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Abstract Estimating the pose of a plane given a set of point
correspondences is a core problem in computer vision with
many applications including Augmented Reality (AR), cam-
era calibration and 3D scene reconstruction and interpreta-
tion. Despite much progress over recent years there is still
the need for a more efficient and more accurate solution, par-
ticularly in mobile applications where the run-time budget is
critical. We present a new analytic solution to the problem
which is far faster than current methods based on solving
Pose from n Points (PnP) and is in most cases more accurate.
Our approach involves a new way to exploit redundancy in
the homography coefficients. This uses the fact that when
the homography is noisy it will estimate the true transform
between the model plane and the image better at some regions
on the plane than at others. Our method is based on locating
a point where the transform is best estimated, and using only
the local transformation at that point to constrain pose. This
involves solving pose with a local non-redundant 1st-order
PDE. We call this framework Infinitesimal Plane-based Pose
Estimation (IPPE), because one can think of it as solving pose
using the transform about an infinitesimally small region on
the surface. We show experimentally that IPPE leads to very
accurate pose estimates. Because IPPE is analytic it is both
extremely fast and allows us to fully characterise the method
in terms of degeneracies, number of returned solutions, and
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the geometric relationship of these solutions. This character-
isation is not possible with state-of-the-art PnP methods.

Keywords Plane · Pose · SfM · PnP · Homography

1 Introduction

Plane-based Pose Estimation (PPE) is a fundamental prob-
lem in computer vision and is the basis for many important
applications. At its core PPE means recovering the relative
pose of a model plane with respect to a camera’s 3D coordi-
nate frame from a single image of that plane. Applications
include estimating the pose of textured planar surfaces visi-
ble in an image or using planar markers to perform AR (Kato
and Billinghurst 1999; Munoz-Salinas). Another important
application is camera calibration using views of a planar
calibration target (Barreto et al. 2009; Zhang 2000; Sturm
2000; Geiger et al. 2012). In the classic pipeline, first the
camera’s intrinsics are estimated, then PPE is performed to
obtain the camera’s extrinsics, which is followed by joint
intrinsic/extrinsic refinement. Other important applications
of PPE include camera/projector calibration (Brown et al.
2005) and Shape-from-Texture (Collins et al. 2010; Hils-
mann et al. 2011; Lobay and Forsyth 2004, 2006).

There exist already many methods for solving PPE. These
can be broken down into two main categories. The first cat-
egory solves PPE by decomposing the associated plane-to-
view homography (Zhang 2000; Sturm 2000; Collins et al.
2010; Oberkampf et al. 1996). These methods are known
as Homography Decomposition (HD) methods. The second
category treats PPE as a special case of the general rigid
pose estimation problem from point correspondences. When
the camera is perspective, this is known as the PnP prob-
lem where n denotes the number of correspondences. We
use the term Planar-PnP to be a general PnP method which
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can handle the plane as a special case. HD works using
the fact that the transform induced by perspective or affine
projection of a plane is a homography. Once estimated the
homography can be factored very efficiently to give a pose
estimate. Solutions to HD exist for perspective cameras
(Zhang 2000; Sturm 2000) and for weak-perspective cameras
(Collins et al. 2010; Oberkampf et al. 1996). We call these
PHD methods and WPHD methods respectively. PnP meth-
ods work by optimising pose using a cost function related
to the correspondence transfer error. This is the error in the
predicted positions of point correspondences compared with
their measured positions. Research on PnP has either focused
on the special cases of n = 3 and n = 4 (Dhome et al. 1989;
Fischler and Bolles 1981; Gao et al. 2003a; Quan and Lan
1999; Haralick et al. 1991, 1994; Hung et al. 1984) or for
solving the problem with arbitrary n (Quan and Lan 1999;
Fiore 2001; Ansar and Daniilidis 2003; Li et al. 2012; Lepetit
et al. 2009; Lu et al. 2000; Oberkampf et al. 1996; Horaud et
al. 1997; Schweighofer and Pinz 2006; Hesch and Roumeli-
otis 2011).

There are two main differences between PHD and Planar-
PnP. Firstly state-of-the-art Planar-PnP methods significantly
outperform PHD methods with respect to noise. Secondly,
PHD methods return only a single solution. This means they
can fail badly under certain imaging conditions. For example,
when the homography is affine PPE is not solvable uniquely
(Schweighofer and Pinz 2006). When in weak-perspective
conditions there exists a rotation ambiguity that corresponds
to an unknown reflection of the plane about the camera’s
z-axis (Oberkampf et al. 1996). This can happen when imag-
ing small planes, or planes at a distance significantly larger
than the camera’s focal length. In these conditions the repro-
jection error of the two solutions can both be explained by
noise, and so the single PHD solution can be far from the
true solution about 50 % of the time. By contrast most recent
Planar-PnP methods can return multiple solutions which are
minima of their associated cost functions. Ideally one of these
corresponds to the true solution.

1.1 Approach, Motivation and Overview

The current approach to achieve high-accuracy PPE is to first
obtain an initial estimate using a non-iterative PHD or Planar-
PnP method, and then iteratively refine it by optimising the
reprojection error. The refined solution gives the Maximum
Likelihood (ML) estimate with a Gaussian IID noise model
on the correspondences. If the initialisation method returns
multiple solutions (which correspond to the minima of some
cost function), then each of these are refined and the one
with the lowest reprojection error is usually used as the pose
estimate. There is an ongoing demand for developing a more
efficient initialisation method. Ideally one that returns few
solutions, and ultimately be sufficiently accurate to eliminate

the need for refinement altogether. Achieving this is particu-
larly important for mobile or embedded applications where
reducing the runtime cost is imperative. Given that PHD is
significantly faster than Planar-PnP methods, we aim to find
a solution that performs as quickly as PHD, but with similar
or better accuracy than Planar-PnP methods.

PHD uses an 8-DoF homography matrix to estimate the
6-DoF pose. Therefore the problem involves redundant con-
straints. PHD deals with this redundancy by solving for the
best-fitting pose via an algebraic least-squares cost. This
assumes that the noise of the homography is IID Gaussian,
which is usually not a good approximation (Chen and Suter
2009). We propose an alternative method that uses the redun-
dancy in the homography coefficients to provide far better
pose estimates. Our method is based on the fact that when
the homography has been estimated from noisy correspon-
dences, the accuracy of this transform is spatially-varying.
That is, the homography will predict the transformation bet-
ter at some points on the model plane than others. Our method
is based on identifying a point on the model plane where the
transform is best predicted, and then solving pose with a non-
redundant, local system using motion information only at that
point. We use 1st-order error propagation to find this point,
which turns out to be well approximated by the centroid of
the points on the model plane.

Our main theoretical contribution is to show how pose can
be solved exactly via a PDE using 0th and 1st-order trans-
form information at a point on the model plane. We call our
approach Infinitesimal Plane-based Pose Estimation (IPPE).
We use this name because it can be thought of as solving
pose using transform information within an infinitesimally-
small region about a single point on the model plane. To
solve IPPE we use the fact that the PPE problem can be cast
as a variational problem where we equate two functions. The
first function is the composition of 3D rigid embedding and
camera projection. The second function is the transform of
the plane onto the camera’s image, estimated by the homog-
raphy. These two functions should be equivalent up to noise.
The technique we use is to equate these functions by equating
their Taylor series representations. By truncating the Taylor
series at 1st-order, we form a local 1st-order PDE giving six
constraints on pose. We show that these constraints boil down
to a univariate quadratic equation whose solution is equiva-
lent to finding the largest singular value of a 2× 2 matrix. It
is important to note that IPPE is not the same as solving PPE
by linearising the projection equations with a Taylor approx-
imation (as is done when the perspective camera is replaced
with an affine approximation, Oberkampf et al. 1996; Horaud
et al. 1997). That is, IPPE does not involve any linearisa-
tion because is uses an exact representation of the projection
equations via the PDE.

There is also an important connection between IPPE and
the P3P problem. Specifically, IPPE is the solution to the
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P3P problem when the three points are non-colinear and their
mutual separation becomes infinitesimally small. A formal
study of P3P for infinitesimally separated points has not been
presented in the literature before, so our analysis of IPPE
contributes to the understanding of P3P.

IPPE takes as inputs the coefficients of a homography,
and so it requires a minimum of four point correspondences.
Unlike PHD, IPPE does not break down if the homography
is affine. Empirically we show that IPPE performs very well
through extensive simulation and real experiments. It con-
sistently performs better than PHD, and in most cases out-
performs competitive Planar-PnP methods, whilst being far
faster because it solves pose analytically. Furthermore its ana-
lytic solution permits a full characterisation of the method.
Specifically, we give answers to the following core questions:

Q1 For what inputs does IPPE guarantee to return at least
one physically valid solution? Answer: All homography
matrices (including affine matrices) with rank greater
than 1.

Q2 How many physically valid solutions does IPPE return?
Answer: One or two.

Q3 What is the geometric relationship between the returned
solutions of IPPE? Answer: They correspond to a reflec-
tion of the plane about a viewing ray.

Q4 For what inputs does IPPE estimate translation uniqu-
ely? Answer: All homographies whose rank is greater
than 1.

Q5 For what inputs does IPPE estimate rotation uniquely?
Answer: When the plane is tangential to a 3D sphere
centred at the camera’s centre-of-projection.

Q6 Does IPPE introduce any artificial degeneracies? Ans-
wer: It does not.

Understanding whether a method introduces artificial
degeneracies is important. When solving PPE with a par-
ticular method two types of degeneracies can occur. The first
type are called generic degeneracies. These occur when the
geometric configuration of the camera, plane and point corre-
spondences are such that PPE cannot be solved uniquely. No
method can estimate the plane’s pose in these cases. The sec-
ond type are called artificial degeneracies. These occur when
the PPE problem is well-posed, but the method fails to return
the correct solution due to the geometric configuration. For
example, PHD introduces at least one artificial degeneracy
which is when the homography’s perspective terms are neg-
ligible. Competitive Planar-PnP methods do not solve pose
analytically, and so it is virtually impossible to have complete
answers to the above six core questions. They can usually give
upper bounds on question 1, but questions 2–6 are left unan-
swered. For instance Li et al. (2012) and Lepetit et al. (2009)
can give between zero and four solutions without theoretical
guarantees that the solutions will be geometrically valid.

1.2 Paper Structure

In Sect. 2 we review current state-of-the-art PPE methods.
In Sect. 3 we present IPPE, its solution and proofs for the
six core questions above. In Sect. 4 we evaluate IPPE against
state-of-the art methods using a large range of simulation
experiments. In Sect. 5 we evaluate IPPE in three common
applications; estimating the pose of a textured planar surface
from keypoint correspondences, estimating the pose of a pla-
nar checkerboard target and estimating the pose of planar AR
markers from four corner correspondences. Finally in Sect.
6 we present our conclusions and directions for future work.

1.3 Background and Notation

Vectors are given in lower-case bold and matrices in upper-
case bold. Scalars are given in regular italic. For a 2D matrix
M, Mi j denote the element in M at row i , column j . Mi j

denotes the i × j top-left sub-matrix of M. For a vector v,
vi denotes its ith element. We use Mi j to denote the top-left
i × j submatrix of M. We use SS2×2 to denote the 2 × 2
sub-Stiefel manifold in SO3 (i.e. M is in SS2×2 if it is a 2×2
submatrix of some 3×3 rotation matrix). ‖M‖F denotes the
Frobenius norm of a matrix and ‖v‖2 denotes the L2 norm
of a vector. Ik denotes the k × k identity matrix. We use M̂
to denote a noisy measurement of M. We define the model
plane in world coordinates on the plane z = 0. We denote
the rigid transform mapping a point in world coordinates to
the camera’s coordinate frame by the rotation R ∈ SO3 and
translation t ∈ R

3. We use s�i to be the ith row of R and
ri to be the ith column of R. We assume that the camera is
calibrated, and any distortion effects have been undone as
a pre-processing step. For perspective cameras the projec-
tion of a point in the camera’s coordinate frame onto the
image is determined by the camera’s intrinsic calibration
matrix K:

K =
⎡
⎣

fx s cx

0 fy cy

0 0 1

⎤
⎦ , (1)

where fx and fy denotes the camera’s effective focal length
along the x and y axes (in pixels), c = [cx , cy]� denote the
camera’s principal point and s denotes the camera’s skew.
We use the function π([x, y, z]�) = z−1[x, y]� to convert
a point [x, y, z]� in homogeneous 3D coordinates to inho-
mogeneous 2D coordinates. Perspective projection of a 3D
point x in camera coordinates is thus given by π(Kx). For a
point q in the camera’s image we use q̃ to be its position in
normalised coordinates:

q̃ = K−1
22 (q− c). (2)

We define {qi }, with i ∈ {1, 2, . . . , n} to be the set of n
correspondences where ui ∈ R

2 is a point’s position on the
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model plane and qi ∈ R
2 is its position in the image. Without

loss of generality we assume {ui } is zero-centred:
∑n

i=1 ui =
0. For a homography matrix H we define �H ⊂ R

2 to be the
subspace of R

2 that does not map via H to the line at infinity:

u ∈ �H iff [H31 H32 H33]
[
u�1

]� �= 0.

