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1. Introduction

ABSTRACT

Local image features have been widely applied in feature-based watermarking schemes.
The feature invariance is exploited to achieve robustness against attacks, but the
leakage of information about hidden watermarks from publicly known locations and
sizes of features are often unconsidered in security. This paper, therefore, proposes a
novel image watermarking approach, which adopts invariant feature regions to jointly
enhance its robustness and security. Initially, circular feature regions are determined by
the scale-adapted auto-correlation matrix and the Laplacian-of-Gaussian operation.
Leakage of secret information is also controlled carefully during feature detection
procedure. An optimal selection process formulated as a multidimensional knapsack
problem is then proposed to select robust non-overlapping regions from those circular
feature regions to resist various attacks. This process is implemented by a genetic
algorithm-based approach, and incorporates randomization to mitigate the security
risk. Finally, each selected region is normalized to obtain a geometrically invariant
feature region, and embedded with a region-dependent watermark to overcome the
weakness of multiple-redundant watermarks. The evaluation results based on the
StirMark benchmark present the proposed scheme can tolerate various attacks,
including noise-like signal processing and geometric distortions. A security analysis
in terms of differential entropy also confirms the security improvement of the proposed
method.

© 2011 Elsevier B.V. All rights reserved.

on its ability to resist various attacks. According to
different intentions of attacks, there are two criteria,

Digital watermarking, which is regarded as a useful
approach for copyright protection, content authentication,
and transaction tracking, has been widely applied to
image, audio, and video. In all of these applications, the
effectiveness of a digital watermarking algorithm depends
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robustness and security, which should be considered in
the design of digital watermarking schemes [1-7].
Robustness deals with blind attacks that try to destroy
or invalidate hidden watermarks without exploiting
knowledge of the watermarking algorithm. The robust-
ness measurement for watermarking schemes is to eval-
uate their ability to successfully detect the hidden
watermark after blind attacks. In general, robust water-
marking schemes are developed to resist two types of
attacks: noise-like signal processing and geometric
distortions. Security, on the other hands, denotes the
ability of a watermarking scheme to prevent hidden
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watermarks from being accessed by unauthorized users.
For the attacks to security, it is usually assumed that the
unauthorized users know all knowledge about the water-
marking algorithm except the secret key and they try to
estimate the hidden watermarks through observing the
watermarked images. The security of a watermarking
scheme can be measured by analyzing the leakage of
information about the hidden watermarks from observa-
tions. Until now, most existing watermarking methods
have been driven by improvement of robustness, includ-
ing the spread spectrum [1,2], quantization index
modulation [8,9], and resynchronization [10-27] schemes.
But there has been little attention to security in water-
marking research. However, recent studies [3-6] have shown
that security is as important as robustness in developing
digital watermarking schemes. Because a successful attack to
security can completely break a watermarking system even
though it is robust, designers should consider not only the
robustness but also the degree of security in their water-
marking schemes.

In this paper we use both robustness and security
perspectives to investigate current feature-based water-
marking methods, which are resynchronization schemes
that exploit the invariant features of a medium to resist
attacks. Bas et al. used the Harris detector to extract
feature points from an image and the Delaunay tessella-
tion to form triangle meshes with theses points for
watermarking [16]. Tang and Hang adopted the Mexican
Hat wavelet to extract feature regions, and exploited
image normalization and FFT to hide watermarks [17].
These two methods exhibit good robustness against most
attacks, but features are probably not extracted correctly
after suffering from scaling attacks. Therefore, Seo et al.
proposed a watermarking method based on the scale-
space theory to mitigate this problem [18,21]. Robustness
can be also achieved by applying the scale-invariant
feature transformation [19], the Harris-Laplacian detector
[22,24], or the difference of Gaussian [23]. Recently,
Gao et al. [25] used the affine covariant regions to provide
good resistance to geometric distortions. However, most
of the existing methods usually suffer from inability to
resist random or region-of-interest (ROI) cropping attacks
and ineffectiveness in security-related applications.

The invalidation for cropping attacks will become
more serious due to the phenomenon described in this
paragraph. Since the magnitude of pixels in a feature
region will be modified when a watermark is inserted into
this region, it is preferred to select non-overlapping
regions for watermarking to avoid major degradation of
image quality. In order to obtain the non-overlapping
regions, some reference parameters have been exploited
in existing methods. For example, the corner response
[18,21] and the number of neighboring feature points
within a region [17,22] are used to remove overlapping
feature regions. In [24], the minimum spanning tree
(MST) clustering algorithm was used to cluster the feature
regions into groups according to a distance constraint. The
region with the largest corner response in each group is
then selected to be watermarked. However, non-over-
lapping feature regions selected for watermarking by
these parameters cannot guarantee that watermark

regions are well distributed over an image. Thus, the
probability of successful cropping attacks is raised
because the selected regions do not always have the
maximum cover range.

Next we discuss the issue of ineffectiveness in secur-
ity-related applications. It is here assumed that the
attacker knows the details of watermarking algorithm
except the secret key according to the Kerckhoffs’ principle.
The secret key is an input to some mapping functions that
outputs secret parameters, such as the watermark
sequence [5]. Without knowledge of the key, the secret
parameters cannot be forged or estimated. Unfortunately,
it is not difficult for attackers to extract the hidden
watermark sequence embedded by most of the existing
feature-based methods because of information leakage.
The information leakage denotes the information about
the hidden watermark sequence achieved from the
attacker’s observation [6]. The leakage is mainly from
which the watermarked feature regions’ locations and
sizes are publicly known and each feature region is
embedded with the same watermark. This weakness
enables the security attacks to easily break down a
watermarking system. For example, the attacker can
apply a collusion attack to remove the hidden watermark
or a copy attack to fake a watermarked image by collect-
ing and analyzing a set of feature regions with the same
watermark from a watermarked image [28,29,39].

This paper proposes a novel feature-based watermark-
ing method that (1) optimizes the cover range of the
hidden watermarks for resisting cropping attacks and
(2) enhances the security to prevent unauthorized users
from accessing the secret parameters. Initially, the Harris—
Laplacian detector, which uses the scale-adapted auto-
correlation matrix to localize points in the scale space and
invokes the Laplacian-of-Gaussian operation to select the
points attaining an extremum over scales, is applied to an
image to detect its feature points at multiple scale levels
[31,32]. Around these feature points, the targeted circular
feature regions are determined based on their character-
istic scales and a secret key. The high repeatability of
these feature regions offers robustness against transla-
tion, rotation, scaling, and partial illumination changes,
while secrecy of the region size makes it difficult for an
attacker to estimate exact range of feature region. Since
these feature regions are substantially overlapped and not
all stable, we propose a heuristic algorithm to select an
optimal non-overlapping region set for watermarking.
The region set also features a maximum distribution over
the target image to tolerate the cropping attacks. The
selection process further incorporates randomization to
avoid an attacker correctly identifying the watermarked
regions. This work is formulated as a multidimensional
knapsack problem and is solved by a genetic algorithm-
based procedure. Finally, we perform normalization for
each selected region to obtain geometric invariance, and
generate a region-dependent watermark sequence, which
eliminates the problem of hiding the same signal multiple
times, to be additively embedded into the spatial domain
of each invariant region.

