} (\text{the total number of Lyndon subsequence occ. in } w) \\= 2^n - (r + \sigma)2^q + n + \sigma - 1$ One of the strings that gives this value is $w = a_1^{q+1} \cdots a_r^{q+1} a_{r+1}^q \cdots a_{\sigma}^q$ where $a_1 < a_2 < \cdots < a_{\sigma}, n = q\sigma + r \ (0 \le r < \sigma).$

▶ For example if $\Sigma = \{a, b, c\}, n = 10$ then, MDF(3, 10) = 1004. One of such strings is

w = a a a a b b b c c c.

Maximum total number of Lyndon subsequence occ.

 $\frac{\text{Theorem 4}}{MTS(\sigma, n)} \coloneqq \max_{w \in \Sigma^n} (\text{the total number of Lyndon subsequence occ. in } w) \\= 2^n - (r + \sigma)2^q + n + \sigma - 1$ One of the strings that gives this value is $w = a_1^{q+1} \cdots a_r^{q+1} a_{r+1}^q \cdots a_{\sigma}^q$ where $a_1 \prec a_2 \prec \cdots \prec a_{\sigma}, n = q\sigma + r \ (0 \le r < \sigma).$

▶ For example if $\Sigma = \{a, b, c\}, n = 10$ then, MDF(3, 10) = 1004. One of such strings is

$$w = a a a a b b b c c c$$
.

If w is a lexicographically non-decreasing string, then any subsequence of w that contains at least two distinct symbols is a Lyndon word.

Maximum total number of Lyndon subsequence occ.

 $\begin{array}{l} \underline{\text{Theorem 4}}\\ MTS(\sigma,n) \coloneqq \max_{w \in \Sigma^n} (\text{the total number of Lyndon subsequence occ. in } w) \\ &= 2^n - (r+\sigma)2^q + n + \sigma - 1 \\ \\ \text{One of the strings that gives this value is } w = a_1^{q+1} \cdots a_r^{q+1} a_{r+1}^q \cdots a_{\sigma}^q \\ & \text{where } a_1 < a_2 < \cdots < a_{\sigma}, n = q\sigma + r \ (0 \leq r < \sigma). \end{array}$

 For example if Σ = {a,b,c}, n = 10 then, MDF(3,10) = 1004. One of such strings is
 w = a a a a b b b c c c c.

String w is optimal to minimize the number of subsequences of the form a^m ($m \ge 2$) which is not Lyndon.

Exact values of $MTS(\sigma, n)$

$n \sigma$	2	5	10
1	1	1	1
2	3	3	3
3	6	7	7
4	13	15	15
5	26	31	31
6	55	62	63
7	122	125	127
8	233	252	255
9	474	507	511
10	971	1018	1023

 $MTS(\sigma, n)$

▶
$$\Sigma = \{a,b\}, n = 3$$

$\{a,b\}^3$	aaa	aab	aba	abb	baa	bab	bba	bbb		
occurrences of Lyndon subsequences	aaa aaa	aab aab aab	aba aba aba	abb abb abb	baa baa baa	bab bab bab	bba bba bba	bbb bbb bbb		
		aab aab aab	aba	ab ab abb		bab			TS(2,3)
the number	3	6	4	6	3	4	3	3	32	

$$\frac{\text{Theorem 5}}{TS(\sigma, n)} \coloneqq \sum_{w \in \Sigma^n} (\text{ the total number of Lyndon subsequence occ. in } w)$$
$$= \sum_{m=1}^n \left(L(\sigma, m) \binom{n}{m} \sigma^{n-m} \right)$$
Expected total number *ETS*(2,3) of Lyndon subsequences in a string is 32/8.

▶
$$\Sigma = \{a,b\}, n = 3$$

$\{a,b\}^3$	aaa	aab	aba	abb	baa	bab	bba	bbb		
occurrences of Lyndon subsequences	aaa aaa aaa	aab aab aab aab aab aab	aba aba aba aba	abb abb abb abb abb	baa baa baa	bab bab bab bab	bba bba bba	bbb bbb bbb	TS(2,3)
the number	3	6	4	6	3	4	3	3	32	

▶ Consider how many times a Lyndon word x of length $m \le n$ occurs as a subsequence of strings in Σ^n .

▶ Let $\{i_1, i_2, ..., i_m\}$ be a set of *m* positions of string of length *n*.

- ▶ Let $\{i_1, i_2, ..., i_m\}$ be a set of *m* positions of string of length *n*.
- ▶ The number of strings containing x at these positions is σ^{n-m} .