2 Related Work

2.1 Homography Decomposition (HD)

The first main approach to PPE involves estimating the
homography associated with the model-to-image transform.
This is followed by HD which gives an analytic solution to
pose (Zhang 2000; Sturm 2000; Collins et al. 2010).

2.1.1 Perspective Homography Decomposition (PHD)

The transform from a point u ∈ R
2 on the model plane to the

image of a perspective camera is described by the following
homogeneous system:

[
q̃
1

]
∝ [I3 0]

[
R t
0� 1

]⎡
⎣

u
0
1

⎤
⎦ ∝ H

[
u
1

]
. (3)

Points q̃ and u are related by a 3 × 3 matrix H known
as the model-to-view homography. This is given by λH =[

r1 r2 t
]

for some λ ∈ R. We assume H has been estimated
up to noise:

Ĥ def= H+ εH = λ−1[r1 r2 t] + εH , (4)

where εH denotes a 3× 3 measurement noise matrix. In the
absence of noise the columns of Ĥ give r1, r2 and t uniquely.
Denoting ĥ j to be the j th column of Ĥ, λ is given trivially
by λ̂ = ‖ĥ1‖−1

2 = ‖ĥ2‖−1
2 . r1, r2 and t are then given by

the columns of λ̂Ĥ. From r1 and r2 the full rotation matrix
is recovered with R = [r1 r2 r1 × r2]. With noise, pose can
be estimated in a least squares sense as proposed by Zhang
(2000) and Sturm (2000). Zhang’s method works by first
relaxing orthonormality between r1 and r2. This gives the
estimates r̂ j = λ̂ j ĥ j , j ∈ {1, 2} with λ̂ j = ‖ĥ j‖−1

2 . λ and t
are estimated with λ̂ = (λ̂1 + λ̂2)/2, and t̂ = λ̂ĥ3. r3 is then
estimated with r̂3 = r̂1 × r̂2. The matrix

[
r̂1, r̂2, r̂3

]
is then

projected onto the closest member of SO3 (in the Frobenius
sense) to give a valid rotation matrix using Singular Value
Decomposition (SVD).

Sturm’s method differs in that it does not first relax ortho-
normality. Instead εH is assumed to be IID Gaussian and the
ML solution is found by solving the least squares problem:

min
λ,r1,r2,t

∥∥∥λĤ− [ r1 r2 t
]∥∥∥2

2
s.t. [r1 r2]�[r1 r2] = I2. (5)

This can be solved very efficiently by taking the SVD of the
left 3× 2 submatrix of Ĥ. Zhang and Sturm’s methods have
been shown empirically to perform similarly and are very
fast.

2.1.2 Weak-Perspective Homography Decomposition
(WPHD)

HD has also been applied to estimate pose with weak-
perspective cameras (Collins et al. 2010; Oberkampf et al.
1996). Weak-perspective projection is a linear projection that
comes by linearising perspective projection about a point on
the camera’s optical axis (Faugeras et al. 2001; Horaud et
al. 1997). The transform from a point u ∈ R

2 on the model
plane to the image of a weak-perspective camera is described
by the following homogeneous system:

q̃ = α [I2|0]

(
R
[

u
0

]
+ t
)
+ εwp ⇔

[
q̃
1

]
= Awp

[
u
1

]
+
[

εwp

1

]

Awp
def= α

⎡
⎣R22

[
t1
t2

]

0� 1

⎤
⎦

(6)

εwp ∈ R
2 denotes modelling error introduced by approxi-

mating perspective projection with weak-perspective projec-
tion. εwp becomes smaller when the variation of the model’s
depth is small compared to its average depth (i.e. the plane
is small and/or its tilt angle is small), and when it projects
closely to the camera’s principal point (Horaud et al. 1997).
α is the inverse depth of the plane along the optical axis.
Given an estimate of Awp, when εwp is neglected we obtain
a unique estimate for α and two estimates for R. These corre-
spond to a two-fold solution ambiguity that are equivalent to
reflecting the model in camera coordinates about the plane
z = 0 (Oberkampf et al. 1996). For either estimate of R,
t can be computed uniquely. If the camera’s intrinsics are
known up to its focal length, the two solutions to R can be
computed, but t cannot be computed (Collins et al. 2010).

2.1.3 Comparing Perspective and Weak-Perspective
Homography Decomposition

PHD and WPHD are different in three main respects. Firstly
in WPHD the system is not redundant, because Awp gives 6
equations for pose, whereas H gives 8 equations. Thus noise
must be neglected in WPHD to have a well-posed problem
(because it is exact). Secondly, in WPHD the solution to R is
always two-fold ambiguous, except in the special case when
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the plane is fronto-parallel to the camera (Oberkampf et al.
1996). In PHD it is always unique. However PHD fails when
there is a small amount of noise and H tends towards being
affine (Schweighofer and Pinz 2006). Thirdly, WPHD tends
to return worse solutions when H is not affine due to the mod-
elling error induced by linearising perspective projection.

2.2 Pose Estimation from n Point Correspondences (PnP)

The second main approach to PPE is to solve R and t directly
from point correspondences. These solve the PnP problem
and treat planar models as a special case. PnP methods can
be broadly divided into those which solve for small, fixed
n, or those which handle the general case. The P3P problem
has been studied extensively (Dhome et al. 1989; Fischler
and Bolles 1981; Gao et al. 2003a; Haralick et al. 1991, 1994;
Quan and Lan 1999) and yields up to four solutions when the
points are non-colinear. Thus, additional points are required
in general to solve pose uniquely (Fischler and Bolles 1981;
Zhang and Hu 2005). For planes, P4P has a unique solution
when no 3 points are colinear (Hung et al. 1984). Meth-
ods which solve the general PnP problem aim to exploit
the redundancy of more correspondences to achieve higher
accuracy. General PnP methods can be broadly divided into
whether they are non-iterative (Quan and Lan 1999; Fiore
2001; Ansar and Daniilidis 2003; Li et al. 2012; Lepetit et
al. 2009) or iterative (Lu et al. 2000; Oberkampf et al. 1996;
Horaud et al. 1997; Schweighofer and Pinz 2006). Early non-
iterative PnP methods were either computationally expensive
and did not scale well for large n (Quan and Lan 1999; Ansar
and Daniilidis 2003), or cheap but quite sensitive to noise
(Fiore 2001).

The earliest practical solutions to PnP when n is large
involved iteratively approximating perspective projection
with an affine camera, using either the weak-perspective cam-
era (Oberkampf et al. 1996) or the para-perspective cam-
era (Horaud et al. 1997). Both Oberkampf et al. (1996) and
Horaud et al. (1997) solved the problem in a similar way.
First pose was computed with the affine camera. Next the
error induced by the affine camera approximation was esti-
mated, and this error was fed back into the system to adjust
the constraints on pose. Pose was then re-computed with this
adjusted system. The process then iterated between estimat-
ing the affine approximation error, adjusting the pose con-
straints and estimating pose. For planar models the pose esti-
mates at each iteration are two-fold ambiguous. To prevent
the solution space exploding two-fold with each iteration
Oberkampf et al. (1996) and Horaud et al. (1997) pruned
the solutions. Two solutions were maintained in Oberkampf
et al. (1996), with one being eliminated if its perspective
reprojection error was large relative to the other. In Horaud
et al. (1997) both solutions were retained in the first iter-
ation. These initialised two search branches, and for each

branch only one solution was picked at each iteration (that
which had the smallest reprojection error). Finally the sin-
gle solution was chosen with smallest reprojection error. The
major limitation of these methods is that they are rather slow
and neither convergence nor optimality can be guaranteed.
It also becomes hard to distinguish the correct pose when
either noise is large, or the error in the perspective approxi-
mation is large. We note here that Oberkampf et al. (1996) and
Horaud et al. (1997) are related to our proposed framework
in one sense. IPPE instantiated with the para-perspective
and weak-perspective cameras give the same solution as the
first iteration of Oberkampf et al. (1996) and Horaud et al.
(1997) respectively. Where IPPE differs is in being able to
properly handle the perspective camera exactly and non-
iteratively.

Lu et al. (2000) proposed an accurate iterative PnP method
called RPP that does not make an affine camera approx-
imation. The method is provably convergent and remains
one of the best performing PnP methods to date. It was
later extended by Schweighofer and Pinz (2006) to handle
ambiguous cases for planes. In Schweighofer and Pinz (2006)
first a pose is estimated using Lu et al. (2000), and then a sec-
ond solution is found corresponding to a local minimum of
the reprojection error with respect to a 1-DoF rotation. Thus
two solutions are returned and if their reprojection errors are
similar it indicates an ambiguous configuration. This method
is called RPP-SP. The shortcomings of RPP-SP are that if the
solution provided by Lu et al. (2000) is poor, it is not likely
to find a good second solution. Secondly, it is relatively slow
as it relies on Lu et al. (2000) to estimate the first pose.
Thirdly, it is very difficult to geometrically characterise the
pose ambiguity, as the second solution is found from the roots
of a 4th order polynomial (two of which are guaranteed to be
imaginary).

More recently efficient non-iterative PnP methods have
been proposed which are significantly faster than iterative
ones. EPnP (Lepetit et al. 2009) solves the problem numer-
ically in O(n) by re-representing the 3D points using a
weighted sum of four virtual control points. This means the
problem size does not grow with n and so scales well for hun-
dreds of points. A Direct Least Squares (DLS) approach was
presented in Hesch and Roumeliotis (2011). Very recently
RPnP has been proposed (Li et al. 2012). This is another
non-iterative O(n) solution which solves PnP by grouping
the points into subsets of size three. Each subset corresponds
to a P3P problems that is solvable with a 4th-order poly-
nomial. These polynomials are combined in a least-squares
manner to form a 7th order polynomial whose roots each
give a solution to pose. The accuracy of RPnP rivals (Lu
et al. 2000), yet is far faster to compute. However, RPnP
makes no guarantees on the number of returned solutions.
Furthermore a geometric characterisation of its solutions is
impossible.
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3 Infinitesimal Plane-Based Pose Estimation (IPPE)

We now present IPPE. We start by showing that given Ĥ,
we can constrain pose using a local 1st-order PDE. This
PDE involves estimates of the 0th and 1st-order terms of the
model-to-image transform function at a single point on the
model plane. These terms are computed analytically from
Ĥ. When Ĥ contains errors, the PDE will have error-in-
variables. The advantage of this PDE being local is that we
are free to apply it anywhere on the model plane. Thus we can
apply it at the point where we expect to have the best local
estimate of the transform. This leads to a reduction of the
error-in-variables in the PDE, and leads to a more accurate
pose estimate.

3.1 Local Constraints on Pose with a 1st-order PDE

The variational system that describes the rigid embedding
and perspective projection of the model plane is simple. We
use s(u) = R[u�, 0]�+ t : R2 → R

3 to denote the true (but
unknown) embedding from world to camera coordinates. s
is then composed with the projection function π to give the
plane-to-image transform w:

w(u)
def= π

(
H
(
[u�, 1]�

))
= (π ◦ s) (u). (7)

H is the noise-free homography that transforms the model
plane to normalised image coordinates. Consider a single
point u0 ∈ �H that does not map via H to the line at infinity.
Eq. (7) provides us with two 0th-order constraints on s with:

w(u0) = π
(

H
(
[u�0 , 1]�

))
= (π ◦ s)(u0), w(u0) ∈ R

2.

(8)

Because π is smooth and s is a linear transform, w is also
smooth. Thus by differentiating Eq. (7) we can obtain four
1st-order constraints on s via the product rule:

Jw(u0) = (Jπ ◦ s)(u0)Js(u0) , Jw(u0) ∈ R
2×2, (9)

where J f denotes the function that computes the Jacobian
matrix of f . Because s is a rigid transform Js(u0) = R32 so:

Js(u0)
� Js(u0) = I2. (10)

Our goal is to estimate t and R by first estimating s(u0)

and Js(u0) by solving a 1st-order PDE using Eqs. (8), (9)
and (10). Because Eqs. (8) and (9) give us six constraints
(which is the minimal number of constraints needed to esti-
mate pose), we can solve this PDE pointwise. That is, for a
given u0 we estimate s(u0) and Js(u0), and from these we
can recover t and R.