Comparing the existing feature-based methods [16-27],
we investigate the important issues of feature-based
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watermarking methods to improve the robustness and
security. First, we propose the optimal region selection
process to enhance the resistance to cropping attacks.
Different from our previous work [26], the method
proposed in this paper does not need the time-consuming
simulated attacking procedure, and its goal is to make the
selected feature regions achieve the greatest distribution
over an image to withstand cropping attacks, which is not
considered in [26]. Moreover, the detailed implementa-
tion of the genetic algorithm-based heuristics is described
in this paper. The experimental results have demon-
strated that our method has better coverage in the
resilience to ROI cropping, random cropping and centered
cropping attacks. Also, the evaluation on the StirMark
benchmark confirmed the goodness of our method in the
resistance to other attacks, including noise-like signal
processing and geometric distortions. Second, we propose
the region-dependent watermark based on feature
descriptor, and incorporate randomization in feature
region detection and feature region selection for security
enhancement. The region-dependent watermark is
derived from the framework of the content-dependent
watermark with DCT block-based media hashes [39]. The
novelty is that we exploit the feature description as the
media hash, which is created by generating the orienta-
tion histograms. The feature description has been proved
to be distinctive and robust [33], and it is obtained during
feature detection without additional DCT operations [39].
Furthermore, the incorporated randomization in deter-
mining the feature regions for watermarking makes the
secrecy of their locations and sizes to mitigate the
security risk. A security analysis in terms of differential
entropy for feature region detection and feature region
selection is given to demonstrate the effectiveness of
this paper.

The rest of this paper is organized as follows. Feature
detection with a controlled secret leakage is presented in
Section 2 and a novel feature region selection scheme to
enhance both robustness and security for watermarking is
also proposed. In Section 3, the details of region-depen-
dent watermark embedding and detection schemes based
on local features are described. The experimental results,
mainly for robustness evaluation and security analysis,
are given in Section 4. Concluding remarks are drawn in
Section 5.

2. Robust and secure image features for watermarking

Local features representing image structures, ranging
from points to regions, have been adopted in many
applications, such as object recognition, image retrieval,
and camera calibration [30-34]. These features, which are
powerful references, have also been applied successfully in
feature-based watermarking methods since they can be
preserved after suffering distortion such as scaling, rota-
tion, or illumination changes. In general, a feature detector
performs a specific transformation on an image to extract
local features for watermark embedding and detection.
However, a feature region extracted by a detector is not
directly applicable to digital watermarking because of the
following issues. The locations and sizes of extracted

features can be publicly found by the attackers. Embedding
watermarks into all regions will also cause heavy image
degradation and low robustness since most of features are
overlapped. Although many new feature detectors have
been proposed to enhance the robustness of feature-based
watermarking [16-27], most methods are still vulnerable
to security attacks and cropping attacks. Therefore,
a qualified feature-based watermarking scheme should
examine the robustness of the adopted feature detector,
avoid the information leakage of secret parameters, and
determine an appropriate non-overlapping feature region
set. This section presents two processes, feature region
detection and feature region selection, which are impor-
tant in achieving the desired goal.

2.1. Detection of robust and secure features

In this section, the Harris-Laplacian detector, which
consists of scale-adapted auto-correlation matrix and the
Laplacian-of-Gaussian operation, is adopted [31,32], while
the secret leakage is carefully controlled in order to
identify local image features. First, the scale space of an
input image I is calculated by the function L at a set of
scales to represent different levels of resolutions, which is
formulated as

L(va-D) = G(x- GD)*I(X) (1)
where x=(x,y) denotes the image spatial coordinate, op is

the differential scale, ‘" represents the convolution opera-
tion, and the uniform Gaussian kernel G is defined by

G(X,O'D) — e*(XZ +y2)/20p . (2)

2
270y,

Then the scale-adapted auto-correlation matrix
u(x,o,0p) is applied in the scale space to describe the
local image structure, and it is formulated by
L;(X,0p)
LyLy(X,0p)

LxLy(X, op)
L}(x,0p)

3)

W(X,01,0p) = 0HG(X,07)%

where ¢ is the integral scale, and L; is the first derivative
calculated in the i direction that ie{x,y}. The corner
response estimating principal curvature of the matrix is
computed by its trace and determinant as

C(x,01,0p) = det(u(x,01,0p))—0.04trace(u(X,01,0p)). 4)

The feature point with large corner response repre-
senting significant curvatures has higher repeatability.
The candidate points are then determined if their corner
response is a local maximum and larger than a threshold
Tz used for filtering out unstable feature regions.
However, it is difficult to be set as a fixed value for
different input images [34]. According to the suggestion in
[43], the threshold should be set to 1% of the maximum
response value of all extracted feature regions. In order to
achieve scaling invariance, the integral scale of all candi-
date points is compared to the characteristic scale of local
image structure. The characteristic scale, which is rela-
tively independent of scale change, is obtained by search-
ing for a local extremum over multiple scale levels
of Laplacian-of-Gaussian. Candidate points for a set of
scale levels o, are identified by setting ¢;=0, and
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op=0.70; where ¢,={5'0o|00=1.5, 6=1.1, i=1, 2, ..., n}.
The scale step factor 6 between two successive levels
affect the accuracy of the scale of the candidate point. It
should be small to achieve high accuracy and is set to 1.1
in this paper according to the suggestion from [32]. The
number of scale levels n depends on the possible scale
changes of an image for different applications and is set as
15 in our experiments. The Laplacian-of-Gaussian of the
candidate points is calculated as

|LoG(X,0n)| = 02 |Lix(X,G0) 4 Ly (X,0)|. (5)

A candidate point at the ith scale level is regarded as a
feature point with a characteristic scale o(c.=d'co) if its
Laplacian-of-Gaussian is a local extremum over all scale
levels and is higher than a pre-defined threshold as
follows:

|LoG(x,07)| > |[LoG(X,0))|, je{i—1,i+1} (6)

‘LOG(X.O',‘)‘ > Trog. (7)

The threshold T, is set to 10, which refers to the
suggestion from [31]. In order to achieve rotation invariance
and incorporate controlled secret leakage in the outputs of
the feature detection, each feature point is further used as
the center to derive a corresponding circular feature region
with a key-dependent radius r determined

r=o-oc 3)

which is formulated by a secret key o and the feature point’s
characteristic scale o. Obviously, the circular feature
regions obtained by the scale-adapted auto-correlation
matrix and the Laplacian-of-Gaussian operation are highly
distinctive and matched with a high repeatability against
various image distortions [31,32,34]. The key-dependent
radius prevents an attacker from easily accessing a feature
region by controlling the uncertainty of its size, and infor-
mation leakage is also reduced while the watermark is
embedded into the region.