1

$$i_1$$
 i_2
 ...
 i_m
 n
 $x[1]$
 $x[2]$
 $x[m]$
 ...

- ▶ Let $\{i_1, i_2, ..., i_m\}$ be a set of *m* positions of string of length *n*.
- ▶ The number of strings containing x at these positions is σ^{n-m} .
- ▶ The number of combinations of *m* positions is $\binom{n}{m}$.

1

$$i_1$$
 i_2
 ...
 i_m
 n

 x[1]
 x[2]
 x[m]
 $x[m]$

- ▶ Let $\{i_1, i_2, ..., i_m\}$ be a set of *m* positions of string of length *n*.
- ▶ The number of strings containing x at these positions is σ^{n-m} .
- ▶ The number of combinations of *m* positions is $\binom{n}{m}$.
- ▶ The number of Lyndon words of length *m* is $L(\sigma, m)$.

1

$$i_1$$
 i_2
 ...
 i_m
 n
 $x[1]$
 $x[2]$
 $x[m]$
 $x[m]$

▶ If *m* positions have to be contiguous, there are (n - m + 1) ways to choose such positions.

 $\underline{Theorem 2} [Glen et al., 2017] \\
 TF(\sigma, n) \coloneqq \sum_{w \in \Sigma^n} (the total number of Lyndon factor occ. in w) \\
 = \sum_{m=1}^n (L(\sigma, m) (n - m + 1) \sigma^{n-m}) \\
 1 \quad i_1 \quad i_2 \quad \cdots \quad i_m \quad n \\
 \boxed{x[1] \quad x[2] \quad \cdots \quad x[m]}$

Exact values of $ETF(\sigma, n)$ and $ETS(\sigma, n)$

$n \sigma$	2	5	$n \sigma$	2	5
1	1.00	1.00	1	1.00	1.00
2	2.25	2.40	2	2.25	2.40
3	3.75	4.12	3	4.00	4.52
4	5.43	6.08	4	6.69	7.92
5	7.31	8.24	5	11.13	13.60
6	9.32	10.56	6	18.83	23.36
7	11.48	13.03	7	32.63	40.49
8	13.76	15.62	8	57.80	70.99
9	16.14	18.33	9	104.29	125.93
10	18.62	21.13	10	190.75	225.76

$ETS(\sigma, n)$

(expected total #of Lyndon factors) (expected total # of Lyndon subsequences)

 $ETF(\sigma, n)$

Total number of distinct Lyndon subsequences

$$\frac{\text{Theorem 6}}{TDS(\sigma, n)} \coloneqq \sum_{w \in \Sigma^n} (\text{ the number of distinct Lyndon subsequences in } w) \\ = \sum_{m=1}^n \left(L(\sigma, m) \sum_{k=m}^n {n \choose k} (\sigma - 1)^{n-k} \right) \begin{bmatrix} L(\sigma, m) \text{ is the number of Lyndon words in } \Sigma^m. \end{bmatrix}$$

▶
$$\Sigma = \{a,b\}, n = 3$$

$\{a,b\}^3$	aaa	aab	aba	abb	baa	bab	bba	bbb		
distinct Lyndon subsequences	aaa	aab aab aab aab	aba aba aba	abb abb abb abb	baa baa	bab bab bab	bba bba	bbb	<i>TDS</i> (2,3))
the number	1	4	3	4	2	3	2	1	20	

Total number of distinct Lyndon subsequences

$$\frac{\text{Theorem 6}}{TDS(\sigma, n)} \coloneqq \sum_{w \in \Sigma^{n}} (\text{ the number of distinct Lyndon subsequences in } w) \\ = \sum_{m=1}^{n} \left(L(\sigma, m) \sum_{k=m}^{n} {n \choose k} (\sigma - 1)^{n-k} \right)$$
Expected distinct number
EDS(2,3) of Lyndon subsequences

▶
$$\Sigma = \{a,b\}, n = 3$$

in a string is 20/8.

$\{a,b\}^3$	aaa	aab	aba	abb	baa	bab	bba	bbb		
distinct Lyndon subsequences	aaa	aab aab aab aab	aba aba aba	abb abb abb abb	baa baa	bab bab bab	bba bba	bbb	TDS	5(2,3)
the number	1	4	3	4	2	3	2	1	20	

Total number of distinct Lyndon subsequences

The above theorem means that the followings are equivalent:

- A) Counting the number of distinct Lyndon subsequences in all strings *w* of length *n*.
- B) Counting the number of strings *w* of length *n* that contain each Lyndon word as a subsequence.