We write this problem using the unknown vector x =
s(u0) ∈ R

3, which is the 3D position of u0 in the camera’s
3D coordinate frame, and the unknown matrix R32 = Js(u0).
Substituting these into Eqs. (8), (9) and (10) gives what we
call the IPPE Problem. This writes as follows:

find x, R s.t.⎧⎪⎪⎨
⎪⎪⎩

π(x) = w(u0) (a)

Jπ (x)R32 = Jw(u0) (b)

R�32R32 = I2 (c)
x3 > 0 (d)

(11)

The additional constraint Eq. (11d) enforces that for u0

to be visible in the image it must lie in front of the camera.
The constraints in Problem (11) only involve R32. Given a
solution to R32 the third column of R is recovered uniquely
by the cross-product of the two columns in R32. To recover
t from x and R we use the definition of x: x = s(u0) =
R [u0 0]� + t. Thus given a solution to Problem (11) pose is
given by:

R =
[

R32 | R32

[
1
0

]
× R32

[
0
1

]]

t = x − R
[

u0

0

] (12)

In practice we do not have access to the noise-free homog-
raphy H. Instead we have access to a noisy estimate Ĥ
computed from the point correspondences {ui } and {q̃i }.
We therefore must work with noisy estimates of w(u0) and
Jw(u0), which we denote by v ∈ R

2 and J ∈ R
2×2 respec-

tively. We assume that Ĥ33 = 1 (which can be ensured by
rescaling Ĥ), and so v and J are given by:

v def= π(Ĥ[u0
�1]�) ≈ w(u0) (13)

J def= (1+ ux Ĥ31 + uy Ĥ32)
−2
[

J11 J12

J21 J22

]
≈ Jw(u0)

[ux , uy]� def= u0

J11
def= Ĥ11 − Ĥ31 Ĥ13 + ux (Ĥ11 Ĥ32 − Ĥ31 Ĥ12)

J12
def= Ĥ12 − Ĥ32 Ĥ13 + uy(Ĥ12 Ĥ31 − Ĥ32 Ĥ11)

J21
def= Ĥ21 − Ĥ31 Ĥ23 + ux (Ĥ21 Ĥ32 − Ĥ31 Ĥ22)

J22
def= Ĥ22 − Ĥ32 Ĥ23 + uy(Ĥ22 Ĥ31 − Ĥ32 Ĥ21) (14)

v and J can be defined for any u0 ∈ �Ĥ.
Equation (11a) gives estimates for x1 and x2 in terms of

x3 via [x1, x2]� = x3v. Substituting this into Jπ (x) gives:

Jπ (x) ≈ Jπ (x3[v�1]�) = x−1
3

[
I2 | − v

]
(15)

Thus Problem (11) is reduced to one in x3 and R. To

simplify further we make a change of variables γ
def= x−1

3 to
give Problem (11) in terms of γ and R:

123



258 Int J Comput Vis (2014) 109:252–286

find γ, R s.t.⎧⎨
⎩

γ [I2| − v] R32 = J (a)

R�32R32 = I2 (b)

γ > 0 (c)

(16)

Given a solution to Problem (16) the plane’s pose is given

from Eq. (12) using x = γ−1
[
v�1

]�
.

One can also construct the PPE problem using alterna-
tive camera projection models. We show in Appendix 1 that
when we use weak-perspective or para-perspective models
we obtain a problem with exactly the same form as Problem
(16). The difference is that the affine approximation made by
these cameras lead to different values for v and J. Therefore
a solution to Problem (16) is general because it handles per-
spective, para-perspective and weak-perspective cameras as
special cases.

3.2 Statistical Motivation for IPPE and Choosing u0

We defer our solution to Problem (16) until the next section.
We first consider two important questions:

Q1 When there is noise in the correspondences (and hence
noise in Ĥ, v and J), how does changing u0 affect Problem
(16)?

Q2 How can we choose u0 such that Problem (16) is least
affected by noise in the correspondences?

We have studied these questions based on a statistical analysis
of how errors in the correspondences propagate through Ĥ
to v and J. We then show how this propagated error varies
as a function of u0. The answers we find to the above two
questions provide the statistical motivation for why IPPE is
a very sensible approach to PPE in the first place. This is
because the error in both v and J varies as a function of
u0, and the error is approximately minimal at the centroid
of {ui }. By choosing u0 to be at the point where the error
in v and J is least, then IPPE solves pose using a system of
equations with the lowest error-in-variables. Note that when
there is no noise in Ĥ we have error-free estimates of v and
J for all u0. It would therefore make no difference where
we positioned u0, because for any u0, γ and R would be
estimated without error.

Recall that IPPE can be thought of as solving PPE using
constraints from the motion of an infinitesimally small region
on the model plane (centred at u0). IPPE might seem counter
intuitive because when we think about pose estimation we
might imagine that using an infinitesimally small region
would lead to instability. This is in fact the opposite. Note
that if {ui } were to be themselves infinitesimally separated
then with a small amount of noise the PPE problem itself
would be totally unstable. In IPPE however the motion at an

infinitesimal region about u0 is computed from Ĥ via points
that are spatially separated.

We assume the correspondences {q̃i } in the image are per-
turbed from their true positions by zero-mean Gaussian IID
noise. This model has been shown many times to be a good
approximation in practice (Hartley and Zisserman 2004). We
denote q̂ ∈ R

2n to be the vector that holds {q̃i } as a single
column vector. We use �q̂ = σ 2I2n to denote the uncertainty
covariance matrix of q̂, where σ 2 is the correspondence noise
variance.

3.2.1 Uncertainty in v

We start by considering the uncertainty in v given noisy cor-
respondences and show how this varies as a function of u0.
We do this by modelling the 1st-order effects of propagating
errors in q̂ through Ĥ to v. Recall that {ui } is zero-centred
so that its centroid is at the origin. We write the 2 × 2
uncertainty covariance matrix of v as a function of u0 by
�v(u0) : R

2 → S(2), where S(2) is the space of 2 × 2
covariance matrices. Because �v(u0) � 0 we can minimise
the uncertainty in v by finding u0 that minimises the trace of
�v(u0).

Theorem 1 The point that minimises trace (�v(u0)) (the
uncertainty in v) is given up to 1st-order by the centroid
of {ui }.
Proof The optimal 1st-order approximation of Ĥ is given

by the ML affine transform Ĥ ≈
[

ÂM L t̂M L

0� 1

]
, which is the

least squares affine transform that maps {ui } to {q̃i }. When we
use the 1st-order approximation v ≈ ÂM L u + t̂M L , �v(u0)

is given by:

[�v(u0)]i j ≈
{

σ
n + (u0 − 0)�(Ū�Ū)−1(u0 − 0) i = j
0 i �= j

(17)

Ū is the 2× n matrix that holds {ui }. Ū�Ū  0 is the covari-
ance matrix of {ui }. Equation (17) is straightforward to prove
using 1st-order uncertainty propagation, and we include a
short derivation in Appendix 2. Equation (17) tells us that to
1st-order the uncertainty in v induced by noise in {q̃i } follows
a Gaussian distribution with isotropic variance and centred
at the origin. Thus the variance of v increases quadratically
with respect to the distance u0 is from the origin. The value
û0 ∈ R

2 that minimises the uncertainty in v is that which min-
imises trace(�v(u0)). This is unique and given by û0 = 0
(i.e. the centroid of {ui }). ��

Consequently a good strategy to reduce the uncertainty in
v is to position u0 at the centroid of {ui }.
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3.2.2 Uncertainty in J

We also want u0 to reduce the uncertainty in J. This is less
simple than the uncertainty in v because it involves study-
ing the second-order properties of Ĥ (i.e. the variation of its
Jacobian with respect to u0). Recall that J is a function of
both u0 and Ĥ, and Ĥ is a function of q̂. Consider first q̂. The
Taylor expansion of vec(J) about q̂ is:

vec(J) = vec(J(q̂))+ ∂

∂q̂
vec(J)�q̂+O2. (18)

We use �J to denote the 4×4 covariance matrix of vec(J).
Because �q̂ = σ 2I2n , this is given to 1st-order by:

�J ≈ σ 2 ∂

∂q̂
vec(J)

∂

∂q̂
vec(J)�. (19)

We use �J(u0) to denote explicitly the dependence of �J

on u0. Our goal is to find the u0 that minimises trace (�J(u0))

(i.e. the uncertainty in J). This involves an analysis of
∂
∂q̂ vec(J), which depends on the algorithm used to compute

Ĥ (and hence J) from q̂. We analyse the most well-established
algorithm, which is the normalised Direct Linear Transform
(DLT) algorithm (Hartley and Zisserman 2004). Recall that
normalisation means modifying {ui } and {q̃i } so that the point
sets are zero-centred and the average distance of each point
set to the origin is

√
2. We use {u′i } and {q̃′i } to denote the

normalised point sets and Ĥ′ to be the homography that maps
{u′i } to {q̃′i } using the DLT algorithm.

Theorem 2 When the perspective terms in Ĥ′ (i.e. Ĥ ′31 and

Ĥ ′32) are negligible a point that minimises trace (�J(u0)) (the
uncertainty in J) is the centroid of {ui }.

Theorem 2 depends on the following lemmas:

Lemma 1 A point that minimises trace (�J(u0)) is given to
1st-order by a point where a change in {q̃i } induces the small-
est change in J.

Lemma 2 When the perspective terms of Ĥ′ (i.e. Ĥ ′31 and

Ĥ ′32) are small the minimisation of trace (�J(u0)) is a convex
quadratic problem.

The proofs of Theorem 2 and these lemmas are based
on Chen and Suter (2009) which shows how the error in q̂
propagates to Ĥ′. We give the proofs in Appendix 3.

When the perspective terms in Ĥ′ are small but non-
negligible, an optimal solution to arg min

u0
[trace (�J(u0))]

can be found easily, since Lemma 2 tells us it is a convex
quadratic problem. When the perspective terms in Ĥ′ are
non-negligible an optimal solution is not guaranteed to be
precisely at the centroid of {ui }. However Theorem 1 and

Lemma 2 tell us that as the perspective terms in Ĥ′ become
smaller then an optimal solution tends towards the centroid of
{ui }. In real imaging conditions usually the perspective terms
in Ĥ′ are small and we have found that the centroid of {ui } is
very close to the optimal solution. In practice it can therefore
be used as an approximate minimiser of trace (�J(u0)).

Summary We have provided answers to the two questions
at the beginning of this section with a statistical analysis of
how the uncertainty in the point correspondences propagates
through Ĥ to v and J. The uncertainty is a function of u0. The
uncertainty in v is minimised to 1st order by setting u0 to be
the centroid of {ui }. Assuming that the perspective terms in
the normalised homography Ĥ′ are small (which is usually
the case in common imaging conditions), the uncertainty in J
is minimised by solving a convex quadratic problem. This is
also approximately minimised by setting u0 to be the centroid
of {ui }. Recall that u0 must be in �Ĥ. This is always satisfied
by the centroid of {ui }because it is at the origin, and this never

maps to the line at infinity:
[

Ĥ31 Ĥ32 1
] [

0� 1
]� = 1 �= 0.

3.3 Solving IPPE

Our solution to Problem (16) does not require u0 to be posi-
tioned at the centroid of {ui }. In practice this is where we
position it to reduce error-in-variables. The main results in
this section is the analytic solution to Problem (16) and proofs
of the following theorems:

Theorem 3 (Solution existence and uniqueness in γ ) When
u0 ∈ �Ĥ, J �= 0 the solution to γ in Problem (16) always
exists and is unique.

Theorem 4 (Two-fold ambiguity in R) When u0 ∈ �Ĥ,
J �= 0 a solution to R in Problem (16) always exists and there
are at most two solutions to R. These correspond to reflect-
ing the model plane in camera coordinates about a plane
whose normal points along the line-of-sight [v�1]�. R has
a unique solution iff the model plane in camera coordinates
is tangential to a sphere centred at the camera’s origin.

3.3.1 Input Bounds

Problem (16) can be setup using any u0 ∈ �Ĥ (since if
u0 /∈ �Ĥ then J is undefined).

Theorem 5 (Generic Degeneracy) If there exists u0 ∈ �Ĥ
such that J = 0 then Ĥ is rank-1 and no algorithm can solve
pose from Ĥ.

Proof It is simple to show from Eq. (14) that J = 0⇔ Ĥ =[
Ĥ13 Ĥ23 1

]� [
Ĥ31 Ĥ32 1

]
. Therefore J = 0⇒ rank(Ĥ) =

1 and all points on the model plane map in the image to a
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single point (which is at [Ĥ13 Ĥ13]�). This is a degenerate
configuration that occurs when the model plane is infinitely
far from the camera. In this case no algorithm can recover its
pose. ��

We therefore restrict solving Eq. (16) to when u0 ∈ �Ĥ
and J �= 0. The solution we now present gives a physically
valid solution for all these inputs. This means our solution
does not introduce any artificial degeneracies.

3.3.2 Simplification

We rewrite the left side of Eq. (16a) as follows:

γ [I2| − v] R32 = γ [I2| − v] RvR�v R32. (20)

We define Rv ∈ SO3 as a rotation that rotates [I2| − v]
such that for some B ∈ R

2×2, [I2| − v] Rv = [B|0]. B is
full rank because [I2| − v] and Rv are rank-2 and rank-3
respectively. We solve Problem (16) in terms of the rotation

matrix R̃ def= R�v R, and then recover R with R = RvR̃.
Equation (16a) becomes:

γ [I2| − v] R32 = J ⇔
γ [B|0] R̃32 = J ⇔

γ R̃22 = A, A def= B−1J

(21)

Because J is at least rank-1 and B is full rank, A is at
least rank-1. Therefore we have reduced Problem (16) to the
decomposition of a 2× 2 matrix A (which is at least rank-1)
into a positive scale term γ and a 2×2 sub-Stiefel matrix R̃22.
Once decomposed we then reconstruct the original rotation
matrix R from R̃22.