2.2. Feature region selection

This work aims to obtain appropriate non-overlapping
regions for watermarking since there are serious overlaps
and instability in the extracted feature regions. In addi-
tion to removing some overlapping regions, the feature
regions selected should have maximum distribution over
the image to withstand cropping attacks and to incorpo-
rate randomization for security. Therefore, this work is
formulated as an optimum problem constricted by image
quality and regions’ overlapping circumstance as follows:

Nr

maximize »  fitjs; ©
=1

N

subject to " q;s;< Ty 10)
j=1

and

Ng

> pgsisi<1, i=12,..,Ng an

j=1

where N is the number of feature regions extracted, r; is
the radius of region j, {f};} are key-dependent pseudo-
random numbers with the mean p and variance 62, and s;
is defined as

12)

1, if theregion j is selected,
5i=Y0, otherwise.

The variable g; denotes the distortion of a water-
marked region j compared with its original region, and
T, refers to the limitation of quality degradation of an
image after being watermarked. Eq. (11) means that only
one region can be selected in each overlapping case. The
value of p; is dependent on the overlapping situation of
the two regions of i and j:

1, if the region i overlaps with region j, and i#j;
Pi=9Y0, otherwise.

(13)

In order to solve this combinatorial optimization

problem, we transform it to a multidimensional knapsack

problem (MDKP) by modifying the expression of its
constraints as follows:

Ng

maximize » " frise (14)
=1
Nr

subject to Y ot <Tw,, k=12,...,m. (15)

t=1

In Eq. (15), the variables wy; and T, represent the
composite weights and constraints of quality distortion
and overlapping status specified in Eqs. (10) and (11),
respectively. When k=1, then wq,=q, and T, =Ty, which
is equivalent to the constraint formulated by Eq. (10). Each
k greater than 1 correspondingly denotes a specific index
pair (i, j), i#j, in Eq. (11). Then the constraints specified in
Eq. (11) can be reformulated into Eq. (15) as follows:

Referring to Eq. (11), it is obvious that

pijsisj < l, VT,‘,VT‘j. (16)

Since s;, s; and p;;e{0,1}, Eq. (16) can be rewritten as
Eq. (17)

piiSi+pysi <1 a17)
that is,
0s14+0sy+4 - - +pySi+ --- +pSj+ - -- +0sy, < 1. (18)

Let Ty, =1, and wi=0 when t#i or j, otherwise
wie=py. We can get

Ng
> kst < T, (19)
t=1

Aggregating Eq. (19) for different values of k, we
conclude Eq. (15) and m = (Nﬁ—NR)/Z—i-l.

Since MDKP is an NP-hard problem [36], the genetic
algorithm (GA), a heuristic search approach based on the
principles of evolution in nature [36,37], is employed to
efficiently obtain a near-optimal solution in this paper. GA
exploits the string structures to make an effective search,
and works with a population of individuals that represent
candidate solutions to a given optimization problem. It is
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very likely that the obtained solution is a global solution
since there are crossover and mutation operators and
diverse individuals in the population being processed. The
evaluation and analysis in [38] also demonstrate the solu-
tion of MDKP determined by GA is the best approximation
to the global optimum among various optimization meth-
ods. Firstly, a fixed length and fixed order binary bit string
S € {0,1}"* representing a candidate region set, in which 1
at the jth bit indicates region j is selected, is regarded as a
chromosome of an individual in a population for GA opera-
tion. The length of S depends on the number of the extracted
feature regions. The GA-based search procedure to find a
near-optimal solution includes the following steps:

1) Population initialization: the initial population is drawn
randomly to maintain diversification of chromosomes.
Each individual in the population should be a feasible
solution without violating the constraints in Eq. (15).

2) Fitness evaluation: Fitness is used to evaluate the
possibility of an individual to be the best solution.
Each individual in current population has its own
fitness to represent degree of success as shown by

N
Fitness(S)= > ;1;Sl] (20)
i=

where S[j] denotes the jth bit in the chromosome of an
individual. The fitness corresponds to the objective
function in Eq. (14), and maximization of the fitness
leads to the best solution of feature region selection.
3) Parent selection: This step is to select individuals from a
population for a mating pool to generate new
offspring. Based on the natural principle of survival
of the fittest, the binary tournament selection is used,
which works by forming two tournament pools of
individuals, each containing two individuals picked
randomly from the population. Two individuals with
the highest fitness, each drawn from one of the two
tournament pools, are selected to be parents.
Crossover and mutation: The generation following the
selected parent individuals is obtained by two GA
operators, crossover, and mutation. First, uniform
crossover is adopted for any two parents to generate
a single child whose chromosome is determined by
copying the corresponding bits in the chromosomes of
the two parents. Each copied bit is chosen randomly
with equal probability from the two parents using a
binary random number generator. If the random num-
ber is 1, the bit is copied from the first parent;
otherwise it is copied from the second parent. Then
the mutation operation is used to flip a small number
of bits in the child’s chromosome, changing them from
0 to 1 or vice versa. It is noted that the generated child
solution by crossover and mutation operators may not
be feasible due to the MDKP constraints. A repair
operator is used here to overcome this problem [37].
Termination: An iterative process from step 2 to this
step is executed to find the best solution. The termina-
tion condition is satisfied when either a user-defined
maximum number of iterations is reached or the fittest
one is unchanged during a large number of iterations.

4

~—

5

—

The computational cost of the proposed feature region
selection method is dominated by the GA-based search
procedure for solving MDKP. Furthermore, the computa-
tional cost of this procedure mainly depends on the
number of feature regions and the constraints (image
quality and regions’ overlapping circumstances) in MDKP.
The number of feature regions is proportional to the
length of individual chromosome that affects the execu-
tion time in fitness evaluation, crossover, and mutation.
As for the constraints, they are related to the execution
time for searching feasible solutions in GA. A more
detailed complexity analysis of GA for solving MDKP can
be found in [37]. Basically, the computational cost of
feature region selection in most of the existing feature-
based watermarking methods only depends on the
regions’ overlapping circumstances, for example, the
operations for removing region overlapping by comparing
the region’s corner response [18,21] and the number of
neighboring feature points within a region [17,22]. In
[24], the operational cost is to cluster the feature regions
into groups by the minimum spanning tree clustering
algorithm. In order to achieve the desired optimization
goal, the execution time of the proposed feature region
selection method is longer than the above-mentioned
methods. According to our empirical study that the
GA-based search procedure was coded in Borland Ci++
and executed on an Intel Core2Duo 2.4 GHz PC, the
execution time spent in searching the near-optimal solu-
tion is within 2 min for all test images in our experiments.