Ideas for the proof of Theorem 6

Ideas for the proof of Theorem 6

each Lyndon word as a subsequence

Proof of Theorem 6

▶ Let $Count(n, \Sigma, x)$ be the number of strings in Σ^n that contain $x \in \Sigma^m$ ($m \le n$) as a subsequence.

Lemma 2

For any $x_1, x_2 \in \Sigma^m$ and $m, n \ (m \le n)$, $Count(n, \Sigma, x_1) = Count(n, \Sigma, x_2)$

- ▶ $Count(3, \{a, b\}, ba) = 4$ {aba, baa, bab, bba} $\subseteq \{a, b\}^3$
- ▶ $Count(3, \{a, b\}, aa) = 4$ {aaa, baa, aba, aab} $\subseteq \{a, b\}^3$

Induction

• $Count(l + 1, \Sigma, yc)$ can be represented by $Count(l, \Sigma, y)$ and $Count(l, \Sigma, yc)$.

 $Count(l + 1, \Sigma, yc) = \sigma Count(l, \Sigma, yc) + (Count(l, \Sigma, y) - Count(l, \Sigma, yc))$

of strings containing x

<u>Lemma 3</u>

Let $Count(n, \Sigma, x)$ be the number of strings in Σ^n that contain $x \in \Sigma^m$ ($m \le n$) as a subsequence. Then,

$$Count(n, \Sigma, x) = \sum_{k=m}^{n} {n \choose k} (\sigma - 1)^{n-k}$$

► From Lemma 2, $Count(n, \Sigma, x) = Count(n, \Sigma, a^m) = \sum_{k=m}^n \binom{n}{k} (\sigma - 1)^{n-k}$ the number of strings containing at least *m a*'s symbols not *a* $1 \quad i_1 \quad i_2 \quad \cdots \quad i_k \quad n$

a

a

a

Proof of Theorem 6

 $Count(3, \Sigma, ab) = 4$

Proof of Theorem 6

Exact values of $EDF(\sigma, n)$ and $EDS(\sigma, n)$

$n \sigma$	2	5	$n \sigma$	2	5
1	1.00	1.00	1	1.00	1.00
2	1.75	2.20	2	1.75	2.20
3	2.50	3.56	3	2.50	3.80
4	3.25	5.02	4	3.38	6.09
5	4.06	6.55	5	4.50	9.51
6	4.91	8.16	6	6.00	14.80
7	5.81	9.82	7	8.03	23.12
8	6.77	11.54	8	10.81	36.43
9	7.77	13.31	9	14.63	57.95
10	8.83	15.13	10	19.93	93.08

$EDS(\sigma, n)$

(expected # of distinct Lyndon factors) (expected # of distinct Lyndon subsequences)

 $EDF(\sigma, n)$

Conclusion

▶ We counted the number of Lyndon subsequences.

	factor	subsequence
max. distinct	$\binom{n+1}{2} - (\sigma-1) \binom{q+1}{2} - r \binom{q+2}{2} + \sigma$	open
max. total	$\binom{n+1}{2} - (\sigma-1)\binom{q+1}{2} - r\binom{q+2}{2} + n$	$2^n - (r + \sigma)2^q + n + \sigma - 1$
expected total	$\sum_{m=1}^{n} (L(\sigma,m) (n-m+1) \sigma^{-m})$	$\sum_{m=1}^{n} \left(L(\sigma,m) \binom{n}{m} \sigma^{-m} \right)$
expected distinct	$\sum_{m=1}^{n} \left(L(\sigma,m) \sum_{k=1}^{\lfloor n/m \rfloor} (-1)^{k+1} \binom{n-km+k}{k} \sigma^{-km} \right)$	$\sum_{m=1}^{n} \left(L(\sigma,m) \sum_{k=m}^{n} {n \choose k} (\sigma-1)^{n-k} \right) \sigma^{-n}$

Future work

- ▶ The value of $MDS(\sigma, n)$ is open.
- ▷ $MDS(\sigma, n) \coloneqq \max_{w \in \Sigma^n} (\# \text{ of distinct Lyndon subsequences in } w)$

n	MDS(2,n)	W	n	MDS(2,n)	W
2	3	ab	9	41	aaabababb
3	4	abb	10	63	aababababb
4	6	aabb	11	96	aaababababb
5	8	ababb	12	141	aabababababb
6	13	aababb	13	225	aaabababababb
7	18	aaababb	14	335	aaababababbabb
8	28	aabababb	15	538	aaabababababbb

Each w is an instance of strings that achieve $MDS(\sigma, n)$ with $\sigma = 2$. This sequence is not in OEIS.