3.3.3 Analytic Solution to Problem (16)

The solution to γ is:

γ = σ A
1 =

√
1
2

(
au + aw +

√
(au − aw)2 + 4a2

v

)

[
au av

av aw

]
def= AA�

(22)

where σ A
1 is the largest singular value of A. We denote the

third column of Rv by rv3. Because [I2| − v] Rv = [B|0],
[I2| − v] rv3 = 0 and so by rearrangement rv3 ∝ [v�1]�.
Thus Rv is any rotation which aligns the z-axis to [v�1]�. We
define Rv uniquely by using the smallest rotation that aligns
the z-axis to [v�1]�. This is given by Rodrigues’ formula:

Rv = I3 + sinθ [k]× + (1− cosθ)[k]2×
t

def= ‖v‖2
s

def=
∥∥∥[v�1]�

∥∥∥
2

cosθ
def= 1/s

sinθ
def=
√

1− 1/s2

[k]× def= 1/t

[
0 v
−v� 0

]

(23)

R has two solutions which we denote by R1, R2 ∈ SO3.
These are:

R1 = RvR̃1, R2 = RvR̃2

R̃1
def=
[

R̃22 +c
+b� a

]

R̃2
def=
[

R̃22 −c
−b� a

]

R̃22 = γ−1A

b = rank1

(
I2 − R̃�22R̃22

)
= [√ru sign(rv)

√
rw

]�
[

ru rv

rv rw

]
def= I2 − R̃�22R̃22

[
c
a

]
=
[

R̃22

b�
] [

1
0

]
×
[

R̃22

b�
] [

0
1

]

(24)

3.3.4 Proof of Theorem 3

The decomposition γ R̃22 = A has a simple solution in γ

because the largest singular value of a matrix in SS2×2 is 1:

R̃22 ∈ SS2×2 ⇔ ∃U, V, σ s.t.⎧⎨
⎩

U
[

1 0
0 σ

]
V� = R̃22

U�U = V�V = I2, 0 ≤ σ ≤ 1

(25)

We denote an SVD of A by A = UA
[
diag(σ A

1 , σ A
2 )
]

V�A ,
with σ A

1 > 0, σ A
1 ≥ σ A

2 and U�A UA = V�A VA = I2. Because
a singular value matrix is unique when the singular values
are sorted by magnitude, the solution to γ is unique:

γ R̃22 = A ⇔
γ U

[
1 0
0 σ

]
V� = UA

[
σ A

1 0
0 σ A

2

]
V�A ⇒

γ = σ A
1

(26)

Because σ A
1 > 0 Eq. (16c) is satisfied by γ = σ A

1 . There-
fore when J �= 0 the solution to γ in Problem (16) always
exists and is unique.
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3.3.5 Proof of Theorem 4

Because γ has a unique solution when J �= 0 then R̃22 =
γ−1A is a unique solution to R̃22. We then complete the
Stiefel matrix R̃32 using orthonormality constraints. Let b�
denote the third row of R̃32. We have R̃�32R̃32 = I2 ⇔ I2 −
R̃�22R̃22 = b�b, so b is given by the rank-1 decomposition
of (I2− R̃�22R̃22). Let σd > 0 be the non-zero singular value
of (I2 − R̃�22R̃22) and d be a singular vector for σd . There
exist two solutions to b which are ±√σdd. Thus there exist
two solutions to R̃32 using either solution to b as its third
row. We then complete R̃ uniquely from either solution to
R̃32 by forming its third column with the cross-product of
the two columns in R̃32. Therefore there exist two solutions
to R̃, and because R = RvR̃ there exist two solutions to R.

Recall that v is the 2D point where u0 is located in the
image (in normalised coordinates). Therefore [v�1]� is a
line-of-sight starting at the camera’s optic centre and passing
through v. Eq. (24) factorises the two solutions to R into two
rotations. First the rotation R̃ is applied (using either R̃1 or
R̃2 and then the rotation Rv is applied. From Eq. (24) the
rotation of a 3D point [u�0]� on the model plane according
to R̃1 or R̃2 is related by:

R̃2[u�0]� =
⎡
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎦ R̃1[u�0]� (27)

Therefore the difference between rotating the point by
either R̃1 or R̃2 corresponds to reflecting it about the model
plane’s z axis.

The two solutions to R are formed by first rotating the
model plane by either R̃1 or R̃2. These rotations are equiva-
lent up to a reflection in the model’s z-axis. This is followed
by a second rotation Rv which aligns the model plane’s z-
axis with the line-of-sight [v�1]�. The combined effect is a
two-fold solution corresponding to a reflection of the model
plane about a plane whose normal (in camera coordinates)
points along [v�1]�.

R has a single solution iff R̃1 = R̃2. From Eq. (24) R̃1 =
R̃2 ⇔ c = −c ⇔ c = 0 ⇔ b = 0 ⇔ a = 1. Therefore
R̃1 (and hence R̃2) must be a within-plane rotation that does
not change the model plane’s normal. The plane’s normal
is therefore only changed by Rv which rotates it to point
along the line-of-sight [v�1]�. This is equivalent to saying
that R has a unique solution iff the model plane in camera
coordinates is tangential to a sphere centred at the camera
origin.

3.4 Disambiguation

Using Eq. (12) the two solutions to the plane’s pose are:

(
R1, t1 = γ−1

[
v
1

]
− R1

[
u0

0

])

(
R2, t2 = γ−1

[
v
1

]
− R2

[
u0

0

])
.

(28)

It is possible to resolve which of these solutions is correct
by inspecting their reprojection errors. We use the fact that
within the correspondences there must exist three correspon-
dences that are not colinear (otherwise a homography could
not have been computed uniquely Hartley and Zisserman
2004). Without loss of generality let these be {u1, u2, u3}.
Lemma 3 (Disambiguation) Given three non-colinear poi-
nts u1, u2, u3 ∈ R

2 on the model plane, for any u0 ∈ �Ĥ the
two pose solutions in Eq. (28) will, if different, project either
u1, u2 or u3 to two different image points.

Lemma 3 is proved easily by contradiction in Appendix
4.

Lemma 3 tells us that in the absence of noise if R1 �=
R2 then the reprojection errors of {u1, u2, u3} will all be
zero only for the correct pose. With noise we can robustly
disambiguate pose by inspecting the reprojection errors using
all point correspondences. The reprojection error for each
pose is:

e(R j , t j ) =
n∑

i=1

∥∥∥∥π
(

R j

[
ui

0

]
+ t j

)
− q̃i

∥∥∥∥
2

2
, j ∈ {1, 2}

(29)

We use (R∗, t∗) to denote the pose solution with lowest
e. We are then faced with accepting or rejecting the second
pose as an alternative hypothesis. Pose is ambiguous if e1 and
e2 are similar; specifically if the reprojection error of either
pose is indistinguishable to noise. A decision can be made
using a likelihood ratio test however this involves selecting a
confidence bound, which is application specific. Instead we
return both solutions with their reprojection errors, and leave
it up to the end application to choose whether to reject the
alternative hypothesis.

3.5 The Front-Facing Constraint

Problem (16) enforces the physical assumption that the sur-
face must lie in front of the camera for it to be imaged (i.e.
γ > 0). However it does not enforce which side the plane’s
surface can be viewed from. When the model is translu-
cent, correspondences could come from either side of the
plane. When the model is opaque we have an additional con-
straint on R because correspondences can only come from
the plane’s front-facing side. Without loss of generality let
the model plane’s normal point away from its z axis. The
front-facing constraint is [v�1]r3 ≥ 0 (i.e. the cosine of the
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angle between the surface normal in camera coordinates and

the line-of-sight
[
v�1

]�
must be non-negative). The IPPE

problem with the front-facing constraint is:

find γ, R s.t.⎧⎪⎪⎨
⎪⎪⎩

γ [I2| − v] R32 = J (a)

R�32R32 = I2 (b)

γ > 0 (c)
[v�1] (R32[1 0]� × R32[0 1]�) ≥ 0 (d)

(30)

This includes the front-facing constraint (Eq. (30d)) writ-
ten in terms of R32.

Lemma 4 If det(J) < 0 then Problem (30) has no solution.

Proof It is simple to show by rearrangement:

[v�1]
(

R32[1 0]� × R32[0 1]�
)
= det ([I2| − v] R32) .

(31)

From Eq. (30a) det ([I2| − v] R32) = det(γ−1J), so
Eq. (30d) ⇔ det(γ−1J) ≥ 0 ⇔ γ−2det(J) ≥ 0. Because
γ > 0, Eq. (30d)⇔ det(J) ≥ 0 which contradicts det(J) <

0. Therefore when det(J) < 0 Problem (30) has no solution.
��

Conversely, if det(J) > 0 then Eq. (30d) is redundant,
because Eq. (30c) and det(J) > 0 ⇒ Eq. (30d). Therefore
when det(J) > 0 the front-facing constraint adds nothing
to the problem. To summarise, when det(J) < 0 there is no
front-facing solution to the plane’s pose (from Lemma 4),
but when det(J) ≥ 0 both solutions to its pose will be front-
facing. Therefore the front-facing constraint cannot be used
to disambiguate the correct pose.

3.6 The Connection between IPPE and P3P

To complete our analysis of IPPE we now give the connection
between IPPE and P3P. This connection comes from the fact
that J can be represented in two equivalent ways. The first is to
compute it by differentiating Ĥ, as we have done in IPPE. The
second is to compute it from the motion of three non-colinear
virtual points that transform according to Ĥ, but which are
separated by an infinitesimal distance. By linearising the P3P
equations with respect to the points’ positions on the model
plane, in the limit as they tend to the same point we arrive at
the IPPE equations in Eq. (11). This connection is important
because Theorems 3 and 4 give a full characterisation of what
happens in P3P as the points’ separation tends to zero.

In P3P there are three non-colinear model points {u0, u1,

u2}, ui ∈ R
2 and we have estimates {q̃0, q̃1, q̃2}, q̃i ∈ R

2 of
their position in the image in normalised coordinates. With-
out loss of generality let u0 = 0. The six P3P equations write
as:

1

t3

[
t1
t2

]
= q̃0 (a)

1

t3 + [R31 R32] u1

[
t1 + [R11 R12] u1
t2 + [R21 R22] u1

]
= q̃1 (b)

1

t3 + [R31 R32] u2

[
t1 + [R11 R12] u2
t2 + [R21 R22] u2

]
= q̃2 (c)

(32)

Theorem 6 (Relationship between IPPE and P3P) In the
limit when the separation of the three points in P3P tends
to zero, the P3P problem becomes the IPPE problem.

Proof of Theorem 6 When the separation of {u0, u1, u2} is
small Eq. (32b, c) can be approximated to 1st-order with a
Taylor expansion of their left sides with respect to u1 and u2

about the model plane’s origin. After some simplification the
six equations become:

1

t3

[
t1
t2

]
= q̃0 (a)

1

t3

[
I2 − 1

t3

[
t1
t2

]]
R32U+O2 = Q (b)

(33)

with:

Q def= [q̃1 q̃2
]

(a)

U def= [u1 u2] (b)
(34)

and O2 denoting terms beyond 1st-order. When O2 is
neglected Eq. (33) approximates the P3P equations and this
approximation becomes better as u1 and u2 approach the ori-
gin. We combine Eqs. (33a) and (33b) to give what we call
the Infinitesimal P3P Problem:

find t3, R s.t.⎧⎨
⎩

1
t3

[
I2 −q̃0

]
R32 = QU−1 +O2 (a)

R�32R32 = I2 (b)

t3 > 0 (c)

(35)

Note that because {u0, u1, u2} are non-colinear then U is
rank-2 and so is invertible. Problem (16) and Problem (35)
clearly have identical structure.

The left sides of Eq. (16a) and Eq. (35a) are the same by
equating variable names. Because 1/t3 is the inverse-depth
of the point u0 in camera coordinates, it is equal to γ . because
q̃0 is the position of u0 in the camera’s image, it is equal to
v. This implies the right sides of Eq. (16a) and Eq. (35a) are
the same, which implies J = QU−1 +O2. Therefore in the
limit when {u0, u1, u2} are infinitesimally separated, O2 = 0
and J = QU−1, and so the P3P problem becomes the IPPE
problem. ��

Theorems 3 and 4 therefore give a full characterisation of
what happens in P3P as the points’ separation tends to zero.
The characteristics are:
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– As the separation of the 3 points tends to zero in the limit
the solution to translation becomes unique.

– As the separation of the 3 points tends to zero in the limit
the solution to rotation becomes two-fold ambiguous.

– This rotation ambiguity corresponds to a reflection of the
points about a plane whose normal points along a line-
of-sight that passes through the points.

– There is no rotation ambiguity if the 3 points become
tangential to a sphere passing through the line-of-sight.