3. Proposed watermark embedding and detection
schemes

The detailed procedures of watermark embedding and
detection are described here, with their block diagrams
depicted in Figs. 1 and 2, respectively.

3.1. Watermark embedding scheme

As shown in Fig. 1, the adopted feature regions in a
cover image are extracted and selected by the detector
and selector described in Section 2. In the step of feature

Original Image

Y
‘ Feature Detection

I o

Y (I'. y l

7 [ Watermark |

‘ Feature Region Selection I /’ l Generation

- 4 v
Region RDW

Normalization }-’ Generation

Perceptual Auxiliary

Weighting Watern:lark

Creation
' v

Watermark Insertion

Fig. 1. Block diagram of the watermark embedding scheme.
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Target Image
v Watermark |
‘ Generation

‘ Feature Detection

Region
Normalization

|

Wiener
Prediction

Watermark
Extraction

Watermark
Decision

Fig. 2. Block diagram of the watermark detection scheme.

detection, N feature points and their characteristic scales
are obtained by the scale-adapted auto-correlation matrix
and the Laplacian-of-Gaussian operation. Centered on
each of the detected feature points, N circular feature
regions are produced with the radius equal to the product
of the center’s characteristic scale and a secret key value
defined by user. In feature region selection, the proposed
selection method is used to determine appropriate circu-
lar regions to be watermarked. These regions are intended
to cover the maximum range of the target image under
the constraints of range overlapping and image distortion.

In Region Normalization, each selected circular feature
region is normalized to a canonical form for maintaining
rotation invariance and inserting a fixed-length water-
mark. By this normalization, the circular regions scaled
with a user-defined radius are rotated to a consistent
orientation based on the gradient histogram within the
region [33,34]. Before inserting the watermark into each
normalized region, the Perceptual Weighting step is
performed to evaluate the watermark embedding
strength for avoiding large image degradation according
to the noise visibility function (NVF) [42]:

1
1+ (z/Varmax)-Var(x)

NVEX) = 21
where Var(-) denotes the local variance in a window
centered on the pixel at coordinate X, Varm.x is the
maximum local variance in the normalized region, and z
is an empirical constant chosen for various cover images
in the range from 50 to 100.

In Watermark Generation, a watermark sequence, W=
{wie{+1,-1}|i=12, ..., Ly}, is generated for each selected
region by a pseudo-random generator with a secret key, and
L,, denotes the watermark insertion length. Then in Region-
Dependent Watermark (RDW) Generation, W is combined into
a hash sequence produced according to the descriptor of each
normalized region. The descriptor, D= {d;|i=1,2,.. ..NI%NO},
is created by generating an N, x N, array of orientation
histograms with N, orientations from a normalized region
(NIZ,N0 is set as L) [33]. The hash sequence H={h;|i=

1,2, ...,Ly} is then obtained by considering the quantized
descriptor defined by

o { +1, if{d,»/qs[epJ is odd;
i =
—1  otherwise

(22)

where g, denotes the quantization step and | -] is the floor
function that gives the largest integer less than or equal
to a real argument. The RDW sequence W = (wkP|i=1,
2,...,2Ly} is generated by

WRP — S(W,H) (23)

where S() is a key-dependent shuffling function [39].

In order to enhance the robustness of RDW, an
auxiliary watermark sequence W' = wili=12....,
2tL,} is created by repeating each RDW element t times
as follows:

WRD — wRD

P =wi e J=12,21L, 4

where | -] is the floor function.

In Watermark Insertion, the watermark sequence is
arranged and embedded into a square region as shown
in Fig. 3, where the circular feature region circumscribes
the square region. Each element W{” of the RDW
sequence is inserted into each pixel of the region by

Iw(X) = I(X)+ ((1-NVF(X))- by + NVF(X)- by)-Wf” (25)

where I,,(x) and I(x) are the watermarked pixel value and
the original pixel value, respectively, in the coordinate x
of the region. The parameters, b; and b,, are empirical
values for different cover images [42]. In our method, b is
set to 3 according to the suggestion in [42], and b, is
adjusted to keep the PSNR between the original region
and the watermarked one higher than 38 dB. After the
insertion procedure, the watermarked image is recon-
structed from all normalized regions translated back to
original shapes by inverse region normalization.

3.2. Watermark detection scheme

The detection process shown in Fig. 2 extracts the
watermark from a target image without an original image,
and the detailed operation of each step is explained here.

Similarly, feature regions are detected by the feature
detector adopted in the watermark embedding process.
Each selected circular feature region is also normalized to
a canonical form by Region Normalization. Since the
watermark embedded in the spatial domain could be
regarded as noise, Wiener filter [16,19,20,21,26,27] is
used to blindly extract watermark sequence from the
normalized region. Wiener filter is considered as a denois-
ing operation to estimate the watermark from the target
image. It is commonly used in watermark detection and
regarded as an efficient approach in the existing feature-
based watermarking methods [16,19,20,21,26,27]. We
first extract hidden information from the normalized
region according to

W = Varwf®)- (') —pul' (%)) /(Var(wE®) + Var(l'(x)))
(26)
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— RD | ~ RD

w, W,

Fig. 3. Watermark sequence is created by repeating each RDW element ¢ times (left), and then it is arranged and embedded into the normalized region

(right).

where I'(x) is the pixel value of the normalized region in
the target image. Var(-) and pu(-) denote the local var-
iance and the local mean, respectively. The extracted
elements are converted into bipolar ones to obtain the
watermark sequence W"" — Wi [j=1,2,...,2tLy} by

—RD' .
R _ +1, WP >0;
J -1, V_VFDSO;

S«

27)

Then this sequence is translated back to a non-dupli-
cated one according to Eq. (28) in the Extraction step:

it “RD' _ (.
{+1- Yzt Wy >0

it SRD _ (.
=L XYW <0

wi’

i=1,2,..,2L

(28)

A hash sequence is also generated from the normalized
region to obtain the final watermark sequence
W ={w)i=12,...,Ly}.

In Watermark Decision, the original watermark W is
compared with the extracted watermark W'. The presence
of a watermark is confirmed when the bit error between
W and W' is less than a user-defined threshold T,,, which
is determined by the probability of detection error due to
false-positive or false-negative detection. The rate of
false-positive detection is defined as the probability of
successful watermark detection from an un-watermarked
image, and the false-negative rate is the probability of
failure in detecting watermark from a watermarked
image. However, it is difficult to analyze the false-nega-
tive rate because a wide variety of attacks could be
applied to a watermarked image. The threshold is
generally decided by maintaining an extreme low false-
positive rate of watermark detection [18,19,22,24,26,27].