IPPE can therefore be thought of as solving pose by gen-
erating three infinitesimally separated virtual points centered
at u0 and recovering pose using their positions in the image
from Ĥ. Given this relationship between IPPE and P3P, one
might ask why do this when we could generate three virtual
points anywhere on the model plane and solve pose using
P3P. The answer is that because Ĥ is noisy positioning the
virtual correspondences at different locations will cause P3P
to return different results, and different numbers of results
(between zero and four). The question would then be where
is it best to position the points to ensure we obtain an accurate
and physically valid solution. This question is interesting,
but has not been studied previously in the literature. IPPE
provides an answer to this question. That is, they should be
infinitesimally separated and positioned at the centroid of the
real correspondences. This stems from the statistical analysis
in Sect. 3.2. We will show in Sect. 4.6 that IPPE performs
significantly better than P3P using virtual correspondences
positioned at other locations.

3.7 IPPE Algorithm and Summary

We now summarise IPPE in pseudocode. We break this down
into two components. The first component is the solution to
Problem (16). This takes as inputs v and J, and returns γ ,
R1 and R2. We give this in Algorithm 1. Note that all steps
involve only simple floating point operations. It is there-
fore extremely fast to perform, fully analytic and does not
require any additional numerical libraries (e.g. computing
eigen decompositions or root finding, as is required in most
PnP approaches, Li et al. 2012; Lepetit et al. 2009; Gao et
al. 2003a; Quan and Lan 1999; Fischler and Bolles 1981;
Dhome et al. 1989; Haralick et al. 1991; Triggs 1999; Ansar
and Daniilidis 2003). We have proved that Algorithm 1 does
not introduce any artificial degeneracies. That is, it guaran-
tees that a positive scale factor γ and two rotation matri-
ces R1 and R2 will be returned for all v ∈ R

2 and J �= 0.
This means that it may handle cases such as when the plane
is viewed obliquely (i.e. when its normal is orthogonal to
the line-of-sight, meaning J is rank-1. Although this is not
likely to occur in practice (because in such situation we would
likely not be able to compute correspondences) it does say
that Algorithm 1 will not induce instability as a result of

Algorithm 1 IPPE: The solution to Problem (16)
Require: v ∈ R

2 and J ∈ R
2×2, J �= 0

1: function IPPE(v, J)
2: Compute Rv from v � (Eq. (23))
3: [B|0]← [I2| − v] Rv

4: A← B−1J
5: γ ← σ A

1 � the largest singular value of A (Eq. (22))
6: R̃22 ← γ−1A

7: b← rank1

(
I2 − R̃�22R̃22

)
� (Eq. (24))

8:

[
c
a

]
←
[

R̃22

b�
] [

1
0

]
×
[

R̃22

b�
] [

0
1

]

9: R1 ← Rv

[
R̃22 +c
+b� a

]
, R2 ← Rv

[
R̃22 −c
−b� a

]

10: return γ, R1, R2

the way it estimates pose. Unlike PHD, Algorithm 1 can be
used when the homography is an affine transform (since all
that is required is J �= 0). Therefore, unlike PHD it will not
encounter instability when the amount of perspective distor-
tion in the homography is small.

The second component involves taking as input a set of
point correspondences and the camera intrinsics, construct-
ing v and J, calling Algorithm 1, and returning two pose
estimates. This is given in Algorithm 2. In the absence of
noise we can estimate translation without error from Eq. (28).
With noise we have found that t can be estimated slightly
more accurately using the solution to R and estimating it in
a Linear Least Squares sense. The cost function we use is as
follows:

c(t;R, {ui }, {q̃i })
def= ∑n

i=1

∥∥∥∥R22ui +
[

t1
t2

]
− (s3[u�i 0]� + t3)q̃i

∥∥∥∥
2

2

(36)

where s3 denotes the third row of R. Equation (36) is derived
from the Maximum Likelihood cost but is convex because
we minimise the error in 3D camera space rather than in
2D image space. Solving Eq. (36) is very efficient, and is
the solution to a Linear Least Squares system of the form:
‖W j t j − b j‖22. W j is a 2n × 3 matrix and b j is a 2n ×
1 vector. Eq. (36) is solved by t j = (W�j W j )

−1W j b j . It
is straightforward to show that W must be rank-3, so the
solution to t j is a unique global minimum. The computational
overhead for computing t j in this way is very small because
W�j W j is a 3 × 3 matrix (and so its inverse is very fast to
compute).

4 Experimental Evaluation with Simulated Data

In this section we give a detailed comparison of the per-
formance of IPPE using simulation experiments. We break
this section into three parts. The first part compares IPPE
against PHD using five different methods to estimate the
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Algorithm 2 Correspondence-based IPPE for Perspective
Cameras
Require:
{u1, u2, . . . , un}, ui ∈ R

2 � A set of n points on the model plane.
These are zero centred:

∑
i ui = 0

{q1, q2, . . . , qn}, qi ∈ R
2 � The correspondences of each point in

the camera’s image
K � The camera intrinsics matrix

1: function IPPE({ui }, {qi }, K)
2: [q̃�i 1]� ← K−1[q�i , 1]� � q̃i is qi in normalised coordinates
3: H← homog ({ui }, {q̃i }) � Best fitting homography between

{ui } and {q̃i }, H33 = 1

4: J←
[

J11 J12
J21 J22

]
� J is the Jacobian of π(H[u0 1]�) at u0 = 0

5: J11 ← H11 − H31 H13
6: J12 ← H12 − H32 H13
7: J21 ← H21 − H31 H23
8: J22 ← H22 − H32 H23
9: v← [H13, H23]� � v is π(H[u0 1]�) at u0 = 0
10: (γ, R1, R2)← IPPE(v, J)

11:
t1 ← (W�1 W1)

−1W1b1

t2 ← (W�2 W2)
−1W2b2

� Solution to (36)

12: return {R1, t1}, {R2, t2}

homography. We have found IPPE combined with Harker
and O’Leary’s method (Harker and O’Leary 2005) to per-
form the best. This performs marginally better than when
using the DLT and approximately the same when using the
ML estimate. We call this combination IPPE + HO.

In the second section we compare IPPE + HO against
competitive state-of-the-art PnP methods. We give a detailed
breakdown of this comparison along two axes. The first is
the number of correspondences n, which we break down into
small n (i.e. between 4 and 10) and medium-to-large n (i.e.
between 8 and 50). The second axis is broken down into
simulations where the PPE problem is unambiguous, and
simulations where it is ambiguous. When a simulation is
ambiguous, it means that there are multiple pose solutions
that can reasonably explain the image data. In these cases
we do not force the methods to return a single solution, but
instead they can return multiple solutions. The best of these
solutions with respect to ground-truth is used to measure the
methods’ accuracy. By contrast in unambiguous cases, the
methods are forced to return a single solution as the one with
smallest reprojection error, and it is only this solution which
is evaluated.

In the third section we compare IPPE against solving pose
via P3P, using three virtual correspondences estimated from
the homography. The purpose of this evaluation is to test
whether IPPE performs better than using some other strate-
gies for positioning the virtual correspondences.

4.1 Simulation Setup

We use a testing framework similar to Lepetit et al. (2009) and
Li et al. (2012). A perspective camera is setup and a planar

model is embedded and projected into the camera’s image.
The model is a zero-centred square region on the plane z = 0
with variable width w. The camera has width 640 and height
480 pixels and the intrinsic matrix is:

K =
⎡
⎣

f 0 320
0 f 240
0 0 1

⎤
⎦ (37)

with f being the focal length with a default f = 800 pixels.
We then randomly sample from the space of rigid embed-
dings as follows. We uniformly sample a point in the image
p̂ and create the ray w = [p̂�1]�. We then project this ray
out to a random depth d. d is uniformly drawn from the
interval d ∼ U( f/2, 2 f ). We then compute the translation
component as t = dw. The rotation R is determined the
same way as Lepetit et al. (2009). We then synthesise n
point correspondences. Their positions in the model plane
are {[ui , vi ]�}with ui , vi ∼ U(−w/2,+w/2). These points
are then projected in the image via {K, R, t} to give their
corresponding image positions {[xi , yi ]�}. To measure an
algorithm’s sensitivity to noise in the image we perturb each
point (xi , yi ) with additive zero-mean Gaussian noise with
standard deviation σI . We also test sensitivity to noise in the
model view by perturbing each point (ui , vi ) with Gaussian
noise with standard deviationσM . We keep only those embed-
dings where all point correspondences lie in front of the
camera and project within the image. We denote the tuple
({ui , vi }k, {xi , yi }k, Rk, tk) to be the data for the kth test sam-
ple.

4.2 Well-Posed and Ill-Posed Conditions

In the special case when σI = σM = 0 planar pose is recov-
erable uniquely. When σI > 0 and/or σM > 0 there may
be instances when pose estimation is ambiguous. That is,
an alternative rigid hypothesis P2 exists which projects the
point set {ui , vi } close to {xi , yi }. It is important to separate
ambiguous from unambiguous cases. In an ambiguous case
a method returning a single solution may pick an incorrect
pose similar to P2. In this case it is not the algorithm which
is to blame for these errors but the posedness of the problem.
We therefore measure performance for each algorithm in two
modes.

Mode 1 is where each algorithm returns one solution.
HD methods always return one solution. IPPE, and most
PnP methods can return multiple solutions. In Mode 1
we force these algorithms to return the solution with low-
est reprojection error. In order to obtain meaningful sta-
tistics we must ensure that test samples in Mode 1 are
sufficiently unambiguous. To judge whether a test sample
({ui , vi }k, {xi , yi }k, Rk, tk) is ambiguous we measure how
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Table 1 Free parameters in synthetic experiments

Parameter Meaning

f Focal length

w Model plane width

n Number of correspondences

σI Correspondence noise (image)

σM Correspondence noise (model)

Mode Either in Mode 1 or Mode 2 (Sect. 4.2)

many times more likely the data is predicted by a perspective
homography Hp than an affine homography Ha . We com-
pute Hp with the ground truth transform (R, t) and refine
with Gauss-Newton iterations. We compute Ha with a least
squares fit of the correspondences (which is also the ML
estimate for affine projection). We then measure the log-
likelihood ratio:

D = l
({xi , yi }k; {ui , vi }k, σI , Hp

)

− l ({xi , yi }k; {ui , vi }k, σI , Ha) .
(38)

l(·; ·, ·H) denotes the data log-likelihood given the trans-
form H. We judge a sample to be ambiguous if D < τa . Only
unambiguous samples are selected for testing algorithms in
Mode 1. A small τa means that more samples are rejected
as being ambiguous whereas a larger τa means fewer. It is
not critical for us to finely tune τa , we merely wish to select
a value which eliminates cases which are clearly ambigu-
ous to ensure that algorithms tested in Mode 1 are tested in
well-conditioned cases. In mode 1 we use τa = 5.

Mode 2 is when we keep all samples, and allow algorithms
to return multiple solutions.

4.3 Summary of Experimental Parameters and Error
Metrics

In Table 1 we give a summary of the experimental free para-
meters for the synthetic experiments. We denote {R̂k, t̂k} to
be the rotation and translation estimated by a given algo-
rithm given ({ui , vi }k, {xi , yi }k, Rk, tk). Similarly to previ-
ous works (Lepetit et al. 2009; Li et al. 2012) we measure
error with two metrics:

(1) RE(R̂). The Rotational Error (in degrees). This is the
angle of the minimal rotation needed to align R̂ to R.
This is given by taking the angle of the axis/angle rep-
resentation of R̂�R.

(2) T E(t̂). The Translational Error (%). This is the relative
error in translation, given by T E(t̂, t) = ‖t̂− t‖2/‖t‖2.

Table 2 Varying imaging conditions in synthetic experiments E1–E5

E1 E2 E3 E4 E5

f 800 800 800 800 800

w 200 300 200→400 250 350

n 10 5→40 12 15 8

σI 0→6 2 3 3.5 3.5

σM 0 0 0 0→7 0→5

Mode 1 1 1 1 1

For each error metric we measure three statistics; the stan-
dard deviation, the mean and median error.

4.4 IPPE versus Perspective Homography Decomposition

We start by comparing IPPE against the two existing PHD
methods, which we denote by HDSt (Sturm 2000) HDZh
(Zhang 2000). Because these return only a single solution
we perform the tests in Mode 1 (i.e. unambiguous cases). We
compare across 5 different Homography Estimation (HE)
methods. This is to (i) assess the sensitivity of an algorithm
with respect to the choice of HE method, and (ii) to deter-
mine which HE method leads to best pose estimates. The HE
methods we test are as follows:

(1) DLT (non iterative). The Direct Linear Transform (Hart-
ley and Zisserman 2004).

(2) TAUB (non iterative). The Taubin estimate (Taubin 1991).
(3) HO (non iterative). Harker and O’Leary (2005) based on

Total Least Squares (TLS) with equilibration.
(4) MLGN (iterative). ML minimiser using Gauss-Newton

iterations. MLGN is initialised with the best non-iterative
solution from 1,2 or 3.

(5) STGN (iterative). Symmetric transfer error minimiser
using Gauss-Newton iterations. STGN is initialised with
the best non-iterative solution from 1,2 or 3. STGN is
used in place of MLGN when σM > 0.

We have run a series of 5 experiments (E1–E5) by vary-
ing the parameters in Table 1 to cover a range of imaging
conditions. Note that there is redundancy in scaling both f
and w, therefore we keep f constant and only vary w. The
parameter instantiations for each experiment are shown in
Table 2. We present summary statistics over 5,000 simulated
poses in Tables 3, 4, 5, 6 and 7. For each HE method, we
have bold-faced the pose estimation method which gives the
lowest average error. TAUB consistently performs the worst
for HDZh, HDSt and IPPE. We see that using the DLT gives
lowest errors for HDZh and HDSt. The best performing HE
method for IPPE is HO, which is very closely followed by
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DLT. HO is also the fastest method; between 5-6 times faster
to compute than the DLT (Harker and O’Leary 2005). We also
see that IPPE consistently outperforms HDZh and HDSt for
all HE methods. A visual comparison of methods is shown
in the graphs in Fig. 1. The five rows correspond to the five
experiments, and the columns show mean and median errors
in rotation and translation. To reduce clutter we plot results
only with the best performing HE method for HDZh and
HDSt (the DLT). We can see a clear improvement in perfor-
mance for IPPE in all error statistics, across all experiments.
Also it shows that IPPE is rather insensitive to the choice of
HD method.

4.5 IPPE versus PnP Methods

We now compare IPPE against state-of-the-art PnP methods.
We use HO for estimating the homography between corre-
spondences. The following names are used for the compared
methods:

– IPPE + HO (non iterative): Proposed method
using homography estimated with Harker and O’Leary
(2005).

– RPP-SP (iterative): Schweighofer and Pinz (2006).
This is the extension of Lu et al. (2000) to handle ambi-
guities.

– EPnP (non iterative): Moreno-Noguer et al.
(Schweighofer and Pinz 2006).

– RPnP (non iterative): Li et al. (2012).
– HDZh + DLT (non iterative): The best performing HD

method.
– GEOMREF (iterative): Iterative refinement using a geo-

metric criteria (see below).

GEOMREF is used as the gold standard. This is initialised
using the compared method which gives the solution with
the lowest residual error, and refined with Gauss-Newton
iterations. When σM = 0 we use the ML error as the geo-
metric cost. When σM > 0 we use the symmetric transfer
error.

We start with a series of Mode 1 experiments. We divided
these into two parts. The first part measures performance
when the number of correspondences is medium-to-large
(n = 8→ 50). The second part measures performance when
the number of correspondences is small (n = 4→ 10). We
make this division to assist visualising results as methods per-
form far better with larger n. The division also helps study
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Fig. 1 Synthetic experimental results: comparing the pose estimation accuracy of IPPE with PHD (E1–E5)
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Table 8 Varying imaging
conditions in synthetic
experiments E6–E17

E6 E7 E8 E9 E10 E11

f 800 800 800 800 800 800

w 300 300 300 300 300 300

n 8→50 8→50 8→50 8→50 8→50 8→50

σI 0.5 3 8 2 2 2

σM 0 0 0 0.5 3 8

Mode 1 1 1 1 1 1

E12 E13 E14 E15 E16 E17

f 800 800 800 800 800 800

w 300 300 300 300 300 300

n 4→10 4→10 4→10 4→10 4→10 4→10

σI 0.5 3 8 2 2 2

σM 0 0 0 0.5 3 8

Mode 1 1 1 1 1 1

two properties; the accuracy of an algorithm with low num-
bers of correspondences and how well an algorithm exploits
correspondence redundancy. In total we perform 12 experi-
ments (E6–E17). There are 6 for n = 4→ 10 (E6-E11) and
6 for n = 8→ 50 (E12-E17). The experimental parameters
are shown in Table 8.

4.5.1 Medium to Large n

The results for experiments E6–E11 are shown in Fig. 2.
With respect to rotation we see that across all conditions
IPPE + HO is consistently the best performing method
(excluding refinement with GEOMREF). There is a clear
improvement in performance with respect to the next best
non-iterative method (RPnP). The performance of RPP-SP
with respect to mean error remains larger than IPPE + HO.
With respect to median error, RPP-SP approaches but never
exceeds IPPE + HO for larger n. When n goes beyond 15
the performance of IPPE + HO is very close to GEOM-
REF. Turning to translation error we see a similar ranking of
methods. The difference between IPPE + HO and RPP-SP is
smaller than for rotation error. There is negligible difference
between IPPE + HO and RPP-SP in translation performance
in experiments E9–E11 (when noise increases in the model).
The next best non-iterative method (RPnP) performs behind
IPPE + HO and RPP-SP with respect to translation error for
all experiments.

We can see that IPPE + HO is the best performing non-
iterative method in the range n = 8 → 50. We also see
that beyond n = 15 the performance gains in refining the
IPPE + HO solution with GEOMREF are very small in all
experiments. This is true when there is correspondence noise
in the image, model, or both. The same cannot be said in

all experiments for the other methods. This has important
practical implications as it suggests that when speed is an
important priority, one can do away with iterative refinement
and use the IPPE + HO solution. A rule of thumb would be
when n > 15.

4.5.2 Small n

We now turn to the performance evaluation with n = 4 →
10. The results are shown in Fig. 3. Here we see that for
n ≥ 6 IPPE + HO is the best performing method (excluding
GEOMREF) with respect to rotation across all conditions.
For n ≥ 6 IPPE + HO performs as well as or better than the
next best method (RPP-SP) with respect to translation. For
n = 4 IPPE + HO is outperformed by RPnP and RPP-SP.
RPnP does well for n = 4, although there is a clear perfor-
mance gap between RPnP and GEOMREF. This gap is larger
for larger σM , indicating RPnP has difficulty with noise in
the model. The performance of IPPE + HO is significantly
worse at n = 4 than n = 5. The reason is two-fold. Firstly the
homography is computed from 4 point correspondences, and
because of the lack of redundancy the homography overfits.
For n > 4 there is redundancy and this leads to considerably
lower error. The second reason is that the configuration of cor-
respondences in the model affects the sensitivity of homog-
raphy estimation to noise. Because the correspondences are
uniformly sampled on the model plane some configurations
can lead to a poorer conditioning of the homography estima-
tion problem. We refer the reader to Chen and Suter (2009)
where a detailed analysis is given on the stability of homog-
raphy estimation by 1st-order perturbation theory.

Experiments E12–E17 suggest that IPPE + HO should not
be used when n < 6, as better results would be obtained
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Fig. 2 Synthetic experiments: comparing pose accuracy of IPPE + HO with previous state-of-the-art methods (E6–E11)
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Fig. 3 Synthetic experiments: comparing pose accuracy of IPPE + HO with previous state-of-the-art methods (E12–E17)
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Table 9 Varying imaging
conditions in synthetic
experiments E18–E23

Correspondences are selected
four of them positioned on the
corners of the plane

E18 E19 E20 E21 E22 E23

f 800 800 800 800 800 800

w 100 100 100 100 100 100

n 4→10 4→10 4→10 4→10 4→10 4→10

σI 0.5 2 5 2 2 2

σM 0 0 0 0.5 1 3

Mode 1 1 1 1 1 1

with RPnP. However in practical applications this is not
always true. We now study the case when the model’s points
are not drawn randomly on the plane, but rather four are
located on corners of the square region: (u, v)1 = 1/2(w,w),
(u, v)2 = 1/2(w,−w), (u, v)3 = 1/2(−w,−w), (u, v)4 =
1/2(−w,w). This is typically the case in AR-based planar
pose estimation. The remaining n − 4 points are positioned
with uniform probability within the region. We then studied
the algorithms’ performances in these configurations. We ran
six experiments (E18–E23) using this new sampling scheme.
The experimental parameters are listed in Table 9. These are
the same as experiments E6–E11, but we have reduced the
plane size from 300 to 100. The reason for this is that the new
sampling scheme means the correspondences span a larger
region on the model, and thus reduces the influence of noise.

The results for these experiments are shown in Fig. 4.
We see that now IPPE + HO significantly outperforms RPnP
with respect to rotation and translation for all n. This is in
contrast to when the points are located randomly on the model
(Fig. 3). The next best performing method is RPP-SP. With
respect to rotation, RPP-SP is consistently outperformed by
IPPE + HO. With respect to translation IPPE + HO performs
at least as good as or better than RPP-SP.

4.5.3 Ambiguous Cases

In the final set of synthetic experiments we investigate algo-
rithm performance in Mode 2 (without excluding ambiguous
cases). Here algorithms are permitted to return multiple solu-
tions, and we compute error with respect to the closest solu-
tion to the ground truth. Ambiguous cases occur when the
amount of perspective distortion is small, which can be con-
trolled by reducing the plane’s size. We give the experimental
parameters in in Table 10 using the same selection method
as E18–E23 with at least four correspondences positioned on
the corners of the plane. Here we have reduced the plane size
to 50, which meant many ambiguous cases were included.
The performance graphs are shown in Fig. 5. Here we see a
similar performance trend to E18–E23. IPPE + HO consis-
tently does very well. It is the best performing method with
respect to rotation (excluding GEOMREF) in all conditions,
with a very small gap between IPPE + HO and GEOMREF.

The performance gap for smaller n becomes smaller, and
for n = 4 it is virtually indistinguishable. IPPE + HO per-
forms as well as or better than RPP-SP in translation. HDZh
and EPnP performs rather worse than IPPE + HO, RPnP and
RPP-SP, and their errors are beyond the axis range.

4.6 IPPE Versus P3P with Virtual Correspondences

In the final part of our simulation experiments we com-
pare IPPE against P3P using virtual point correspondences.
Specifically given an estimate of H, and a virtual point u′j
positioned on the model plane, we compute its correspon-
dence in the image with q′j = h(H[u′�j , 1]�). We have tested
three different choices for positioning u′j . These are as fol-
lows:

– P3P-Random: We compute the bounding box of {ui } and
position three points randomly within this box.

– P3P-Regular: We compute the bounding box of {ui } and
position three points on the bottom-left, top-left and top-
right corners of this box.

– RPnP-Virtual: We use the original set of points.

Pose is solved for P3P-Random and P3P-Regular using
the method in Gao et al. (2003b). Pose for RPnP-Virtual is
solved using RPnP (which splits the points into multiple P3P
problems), but using their positions in the image predicted by
H, rather than the measured correspondences. P3P-Random
suffers from the problem that it may return zero solutions. We
have found that this occurs in practice between 3 and 4 %
of the time depending on noise. To make the comparison
simple we compute performance statistics for P3P-Random
using only instances where it returned at least one solution.
By contrast because the points in P3P-Regular are at right-
angles, it is guaranteed to return at least one solution, and at
most two (Gao et al. 2003b).

To maintain a fair comparison we compared P3P-Random,
P3P-Regular and RPnP-Virtual using the homography esti-
mated using HO. We have found that IPPE + HO consis-
tently performs better than P3P-Random, P3P-Regular and
RPnP-Virtual across the experiments presented earlier in this
section. For brevity we present the results for just for exper-
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Fig. 4 Synthetic experiments: comparing pose accuracy of IPPE + HO with previous state-of-the-art methods (E18–E23) The corners of the planar
region are used as four correspondences
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Table 10 Varying imaging
conditions in synthetic
experiments E24–E29

These experiments tested
algorithm performance in Mode
2

E24 E25 E26 E27 E28 E29

f 800 800 800 800 800 800

w 50 50 50 50 50 50

n 4→10 4→10 8→40 8→10 4→10 4→10

σI 0.5 1 2 1 1 1

σM 0 0 0 0.5 1 2

Mode 2 2 2 2 2 2

iments E6-E8 and E18-E20 for these methods. This is given
in Fig. 6.

5 Experimental Evaluation with Real Data

In this section we evaluate the algorithms on three applica-
tions involving real images. The first is to estimate the pose
of a planar target from keypoint matches. The second is to
estimate the pose of a planar checker-board target. The third
is to estimate the pose of small planar AR markers.

5.1 Planar Pose Estimation from Keypoint Matches

In this experiment a series of images of a 120×90 mm planar
test surface was photographed in normal indoor light condi-
tions. The series comprises 28 images, three of which are
shown in Fig. 7. The camera used is a Nikon D3100 DSLR
with image resolution 2,304× 1,536 pixels. The camera was
calibrated with Bouguet’s calibration toolbox (Bouguet) with
focal length fx = 3,204 pixels, fy = 3,220 pixels. A fronto-
parallel model image was constructed by undistorting and
rectifying the first of these images. We computed correspon-
dences between the model view and all input images using
standard automatic methods. Specifically we used VLFeat’s
SIFT implementation (Vedaldi and Fulkerson) with putative
matches computed using Lowe’s ratio test (Lowe 2004) and
performed RANSAC to find inlier correspondences (an inlier
threshold of 5 pixels was used). This resulted in between 250
and 400 correspondences found in each image. We then com-
puted gold standard pose estimates for each image using all
inlier correspondences by minimising the symmetric transfer
error with Gauss-Newton iterations. Given the large number
of correspondences all tested methods perform quite well. We
compute error statistics over all 28 images. In Table 11 we list
accuracy with respect to the gold standard. Here IPPE + HO is
the most accurate method with RPP-SP following in second.