We first define pgp_g as the probability of false-positive
detection of a watermark bit from its corresponding
repeating bits. Each extracted repeating bit of an
un-watermarked region in the detection procedure is

treated as an independent random variable with prob-
ability 0.5. Based on Bernoulli trials, the probability can be
defined by

t

Drp-p= Z

i=[(t+1)/2]

(f) {(0.5)-(0.5) (29)

where t is the repeating times and the [-] is a ceiling
function that maps a real argument to the smallest
following integer. Then the probability of false-positive
detection from an un-watermarked region is calculated by

Ly

DPrp-w = Z

i=Ly—Ty

Ly i Ly—i
( ; )'(PFP-B) “(1=pepg)™ " (30)

The detection of watermark for each region is
performed by locally searching N; times to deal with the
problem of feature detection errors [18,21,24,26]. If there
is at least one successful detection, the region is claimed
as watermarked. Therefore, the probability of false-posi-
tive detection is

Ns /N, . .
DPEP-Region = Z ( is) “Prpw) - (=P (31)
i=1
The existence of a watermark in an image is deter-
mined if at least [ regions are successfully detected as
watermarked. Finally the probability of false-positive
detection of an image can be calculated as follows:

Ng N . .
pFP-lmage = Z ( iR> '(pFP—Region)l '(l *pFP-Region)NRﬂ (32)
i=1
The value of T, could be decided according to the
desired probability of false-positive detection of an image.
In Fig. 4, we demonstrate the curves of pgp_jmage (in log
scale) versus the watermark detection threshold T,, for
L,=128, Ny=25, and [=1, 2, 3, where the solid line
and the dashed line denote Nz=100 and Nz=200,
respectively.
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Fig. 4. Curves of prp_jmage (in log scale) versus the watermark detection threshold T,, for L,,=128, Ns=25, and I=1, 2, 3; the solid line represents the curve

for Nr=100 and the dashed line represents the curve for Ng=200.

4. Experimental results

4.1. Evaluation of robustness

In the experiments a region-dependent watermark
sequence is generated with the length 256 (L, =128, N,=4,
N,=38) and repeated 16 times. The parameters of initial scale,
scale step factor between two successive levels, and the
number of scale levels, in feature detection, are set as 1.5, 1.1,
and 15, respectively. The local search is performed 25 times
(five for orientation and five for location), and the threshold
T,y is set at the pgp.fmage=5.0 x 107°>. In the related feature-
based methods [17,18,22,24], Prp.jmage iS set to about
50x 1075 1074 5.0x 1074 and 3.1 x 104, respectively.
Therefore, the probability of false positive detection is low
enough to claim that the robustness evaluation is meaningful.
The experiments are conducted on three well-known
512 x 512 images, Lena, Baboon, Peppers, and the other
100 images collected from the Uncompressed Color Image
Database (UCID) [45]; these images are converted into
gray-level images to test. Fig. 5 shows the three images
watermarked by the proposed method. The peak-signal-to-
noise-ratio (PSNR) values between the cover image and its
watermarked image for Lena, Baboon, and Pepper are
41.51dB, 39.36dB, and 42.21 dB, respectively. The PSNR
values for those 100 images are between 38 dB and 45 dB.
Clearly, it is difficult to visually distinguish the cover image
from the watermarked one.

1) Performance of the feature region selection: the perfor-
mance of the feature region selection procedure will

affect the watermark robustness. To verify the effec-
tiveness of the proposed selection procedure, we first
evaluate the repeatability ratio between the selected
feature regions in the original image and the ones in its
attacked version for the above-mentioned 100 test
images. We conducted the attacks listed in the
standard benchmark program, StirMark [35], a print-
scan attack, and six cropping attacks that include three
centered cropping attacks, two ROI cropping attacks,
and one random cropping attack in this evaluation. For
the print-scan attack, the images were printed with
300 dpi by HP LaserJet 4350. The printed images were
scanned with 300dpi by the Fuji Xerox DocuPrint
C3290FS, and then were cropped and resized using
bicubic interpolation to their original size. The
centered cropping attacks cut off the surrounding
areas and the ROI cropping attacks remove the parts
of no interest. The random cropping attack retains a
region of a randomly decided size in the target image
and removes the rest of that image. In the evaluation,
the region-to-region correspondence between a
selected region in the original image and a relative
one in the attacked image is obtained if their distance
in location of center point is less than 1.5 pixels and
their surface error in cover area is less than 20% [32].
We calculate the repeatability ratio that denotes the
number of region-to-region correspondences to the
number of selected feature regions in the original
image. The average repeatability ratio of those 100
test images is shown in Table 1. We can observe that
the ratio is about 0.55 in average for the noise-like
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Fig. 5. Watermarked images (a) Lena (41.51 dB), (b) Baboon (39.36 dB), and (c) Pepper (42.21 dB) processed by the proposed watermarking algorithm.

Table 1
Repeatability ratio of the selected regions and watermark detection results for the 100 images collected from the UCID image database [45] against
geometric and noise-like signal processing attacks.

Attacks Repeatability ratio BER Correlation coefficient Detection ratio Detection failures
Centered cropping 10% 0.50 0.27 0.469 0.37 0
Centered cropping 25% 0.35 0.27 0.467 0.26 0
Centered cropping 50% 0.13 0.28 0.443 0.10 0
Random cropping 0.22 0.26 0.481 0.18 0
ROI cropping-1 0.20 0.26 0.479 0.16 0
ROI cropping-2 0.21 0.26 0.475 0.17 0
Rotation 5+ auto-cropping 0.46 0.23 0.550 0.33 0
Rotation 15+ auto-cropping 0.33 0.22 0.555 0.23 0
Rotation 30+ auto-cropping 0.24 0.23 0.549 0.17 0
Rotation 45 +auto-cropping 0.21 0.23 0.538 0.16 0
Scaling 0.75 0.20 0.24 0.515 0.09 0
Scaling 0.9 0.61 0.26 0.473 0.12 0
Scaling 1.1 0.76 0.23 0.549 0.15 0
Scaling 1.2 0.34 0.23 0.543 0.18 0
Aspect ratio change (0.9 1.0) 0.64 0.34 0.321 0.10 5
Aspect ratio change (1.0 1.1) 0.72 0.34 0.319 0.12 2
Line removed-17-row, 5-column 0.74 0.33 0.341 0.24 0
Line removed-5-row, 17-column 0.74 0.33 0.345 0.27 0
Linear (1.013, 0.008, 0.011, 1.008) 0.71 0.27 0.470 0.46 0
Linear (1.010, 0.013, 0.009, 1.011) 0.70 027 0.466 0.46 0
Random bending 0.27 0.30 0.403 0.15 0
JPEG 50 0.77 0.31 0.387 0.40 0
JPEG 30 0.71 032 0.369 0.26 0
Median 3 x 3 0.49 030 0.403 0.28 0
Median 5 x 5 0.18 0.31 0.371 0.08 1
Sharpening filter 0.61 0.29 0.423 0.33 0
Gaussian filter 0.52 0.27 0.464 0.34 0
Print-scan 0.59 0.31 0.389 0.24 0

signal processing attacks and 0.44 in average for the
geometric attacks. Therefore, the selected regions are
stable and can resist most of the attacks.