We used this dataset to study the accuracy of the algo-
rithms as conditions become more challenging. Specifically,
when using smaller numbers of correspondences drawn from
sub-regions of the model. Conditions become harder as the

region becomes smaller because (i) there are fewer corre-
spondences and (ii) the problem becomes ambiguous because
the homography becomes affine. Each image is processed
as follows. For each correspondence, we collect all cor-
respondences that lie within a circular window of radius
r mm. If there are <3 neighbouring correspondences we
discard the window. Otherwise we compute pose and mea-
sure the error with respect to the gold standard pose (com-
puted using the entire surface). We varied r within the range
[5.22 . . . 50]mm. The results are shown in Fig. 8. The first
and second rows show the error in rotation and translation
respectively as r varies from 5.22 to 20.9 mm. We also give
n̄; the average number of correspondences within each sub-
window. These vary from n̄ = 4.64 to n̄ = 23.8. The third
and fourth rows show errors in rotation and translation for
larger windows; r varying from 26.1 to 41.1 mm. In each
graph we plot cumulative error distributions. The distribution
of a method performing well will push towards the top left of
the axes. For the smallest window size r = 5.22 mm all meth-
ods perform poorly, including GEOMREF. This is because
at this small scale the problem is severely ill-conditioned. As
r increases all methods perform better. IPPE + HO performs
marginally worse than RPP-SP for r = 5.22 mm (n̄ = 4.64).
However beyond r = 10.4 mm IPPE + HO consistently per-
forms very close to GEOMREF, and consistently performs
as well as or better than the next-best method (RPP-SP). This
agrees with the synthetic experiments, where, for randomly
positioned correspondences IPPE + HO starts to outperform
other methods for n ≥ 8. Beyond r = 20.9 mm one can see
that IPPE + HO and GEOMREF can find the correct solution
nearly all the time; 99.6 % of samples have a rotation error
<10 %.

5.2 Pose Estimation of a Planar Checker Pattern

The second set of real experiments involves estimating the
pose of a planar checkerboard pattern. We have experimented
with two datasets. The first is a series of 20 images captured
by a standard 720p smartphone camera in normal indoor
lighting conditions. We used a checker surface comprising
21 × 30 squares each of size 9.22 mm. Figure 9 shows
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Fig. 5 Synthetic experiments: comparing pose accuracy of IPPE + HO with previous state-of-the-art methods in Mode (E24–E29). The corners
of the planar region are used as four correspondences
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Fig. 6 Synthetic experiments: comparing pose accuracy of IPPE + HO with P3P performed on virtual point correspondences computed from the
homography
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Fig. 7 Images taken from the ‘Game cover’ dataset. Images were captured with a Nikon D3100 DSLR with image resolution 2,304× 1,536 pixels.
We used SIFT (Lowe 2004) to compute putative feature matches with each image containing between 200–500 features

Table 11 Accuracy of algorithms on the ‘Game cover’ dataset using
all correspondences

R Error (degrees) t Error (%)

IPPE + HO 0.1249 0.0375

HDZh + DLT 2.8650 0.2691

RPP-SP 1.4951 1.0877

EPnP 1.9347 1.0496

RPnP 0.1850 0.2132

Accuracy is computed with respect to the gold standard pose combined
by GEOMREF

three example images in this dataset. The second dataset is a
publicly-available one from the Matlab Calibration Toolbox
(Bouguet). This comprises 20 images of a 12× 12 checker-
board with square size 30 mm.

We compute model-to-image correspondences using the
Matlab Calibration Toolbox. This involves manually click-
ing the four corners of the model in an image, and the corre-
sponding homography is used to initialise all checker corners.
These are then refined to sub-pixel accuracy with gradient
descent. For the first dataset we have 628 correspondences
per image. All methods perform well using this amount of
data. To differentiate the methods we perform a similar exper-
iment to Sect. 5.1 to see how well they perform on smaller
checkerboard. For each image, we draw all m × m checker
sub-patterns, where m was varied from 2 to the width of the
checkerboard. We then compute pose for each sub-region and
compare to the gold standard. Figure 10 shows the results for
the first dataset. Here we see that IPPE + HO and RPP-SP
are virtually indistinguishable from GEOMREF. However,
as we will show from Table 12 IPPE + HO is between 50 and
70 times faster than RPP-SP. HDZh and EPnP perform sig-
nificantly worse. We see a similar trend for the dataset from
the Matlab Calibration Toolbox in Fig. 11.

5.3 Pose Estimation of Augmented Reality Markers

In the last set of experiments we evaluate performance for
estimating the pose of AR markers. This task typically

involves the following processing pipeline: (i) to detect the
position of the marker approximately in the input image. This
involves finding image regions which match a marker’s char-
acteristic pattern. (ii) to refine the four corner positions to sub-
pixel accuracy. (iii) to use the corners to estimate 3D pose.
(iv) (optional) pose refinement. Here we compare the accu-
racy of IPPE to previous methods for solving (iii). Because
n = 4 the homography is computed exactly from the point
correspondences (i.e. there is no redundancy since the cor-
respondences provided 8 constraints on the homography).
When n = 4 the homography can be solved very efficiently
with an analytic solution.

We use the following experimental setup. ArUco
(Munoz-Salinas) is used to generate 300 uniquely-identifiable
markers each of width 7.90 mm. The markers were rotated
by a random angle and distributed evenly over 9 A4 sheets
of paper. These sheets were printed using a high-precision
laser printer, corrected for anisotropic printer scaling. The
papers were then fixed to a large planar background surface,
by tiling them in a 3 × 3 grid. We ran plane-based bundle-
adjustment to accurately determine the relative positions of
each sheet of paper on the background. This allowed us to
have a composite planar model of all 300 AR markers.

We then captured two video sequences with a 720p smart-
phone camera. The first one viewed the markers at close
range, with the average distance between sensor and plane
to be 52.1 cm. The second was at mid-range with the aver-
age distance of 102.2 cm. We ran ArUco’s marker detector
and rejected any video frames where fewer than 10 markers
were detected (typically occurring when high motion blur is
present). From the remaining frames we randomly selected
30 from both videos to comprise two test sets. Example
frames from the close and medium range sets are shown in the
top and bottom rows of Fig. 12, respectively. We then tested
the performance of the algorithms for these datasets. For each
image in a dataset, a gold-standard pose was computed using
gradient-based refinement using the positions of all detected
AR markers. The performance of an algorithm was measured
by how close its pose estimate using a single AR marker was
to the gold standard. We plot the results in Fig. 13. We com-
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Fig. 8 Real experimental results (Pose estimation using the ‘Game cover’ dataset): comparing pose accuracy with varying window sizes

pute rotation error, and also the error of the estimated depth of
the centre of the AR marker (in mm). Here we see that IPPE,
RPnP and RPP-SP are the best performing methods and per-
form very close to GEOMREF. RPnP performs very slightly
worse for rotation than IPPE and RPP-SP. There is a notice-
able tail in rotation error for GEOMREF; approximately 5 %
of markers have errors >10 degrees. The reason for these
outliers is because of tracking errors; very occasionally the
corner predictions are far from their true positions (e.g. >5
pixels) when the gradient-based refinement gets trapped in an
incorrect local minimum. HDZh and EPnP are significantly
worse at solving this problem, and show a significant per-
formance drop for the mid-range dataset. Even though the
accuracy of IPPE, RPnP and RPP-SP is quite similar, IPPE
is significantly faster to compute. Because the homography

is computed analytically, IPPE computes pose entirely ana-
lytically using only simple floating point operations for this
problem. This is in contrast to RPP-SP, which is iterative,
and RPnP, which involves numerical root finding for a 7th
order polynomial.

5.3.1 Timing Information

We have computed the time required to perform each of the
compared methods as a function of n. This has been done on
a standard Intel i7-3820 desktop PC running 64-bit Matlab
2012a. For all compared algorithms we use the code provided
by the authors. We use our own Matlab implementation of
IPPE. Note that these are not the fastest implementations, and
speedups would be gained with for example C implementa-
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Fig. 9 Example views of two checkerboard test surfaces. Top row
views of a 193×276 mm target captured by a 720p smartphone. Bottom
row views of a 360 × 360 mm target from the public dataset supplied

with the Matlab Calibration Toolbox. The performance of IPPE + HO
and RPP-SP is virtually indistinguishable to GEOMREF
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Fig. 10 Real experiments (checkerboard pose estimation captured with 720p smartphone): comparing pose accuracy with varying checker sizes.
The performance of IPPE + HO and RPP-SP is virtually indistinguishable to GEOMREF

tions. However benchmarking all methods with Matlab gives
a fair comparison and reveals how computation time scales
with n. For a given n we simulated 500 randomised configu-
rations using the simulation setup in Sect. 4.1. Figure 14 and
Table 12 shows processing time as n varies from 4 to 650.
For IPPE and HDZh with n = 4, we use an analytic formula
to estimate the homography. This requires approximately 50
floating-point operations and is faster than solving with DLT
and HO, yet yields the same result. RPP-SP is by far the slow-

est method. IPPE + HO is the fastest method. It is marginally
faster than HDZh + DLT, but considerably faster than EPnP,
RPnP and RPP-SP. In Table 12 at n = 4 we see that IPPE
is approximately 6.7 times faster than EPnP and 6.2 times
faster than RPnP. IPPE is approximately 75 times faster than
RPP-SP. EPnP, RPnP and IPPE are all O(n) methods. We
can see from Fig. 14 that the graph’s slope is considerably
lower for IPPE than for EPnP and RPnP. This is because IPPE
is time-bounded by the cost of computing the homography,
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Table 12 Table showing computation time (in ms) for solving PPE
with compared methods

n IPPE + HO HDZh + DLT RPP-SP EPnP RPnP

4 0.150 0.261 11.101 1.012 0.940

6 0.387 0.497 14.211 0.883 0.965

10 0.398 0.517 22.444 0.929 1.011

60 0.420 0.527 51.260 1.024 1.475

160 0.494 0.605 138.508 1.705 2.908

340 0.555 0.669 258.100 2.853 5.659

500 0.602 0.715 408.362 3.760 9.205

700 0.657 0.771 483.992 4.849 13.905

which itself is very fast even for large n. At n = 500, IPPE
is only about 1.5 times slower than at n = 6. By contrast
EPnP and RPnP are approximately 4.3 and 9.6 times slower
at n = 500 than n = 6.

6 Conclusion

We have presented the Infinitesimal Plane-based Pose Esti-
mation (IPPE) algorithm. The core idea behind IPPE is to use
the fact that a noisy homography will predict the transform w

between the model plane and the image better at some loca-
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Fig. 11 Real experiments (checkerboard pose estimation with data from the Matlab Calibration Toolbox): comparing pose accuracy with varying
checker sizes

Fig. 12 Example views of AR markers captured by a 720p smartphone. Top row close-range views. Bottom row medium-range views
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Fig. 13 Performance of pose
estimation algorithms on two
AR marker datasets. There is
very little to distinguish IPPE,
RPP-SP and RPnP in terms of
accuracy, and all perform very
similarly to GEOMREF. This
indicates that for this application
there is no real benefit in
refining their pose estimates
with maximum likelihood
refinement. However IPPE is by
far the fastest and simplest of
these three methods (see Table
12 with n = 4) 0 2 4 6 8 10
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Fig. 14 Graph showing computation time (in ms) for solving PPE with
compared methods. Benchmarking was performed on a standard Intel
i7-3820 desktop PC. We use Matlab implementations provided by the
authors for HDZh + DLT, RPP-SP, EPnP and RPnP. We use our own
Matlab implementation for IPPE. The implementation of HO is pro-
vided by the authors

tions than others. Our premise is that a good way to exploit the
redundancy in the homography is to locate the point where
the transform w is best estimated, and then solve pose exactly
using local 1st-order information of w at that point. We have
presented the statistical justification for this approach. When
the homography is estimated by noisy point correspondences
we have shown using error propagation that estimates of w

and Jw is made with highest certainty approximately at the
centroid of the model points. An equivalent way to say this
is that the centroid is the point where a small perturbation
in the correspondences will induce the smallest change in w

and Jw.
We have then shown that given an estimate of w and Jw at

a particular point u0, we can solve pose with a non-redundant
1st-order PDE. This PDE is exact and does not make any 1st-
order approximations of the projection process. The solution
to IPPE has some attractive properties. These include guaran-
tees on the number of physical solutions (this is at most two,
but never fewer than one), the fact that it never introduces
artificial degeneracies, and allows a clear understanding of
how these solutions relate geometrically. Unlike perspective
homography decomposition, IPPE handles perspective and
affine homographies transparently and does not break down
when the amount of perspective distortion is small. Unlike
affine homography decomposition, IPPE does not introduce
any modelling error by approximating perspective projection
with a linear transform.