Secondly, we consider the overall area of the water-
marked regions that are selected from all extracted
feature regions for the three well-known images and
100 additional images. If the watermarked regions
cover most area of an image, it will decrease the risk
of failure in detecting a watermark under random and
ROI cropping attacks. As shown in Fig. 6, the circular
regions are the watermarked regions selected by the
proposed method for the three well-known images.
Obviously, these regions cover most of the image area

without overlapping. We also calculate the ratio of
overall area of the watermarked regions over all
extracted feature regions as listed in Table 2. The
result is compared with those obtained by two con-
ventional feature-based watermarking methods,
namely the cornerness-based method and the
density-based method. The first method adopts corner
responses to select non-overlapping watermarked
regions [18]. The second method refers to the number
of neighboring feature points insides a region to
remove the overlapping regions [17,22]. To make the
comparison as fair as possible, the only difference in
three methods is the region selection process, while
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Fig. 6. Watermarked regions selected by the proposed method in (a) Lena, (b) Baboon, and (c) Peppers images.

Table 2
Comparison of the ratio of overall watermarked area over all extracted
feature regions on Lena, Baboon, and Peppers images.

over an image, such as the SURF, SFOP, and salient
region detectors [44]. Our feature region selector can

Methods Lena (%) Baboon (%) Peppers (%)
Cornerness-based method  44.0 39.6 38.6
Density-based method 46.5 53.7 56.1
Proposed method 63.4 62.4 61.6

the feature detection process is the same. From
Table 2, we can observe that the ratio of cover area
using our method is about twenty percent higher than
one of the cornerness-based method, and about ten
percent higher than one of the density-based method.
For the additional 100 test images, the average ratios
of coverage area of the watermarked regions over all
extracted feature regions are 59.9%, 54.6%, and 42.2%
using the proposed method, density-based method,
and cornerness-based method, respectively. Though it
is hard to obtain a region set covering the whole image
due to the variety of region sizes and the limitation of
non-overlapping between regions, our method
achieves the greatest coverage in the comparison with
some existing methods [17,18,22]. For the procedure
in [24], we think that the MST clustering algorithm
could be used to select the regions with the greatest
distribution if the distance constraint is set appropri-
ately, and it can remove the region overlaps in each
group based on the cover range. However, the issue of
feature region selection related to the cropping attacks
is not considered in their paper. Comparing with the
track-with-pruning selection procedure in [26], the
proposed selection procedure is more suitable to
achieve the desired goal; because the optimal value
is unknown, the track-with-pruning procedure needs
to search all possible candidate region sets to deter-
mine the best region set (there are 2M—1 possible
candidate region sets for Ny feature regions).

However, the coverage of feature regions extracted by
the feature detector may affect the distribution of
following feature region selection. Basically, this issue
could be improved by applying the feature detectors
that can extract feature regions with larger coverage

~

work in coordination with these feature detectors and
determine a non-overlapping feature region set with
larger distribution over the whole image. In this paper,
the feature region selection work is formulated as an
optimum problem, constricted by image quality and
regions’ overlapping circumstances, and solved by a
genetic algorithm-based procedure. According to
experimental results, the non-overlapping feature
region set selected by the proposed method achieves
the greatest coverage in comparison with some exist-
ing methods [17,18,22] from the feature regions
extracted by the Harris-Laplacian detector. This
advantage is also kept when other feature detectors
are adopted. Nevertheless, the performance of these
detectors is worse than the Harris-Laplacian detector
to defend other attacks. This issue deserves further
investigation in the future.

Resistance to cropping attacks: To validate the robust-
ness of our method against cropping attacks, we
conducted the six cropping attacks mentioned above
on the watermarked images. Fig. 7 shows the cropped
versions of the watermarked Lena image after attack.
The watermark detection results with respect to the
six cropping attacks are illustrated in Tables 1 and 3.
The detection ratio refers to the ratio of the number of
successfully detected regions with respect to the total
number of watermarked regions in an image. Table 1
shows the average detection ratio of the 100 test
images, which denotes the mean of detection ratios
from those correctly detected images under the
conducted attacks. The criterion of detection failures
denotes the number of images whose hidden water-
marks cannot be detected from any regions among the
100 test images. The coefficient of linear correlation
and bit error rate (BER) between the original water-
mark and the extracted watermark from the correctly
detected watermarked regions are also calculated, and
their average values are illustrated in Table 1. The
experimental results for Lena, Baboon, and Peppers
images in Table 3 are also compared with those of
several existing feature-based methods, Tang and
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Fig. 7. Watermarked Lena image cropped by (a) centered cropping 10%, (b) centered cropping 25%, (c) centered cropping 50%, (d) random cropping,
(e) ROI cropping-1, and (f) ROI cropping-2.

w
=

Hang’s method [17], Seo and Yoo’s method [18], Wang
et al. [22], and Deng et al. [24]. The symbol—indicates
that the test result was not provided in the reference
paper. It can be found that the proposed method is
clearly robust against cropping attacks since there is at
least one survival region. Referring to Eq. (32), the
false-positive rate is low enough to confirm that
the robustness of our method is meaningful. Previous
methods [17,18,22,24] show robustness against
centered cropping attacks, but may fail in ROI or
random cropping attacks since their watermarked
regions are not sufficiently distributed over an image.
For example, Fig. 8 demonstrates the watermarked
regions on the Lena image in [17,18,22,24] whose
coverage of the regions is less than ours, as shown
in Fig. 6(a). The watermarked Lena images in
[17,18,22,24] are not able to resist the random crop-
ping or the ROI cropping.

Resistance to noise-like signal processing and other geo-
metric distortions: the standard benchmark program,
StirMark [35], and the print-scan attack mentioned
above are adopted to evaluate the robustness of test
images against different attacks. Tables 1 and 3 illus-
trate the detection results against various attacks,
including JPEG compression, median filter, Gaussian
filter, sharpening filter, print-scan attack, rotation
scaling, aspect ratio change, line removed, linear

transform, and random bending. We can observe that
the images watermarked by the proposed method are
robust against most attacks, including noise-like signal
processing and geometric distortions. Although the
average detection ratio is not exactly high for all
attacks, it is enough to prove the existence of the
hidden watermarks in images. Referring to the feature-
based watermarking methods [16-27], the copyright
of an image can be confirmed if its watermark can be
detected from at least one feature region under the
low probability of the false positive detection.
However, the detected feature regions are less resis-
tance to the aspect ratio attacks since the Harris-
Laplacian detector use the uniform Gaussian scale-
space [31,32]. The repeated watermark embedding is
adopted to mitigate this problem, but it still fails on
few images since there is a large difference between
the embedded region and its corresponding one after
attack. Compared with the results in [17,18], our
method has better resistance to some attacks. For exam-
ple, the watermarked Lena and Baboon are undetectable
after Rotation 5 degrees in [17], and those in [18] cannot
tolerate JPEG 30. The methods presented in [22,24] also
demonstrated the robustness on watermarking. But the
coverage issue of the selected watermarked regions was
not considered in these methods, and it may be fragile
against the ROI cropping or random attacks.
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Comparison of watermark detection results for Lena (L), Baboon (B), and Peppers (P) image against geometric and noise-like signal processing attacks.
The detection ratio denotes the ratio of the number of successfully detected regions with respect to the total number of watermarked regions. The symbol

- indicates that the test result was not provided in the reference paper.

Attacks Proposed method Method in [17] Method in [18] Method in [22] Method in [24]

L B P L B P L B P L B P L B P
Centered cropping 10% 8/22 6/31 11/27 2/8 2/11 2/4 - - - - - - 7113 10/17 7/18
Centered cropping 25% 5/22 4/31 9/27 - - - 4/7 17 2/8 - - - - - -
Centered cropping 50% 1/22 2/31  2/27 - - - - - - 4/6 6/12 5/8 - - -
Random cropping 3/22 2/31 5/27 - - - - - - - - - - - - -
ROI cropping-1 1/22 5/31  4/27 - - - - - - - - - - - - -
ROI cropping-2 1/22 3/31  9/27 - - - - - - - - - - - - -
Rotation 5+ auto-cropping 3/22 5/31 13/27 0/8 0/11 0/4 - - - 4/6 5/12 5/8 8/13 8/17 10/18
Rotation 15+ auto-cropping 2/22 1/31 8/27 - - - - - - 3/6 4/12 4/8 - - -
Rotation 30+ auto-cropping 1/22 1/31  3/27 - - - - - - 2/6 4/12 2/8 5/13 8/17 7/18
Rotation 45 +auto-cropping 1/22 1/31  3/27 - - - 2(7 17 17 - - - - - - -
Scaling 0.75 122 1/31 227 - - - 3/7 0/7 6/8 - - - - - - -
Scaling 0.9 1/22 1/31  3/27 - - - 4/7 2|7 6/8 3/6 5/12 3/8 - - -
Scaling 1.1 2022 231 627 - - - - - - - - - - - -
Scaling 1.2 122 231 927 - - - - - - - - - - - -
Aspect ratio change (0.9 1.0) 1/22 1/31  1/27 - - - - - - - - - - - -
Aspect ratio change (1.0 1.1) 1/22 1/31  2/27 - - - - - - - - - - - -
Line removed-17-row, 5-column  3/22 3/31 8/27 - - - - - - - - - - - -
Line removed-5-row, 17-column  6/22 5/31 8/27 0/8 3/11 1/4 5/7 1/7 5/8 - - - 7113 7/17  8/18
Linear (1.013, 0.008, 0.011, 1.008) 5/22 6/31 13/27 4/8 5/11 0/4 7|7 0/7 5/8 - - - 9/13  6/17 7/18
Linear (1.010, 0.013, 0.009, 1.011) 5/22 5/31 12/27  4/8 4/11 1/4 717 17 7/8 - - - 713 7/17  10/18
Random bending 4/22 331  7/27 - - - 4/7 0/7 3/8 3/6 7/12 6/8 7/13  12/17 12/18
JPEG 50 7/22 5/31 927 5/8 7/11 3/4 17 17 4/8 4/6 8/12 6/8 11/13 15/17 15/18
JPEG 30 3/22 431 4/27  2/8 4/11 0/4 0/7 0/7 4/8 216 8/12 4/8 10/13 14/17 16/18
Median 3 x 3 7/22 331 6/27 1/8 2/11 1/4 - - - 36 7/12 4/8 7113 12/17 16/18
Median 5 x 5 2/22 1/31  3/27 - - - - - - - - - - - - - - -
Sharpening filter 522 431 7/27 4/8 411 4/4 17 0/7 5/8 3/6 6/12 5/8 - - -
Gaussian filter 6/22 5/31 9/27  5/8 8/11 1/4 37 17 5/8 - - - 5/13 8/17 11/18
Print-Scan 2/22 2/31  1/27 - - - - - - - - - - - - - - -

Fig. 8. Watermarked feature regions in Lena image selected by (a) [17], (b) [18], (c) [22], and (d) [24].

4.2. Security analysis

The three tasks of feature detection, feature region
selection, and region-dependent watermarking in the
proposed method relate to security enhancement.
Detailed analysis about region-dependent watermarking
has previously been presented [39]. However, there still
exist possible security threats to the feature-based water-
marking methods while only using the region-dependent
watermark, such as the copy attack to similar feature
regions. For example, an attacker can estimate the hidden
region-dependent watermark from a feature region A in a
watermarked image. Then a feature region B, which is
similar content to the region A, is searched from the target

image. Finally, the estimated watermark from region A is
added into region B for forming a counterfeit water-
marked image. The copy attack will be successful because
the feature regions’ locations and sizes are publicly
known, and the feature regions with similar contents
have the similar media hashes. In order to mitigate the
security risk, we incorporate randomization in feature
detection and feature region selection. In this paper, we
focus on security analysis for feature detection and
feature region selection. According to Kerckhoffs’ principle,
it is assumed that malicious attackers know details of the
watermarking method except for the secret key. Under
this assumption, the probability of a successful attack
depends on the randomness of watermarking [40].
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Estimating or forging a watermark will be more difficult
when the watermarking method has a higher degree of
randomness. Therefore, a differential entropy function
[41] is employed to evaluate the security capability of
the proposed method on feature region detection and
selection. The differential entropy, h(y), of a continuous
random variable y is defined as

hy) = — /Y F@logfy)dy (33)

where Y is the support set of the random variable and f{ - )
is probability density function.