We have performed a thorough empirical evaluation of
IPPE and have shown that it performs very well in practice.
It substantially outperforms homography decomposition and
in most cases outperforms modern PnP methods (whilst being
substantially faster). When the point correspondences come
from AR markers, camera calibration targets or a large num-
ber of 2D keypoints such as SIFT, there really is no good
reason to use another method over IPPE.
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There is also a deep connection between IPPE and the
P3P problem. This is that the solutions to P3P will tend to
the solutions to IPPE if we create three virtual correspon-
dences with infinitesimal separation centred at u0, and use
the homography to estimate their positions in the image. One
might then ask is there a better strategy than IPPE for posi-
tioning these virtual correspondences? Using error propaga-
tion analysis the answer appears to be no, because as the
three points tend away from the centroid the uncertainty
in their positions predicted by the homography increases
quadratically. This has been confirmed empirically in our
experiments.

In the future we aim to apply IPPE to related problems
that are currently solved with classic homography decom-
position, including plane-based pose estimation with intrin-
sic calibration and plane-based Structure-from-Motion. In
terms of the broader picture, IPPE is a solution to a problem
that involves estimating a transform using a redundant set
of constraints that have error-in-variables. The redundancy
is exploited by finding the point in the transform’s domain
with the least error-in-variables via uncertainty propagation,
and then solving the transform using an exact local system at
that point. We hope that this strategy may be of use in other
vision problems for estimating transforms when there exists
smooth variation in the error-in-variables.

Acknowledgments This research has received funding from the EU
FP7 ERC research Grant 307483 FLEXABLE. Code is available at
http://www.tobycollins.net/research/IPPE.

Appendix 1: IPPE Using the Para-Perspective
and Weak-Perspective Cameras

Para-perspective projection approximates perspective pro-
jection by linearising π about some 3D point xc =
[xc, yc, zc]� in camera coordinates. We denote this by
πpp(x) : R

3 → R
2. To reduce approximation error xc is

chosen to be the centroid of the model’s points (Ohta et al.
1981; Poelman and Kanade 1993). xc can be parameterised
by a 2D point q̃c in normalised coordinates, scaled by a depth
zc: xc = zc[q̃�c , 1]�. πpp is then given by:

πpp(x) = q̃c + z−1
c

[
I2 | − q̃c

]
x. (39)

Because para-perspective projection is an affine trans-
form, H is also an affine transform, and computed by the
best fitting affine transform that maps {ui } to {q̃i }. The Jaco-
bian of the model-to-image transform w is therefore constant,
which we denote by Ja ∈ R

2×2. We can then estimate zc (i.e.
the depth of the centroid of the correspondences in camera
coordinates) and estimate the plane’s rotation using IPPE by

replacing π with πpp. This leads to an instance of Problem
(16) with substitutions J← Ja , v← q̃c and γ ← z−1

c .
The weak-perspective camera can be treated similarly

to the para-perspective camera. The difference is that in
weak-perspective projection the linearisation is done at a 3D
point passing through the camera’s optical axis. The weak-
perspective projection function πwp(x) : R3 → R

2 is given
by:

πwp(x) = q̃c + z−1
0

[
I2 |0

]
x, (40)

where z0 approximates the depth of the plane along the cam-
era’s optical axis. We can estimate z0 and estimate the plane’s
rotation using IPPE by replacing π with πwp. This leads to an
instance of Problem (16) with substitutions J← Ja , v← 0
and γ ← z−1

0 .

Appendix 2: Proof of Eq. (17)

We prove Eq. (17) using a general form with point corre-
spondences in d-dimensional space. U ∈ R

d×n denotes the
set of points in the domain space, where n is the number of
points. Q ∈ R

d×n denotes the corresponding set of points in
the target space (of the same dimensionality d). We use Ū
to denote U but zero-meaned (so that the sum of the rows of

Ū are zero). Let M̂ =
[

Â t̂
0� 1

]
denote the maximum likeli-

hood homogeneous affine transform that maps Ū to Q, with
Â ∈ R

d×d , t̂ ∈ R
d . M̂ is given by:

t̂ = Q1

Â = (B�B)−1B�q, B def= Id ⊗ Ū�,
(41)

where 1 is the all-ones n×1 vector and q ∈ R
dn×1 denotes Q

stacked into a column vector. The transformation of a point
u ∈ R

d in the domain according to M̂ is given by: f (u) =
VM̂, where V def= Id ⊗ u�. Suppose Q is corrupted by IID
zero-mean Gaussian noise with variance σ . The uncertainty
covariance matrix in q is �q = σ I2 and using propagation of
uncertainty, the uncertainty in the position of u transformed
according to M̂ is given by the n×n covariance matrix � f (u):

� f (u) = � t̂ +�Â (a)

� t̂ =
σ

n
In (b)

�Â = σV�M̂M̂�V = V�(B�B)−1V (c)

⇔ [
�Â

]
i j =

{
u�(Ū�Ū)−1u i = j
0 i �= j

(d)

(42)

The step from Eq. (42c) to Eq. (42d) is made because of
the block-diagonal structure of (B�B)−1.
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Appendix 3: Proof of Theorem 2

Proof of Lemma 1 Lemma 1 comes directly from Eq. (19).
To first order we have:

arg min
u0

trace (�J(u0)) = arg min
u0

∥∥∥∥
∂

∂q̂
vec(J)

∥∥∥∥
2

F
(43)

Equation (43) tells us that to minimise the uncertainty in J we
should find u0 where a small change in the correspondences
in the image changes J the least. ��
Proof of Lemma 2 Let J′ denote the Jacobian of H′, and q̃′i =
sq q̃i + tq for some sq ∈ R

+ and tq ∈ R
2. Recall the centroid

of {ui } is already at the origin, and so u′i = suui for some
su ∈ R

+. We use q̂′ to be the vector of length 2n that holds
{q̃′i }. Using the product rule we have ∂vec(J)

∂q̂′ = sq
∂vec(J)

∂q̂ .

Because sq ∈ R
+ we have:

arg min
u0

trace (�J(u0)) = arg min
u0

∥∥∥ ∂
∂q̂ vec(J)

∥∥∥2

F

= arg min
u0

∥∥∥ ∂
∂q̂′ vec(J)

∥∥∥2

F

(44)

Normalising {q̃i } therefore does not affect the solution.
We then make the coordinate transform u← suu, and solve
Problem (44) using {u′i } in place of {ui } and J′ in place of
J. Suppose a solution to this is given by û′0. By undoing the
coordinate transform, a solution to the original problem is
given by s−1

u û′0.
When the perspective terms of H′ (H ′31 and H ′32) are small

a good approximation to J′ can be made by linearising with
respect to H ′31 and H ′32 about H ′31 = H ′32 = 0. This lineari-
sation gives:

w(u0) ≈
[
−H ′31 H ′11u2

x + (−H ′13 H ′12 − H ′32 H ′11)ux uy
−H ′31 H ′21u2

x + (−H ′13 H ′22 − H ′32 H ′21)ux uy

]

+
[

H ′11ux − H ′32 H ′12u2
y + H ′12uy

H ′21ux − H ′32 H ′22u2
y + H ′22uy

] (a)

vec(J′) = vec
(

∂w
∂u (u0)

)
≈

⎡
⎢⎢⎢⎣

H ′11 − H ′31(2H ′11ux + H ′12uy )− H ′32 H ′11ux
H ′21 − H ′31(2H ′21ux + H ′22uy )− H ′32 H ′21ux
H ′12 − H ′32(H ′11ux + 2H ′12uy )− H ′31 H ′12ux
H ′22 − H ′32(H ′21ux + 2H ′22uy )− H ′31 H ′22ux

⎤
⎥⎥⎥⎦ (b)

(45)

The approximation of vec(J′) in Eq. (45b) is linear in
u0, and so ∂

∂q̂′ vec(J′) is also linear in u0. This means∥∥∥ ∂
∂q̂′ vec(J′)

∥∥∥2

F
is of the form:

∥∥∥∥
∂

∂q̂′
vec(J′)

∥∥∥∥
2

F
≈ u�0 Qu0 + b�u0 + c (46)

for some 2 × 2 matrix Q (which is either positive definite
or positive semi-definite), a 2 × 1 vector b and a constant
scalar c.

Using the product rule we have:

∥∥∥ ∂
∂q̂′ vec(J′)

∥∥∥2

F
=
∥∥∥ ∂

∂h′ vec(J′) ∂h′
∂q̂′
∥∥∥2

F= trace
(

∂
∂h′ vec(J′)C ∂

∂h′ vec(J′)�
)

h′ def= vec(H′), C def= ∂
∂q̂′ h

′ ∂
∂q̂′ h

′�, C  0,

(47)

C is a 8× 8 positive definite matrix that has been studied in
Chen and Suter (2009). When H′ is approximately affine the
perspective terms H ′31 and H ′32 and the translational terms
H ′13 and H ′23 are negligible. When H ′31 = H ′32 = H ′13 =
H ′23 = 0, ∂

∂h′ vec(J′) is given by:

⎡
⎢⎣

1 0 0 0 0 0 −2H ′11ux − H ′12uy −H ′11uy 0
0 0 0 1 0 0 −2H ′21ux − H ′22uy −H ′21uy 0
0 1 0 0 0 0 −H ′12ux −2H ′12uy − H ′11ux 0
0 0 0 0 1 0 −H ′22ux −2H ′22uy − H ′21ux 0

⎤
⎥⎦ (48)

It was shown that the normalisation step orthogonalises
∂

∂q̂′ h
′ (Chen and Suter 2009). This implies C is approximately

a diagonal matrix and so:

∥∥∥∥
∂

∂q̂′
vec(J′)

∥∥∥∥
2

F
= trace

(
∂

∂q̂
vec(J′) ∂

∂q̂
vec(J′)�

)

= trace

(
∂

∂h′
vec(J′)C ∂

∂h′
vec(J′)�

)

≈
∑

i j

[
∂

∂h′
vec(J′)

]2

i j
C j j .

(49)

This is a weighted sum of the (squared) elements of
∂

∂h′ vec(J′). The weights are C j j which are non-negative
because C is positive definite. Therefore when the perspective
terms of H′ are negligible trace

(
�J′(u0)

)
is minimised by

u0 = 0, and so trace (�J(u0)) minimised by u0 = s−1
u 0 = 0

(i.e. the centroid of {ui }). ��

Appendix 4: Proof of Lemma 3

For simplicity we centre the model’s coordinate frame at u0,
so ui ← (ui − u0) and u0 ← 0. Because {u1, u2, u3} are
non-colinear at least two members of {u1, u2, u3} cannot be
0. Without loss of generality let these be u1 and u2.

Let vi
def= w(ui ), i ∈ {1, 2, 3} be the position of the

three points in the image (in normalised coordinates). From
Eq. (28) the two embeddings of ui into camera coordinates
are:

s1(ui ) = R1

[
ui

0

]
+ γ−1

[
v0

1

]

s2(ui ) = R2

[
ui

0

]
+ γ−1

[
v0

1

]
.

(50)
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If s1(ui ) and s2(ui ) project ui to the same image point (i.e.
they exist along the same line-of-sight) then pose cannot be
disambiguated using the reprojection error of ui . This is true
for u0 because u0 = 0 ⇒ s1(u0) = s2(u0) = γ−1[v�0 1]�.
For ui , i �= 0, we cannot disambiguate pose using reprojec-
tion error iff:

∀i ∈ {1, 2, 3} ∃si ∈ R
+ s.t.

R1

[
ui

0

]
+ γ−1

[
v0

1

]
= si

(
R2

[
ui

0

]
+ γ−1

[
v0

1

])
.

(51)

Using the decompositions of R1 and R2 from Eq. (24) we
pre-multiply both sides of Eq. (51) by R�v to give:

∀i ∈ {1, 2, 3} ∃si ∈ R
+ s.t.[

γ−1A
+b�

]
ui + t̃ = si

([
γ−1A
−b�

]
ui + t̃

)

t̃ def= γ−1R�v
[

v0

1

] (52)

We split Eq. (52) into three cases. The first case is when
b = 0. In this case there is no ambiguity because from
Eq. (24) b = 0 ⇔ R̃1 = R̃2 ⇔ R1 = R2. The second case
is when b �= 0 and the top two rows of the left side of Eq. (52)
are non-zero: γ−1Aui + t̃12 �= 0. This implies σi = 1. The
third row of Eq. (52) then implies b�ui = −b�ui . Because
b �= 0 and ui �= 0 for i ∈ {1, 2}, b must be orthogonal to
u1 and u2. This implies u1 and u2 are colinear, which is a
contradiction.

The third case is when b �= 0 and the top two rows of
the left side of Eq. (52) are zero: γ−1Aui + t̃12 = 0. By
eliminating t̃12 and cancelling γ this implies A(u2−u1) = 0
and A(u3 − u1) = 0. Because u2 �= u1, this implies A has a
nullspace. Because rank(A) ≥ 1, this implies rank(A) = 1,
and so (u2−u1) = λ(u3−u1) for some λ �= 0. This implies
{u1, u2, u3} are colinear, which is a contradiction.

To summarise, when b = 0 there is no ambiguity because
both solutions to pose are the same, and when b �= 0 Eq. (52)
is false, and hence Eq. (51) is false. Therefore when b �= 0
Eq. (28) will project either u1, u2 or u3 to two different image
points.
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