The process of feature detection can be separated into
deterministic and random parts. The deterministic part is
to identify feature points and their characteristic scales,
and this part is easily recognized by attackers since its
details are all public. The random part is to obtain each
circular feature region with a secret radius equal to the
product of the characteristic scale of corresponding
feature point and a secret key. We assume that a char-
acteristic scale is a constant factor o, and a secret key is
uniformly distributed over the interval [o(min,%max]-
Considering various radii for generating feature regions, the
probability density function of a secret radius r is given by

if(xmin < 00 < Olmax;

S T
fn= { a0 mn e ! (34)

0, otherwise.

The differential entropy of the feature region detection
can be written as

OlmaxTc 1
h(r)= /y f(r)logzﬁdr

minTc
Omax0c ‘1 ‘l
=— / log, ( )dr
ominge  O%max0c—%minO¢c Omax0c—0minOc
=108, (0tmaxTc—0lminTc)- 35)

The randomness in feature region selection is mainly
on the key-dependent pseudo-random number, f;, which
are Gaussian distributed with mean p and variance ¢2. As
shown in Eq. (9), those numbers are combined with the
radii of extracted feature regions as the fitness of
GA-based heuristics. The combined values can be consid-
ered as the weighted Gaussian distributed random vari-
ables, y, with mean and variance shown by

Ey)=p-r (36)
Var(y)=a?-r%. 37)
Its probability density function is given by
] 2 2,2
- e y—un)/20%r% 38
0= Tz G

Therefore, the differential entropy of the feature region
selection can be written as

1 1 2 9 52p2
— In—— —_ Y a=(y—un®/20%r
h) /f(y) nfO’) dy / 2no2r? ¢

(v 2
x [M_wm} dy= 1+ %lnzmzrz

2022 2

_1 1 202 _ 1 2,2
= 2lne+ 21n27w r°= 2ln2neo re. 39)

Changing the base of the logarithm, the differential
entropy is

hy) = %logz 2med?r?. (40)

As a result, the degree of randomness to the feature
detection and feature region selection of the proposed
scheme can be estimated by Egs. (35) and (40), respec-
tively. Moreover, as the interval [0(yin,%max] OF the variance
o2 is increased, the degree of security will be enhanced. It
should be noted that the interval controlling the secret
radius is constricted to the characteristic scale, the image
size, and the watermark length. The secret radius should
not be too small since the capacity of feature region
cannot be smaller than the watermark length. On the
other hand, it should not be too large since the range of
feature region cannot exceed the image size.

Table 4 compares degrees of watermark security of our
method and other existing feature-based methods
[17,18,22,24]. The symbols @ and O denote the method
with and without a specific property, respectively. The
region-dependent watermarking avoids the problem of
hiding the same watermark multiple times, and it was
not explicitly considered [17,18,22,24]. The randomness
of feature detection and feature region selection prevents
an attacker from estimating the exact range and location
of the watermarked area. The method in [17] extracts
feature regions by Mexican Hat wavelet scale interaction
and selects feature regions based on the number of
neighboring feature points insides a region; however its
two processes are public to adversaries. The watermark-
ing method proposed in [18] also does not include
randomness in their feature detection and selection
process. In [22], Harris-Laplacian detector is adopted
and the local characteristic regions are extracted by a
secret integer. Its differential entropy is the same as our
analysis here about feature detection, but the limitation in
interval values reduces its randomness, as mentioned
above. In [24], the distance constraint D in the feature
selection process is regarded as a secret parameter. We
assume that D is uniformly distributed over the interval
[Dmin,Pmax], S0 the differential entropy is 108, (Dmax—Dmin)-
However, the randomness is limited since the interval is
constricted by the region size and image size. A too large
value of D may cause that only one feature region is retained.

Table 4

Comparison of watermark security degree between the proposed
method and related methods. The symbols ® and © denote the method
with and without a specific property, respectively.

Property Proposed Method Method Method Method
method in[17] in[18] in[22] in [24]

Region- [ ] o o o o

dependent

watermark

Randomness of @ o o [ o

feature

detection

Randomness of @ o o ) o

feature region

selection
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On the other hand, a too small D makes the clustering
ineffective.

4.3. Discussions

In this section, we discuss how to balance the three
conflicting factors: robustness, capacity, and impercept-
ibility in the three main processes of our method: feature
detection, feature region selection, and watermark inser-
tion. In the feature detection, there is a trade-off among
the three factors while determining the secret key for the
key-dependent radius of the feature region. A large value
of the secret key would increase the capacity of the region
to be watermarked, but the robustness and impercept-
ibility would be decreased [22,24]. Also, a too large value
would cause that the ranges of most feature regions
exceed the image size. On the other hand, the value
should not be too small since the capacity of feature
region cannot be smaller than the watermark length.
Therefore, we consider that the secret key should be large
enough to make all feature regions’ sizes equal or larger
than the watermark length, and should be small enough
to make the ranges of most feature regions not exceed the
cover range of an image in our empirical study.

In the feature region selection process, the capacity is
regarded as a constant since the same watermark is
embedded into each selected feature region in the
feature-based watermarking methods, and its size is
determined in the feature detection process. So, there is
a trade-off between robustness and imperceptibility in
the feature region selection. Selecting more feature
regions to watermarking will produce more redundant
watermarks for an image. This will increase the robust-
ness but decrease the imperceptibility of the image. In the
feature region selection process, we use the threshold T,
to limit the quality degradation of the image to be
watermarked and select the regions to achieve the best
robustness under the limitation. It decides the level of the
imperceptibility in the proposed method, and the robust-
ness of a watermarked image is also determined techni-
cally. For example, Ty is set as 40 dB by considering the
PSNR between an image and its watermarked image.
Then, embedding watermark into the selected regions
will not degrade the image quality below 40 dB.

Finally, in the watermark insertion process, there is
also a trade-off, related to the watermark embedding
strength for each region, between robustness and imper-
ceptibility. The capacity is still considered as a constant
since the region’s size is determined in the feature
detection process. A large embedding strength will
increase the robustness but decrease the imperceptibility.
Here, we use the noise visibility function (NVF) to deter-
mine the appropriate embedding strength, which can
avoid large degradation of image quality. The NVF that
characterizes the local image properties can achieve the
best balance for the two factors [42].

5. Conclusions

In this paper, we develop a novel method to jointly
enhance the robustness and security of feature-based

image watermarking schemes. The controlled randomiza-
tion is incorporated in determining the feature regions of
an image for mitigating the leakage of secret information.
In addition, an optimal selection process is proposed,
formulated as the multidimensional knapsack problem
and solved by genetic algorithm-based heuristics. The
experimental results of robustness evaluation demon-
strate that our method can effectively resist various
attacks, including noise-like signal processing and geo-
metric distortions. The security evaluation in terms of
differential entropy is also derived, and the performance
of the proposed method is confirmed.
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