QUICKXPLAIN:
Preferred Explanations and Relaxations for Over-Constrained Problems

Ulrich Junker

1681, route des Dolines
06560 Valbonne

France

uj unker @1 og. fr

Abstract

Over-constrained problems can have an exponential number
of conflicts, which explain the failure, and an exponential
number of relaxations, which restore the consistency. A user
of an interactive application, however, desires explanations
and relaxations containing the most important constraints. To
address this need, we define preferred explanations and re-
laxations based on user preferences between constraints and
we compute them by a generic method which works for ar-
bitrary CP, SAT, or DL solvers. We significantly accelerate
the basic method by a divide-and-conquer strategy and thus
provide the technological basis for the explanation facility of
a principal industrial constraint programming tool, which is,
for example, used in numerous configuration applications.

Introduction

Even experienced modelling experts may face over-
constrained situations when formalizing the constraints of
a combinatorial problem. In order to identify and to cor-
rect modelling errors, the expert needs to identify a subset
of the constraints that explain the failure, while focusing on
the most important ones. Alternatively, the expert can be in-
terested in a subset of the constraints that have a solution,
again preferring the important constraints.

In interactive applications, the careful selection of expla-
nations and relaxations is an even more important problem.
We consider a simple sales configuration problem, where not
all user requirements can be satisfied:

Example 1 A customer wants to buy a station-wagon with
following options, but has a limited budget of 3000:

Option Requirement p; Costs
1 roof racks 1 =1 k1 =500
2. CD-player x2 =1 ko = 500
3. one additional seat x3 =1 ks = 800
4, metal color e =1 k4 = 500
5. special luxury version x5 =1 ks = 2600

where the boolean variable z; € {0,1} indicates whether
the ¢-th option is chosen and the costs y = >_._, k; - x; are
smaller than the total budget of 3000.

A constraint solver maintaining bound consistency will suc-
cessively increase the lower bound for y if the requirements

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Requirement Deduction Argument/Conflict

P11 =1 y2500 {p1}

p2iza=1 y>1000 {p1,p2}

psixs =1y >1800 {p1,p2,p3}
paixza=1 y>2300 {p1,p2,p3,pa}
psiws =1 y>4900 {p1,p2,ps, ps,ps5}

fail {p1, 02, p3, P4, p5}

Table 1: Computing a conflict during propagation.

Requirement Deduction Argument/Conflict
P4 :x4:1 y2500 {04}
ps:xs =1y >3100 {p4,ps}

fail {ps,ps}

Table 2: Propagation for producing a minimal conflict.

are propagated one after the other (see Table 1). When prop-
agating the last requirement, the lower bound of 4900 ex-
ceeds 3000 and a failure is obtained. A straightforward ex-
planation for this failure is obtained if we maintain the set of
requirements explaining why y > [b;. Unfortunately, the re-
sulting explanations contains all requirements meaning that
requirements may be removed without need.

We are therefore interested in minimal (i.e. irreducible)
conflicts. Table 2 shows another sequence of propagations,
which results into the minimal conflict {p4, p5}. If the cus-
tomer prefers a special luxury version to metal color, p4 will
be removed, meaning that we can get another conflict, e.g.
{ps, ps}. However, the customer prefers an additional seat
to the special luxury version and now removes ps, meaning
that only {p1, p2, p3} are kept. This relaxation of the re-
quirements is not maximal, since p4 can be re-added after
the removal of ps. Unnecessary removals can be avoided
if we directly produced the conflict {ps, p5} containing the
preferred requirements. If we take into account user prefer-
ences between requirements, we can directly determine pre-
ferred explanations as the one shown in Table 3 (we write
pi < p; iff p; is preferred to p;).

Hence, the essential issue in explaining a failure of a
constraint solver is not the capability of recording a proof,
but selecting a proof among a potentially huge number that
does not contain unnecessary constraints and that involves

CONSTRAINT SATISFACTION & SATISFIABILITY 167

Requirement Deduction Argument/Conflict
psixz=1 y>800 {ps}
psixs =1y >3400 {ps,ps}

fall {p37 p5}

Table 3: A preferred explanation for p3 < p1 < p2 < ps <
P4

the most preferred constraints. We address this issue by a
preference-controlled algorithm that successively adds most
preferred constraints until they fail. It then backtracks and
removes least preferred constraints if this preserves the fail-
ure. Relaxations can be computed dually, first removing
least preferred constraints from an inconsistent set until it
is consistent. The number of consistency checks can drasti-
cally be reduced by a divide-and-conquer strategy that suc-
cessively decomposes the overall problem. In the good case,
a single consistency check can remove all the constraints of
a subproblem.

We first define preferred relaxations and explanations and
then develop the preference-based explanation algorithms.
After that, we discuss consistency checking involving search
as well as related work.

Preferred Explanations and Relaxations

Although the discussion of this paper focuses on constraint
satisfaction problems (CSP), its results and algorithms apply
to any satisfiability problem such as propositional satisfiabil-
ity (SAT) or the satisfiability of concepts in description logic
(DL). We completely abstract from the underlying constraint
language and simply assume that there is a monotonic satis-
fiability property: if S is a solution of a set C; of constraints
then it is also a solution of all subsets Cs of C;.

If a set of constraints has no solution, some constraints
must be relaxed to restore consistency. It is convenient to
distinguish a background B containing the constraints that
cannot be relaxed. Typically, unary constraints x € D be-
tween a variable 2z and a domain D will belong to the back-
ground. In interactive problems, only user requirements can
be relaxed, leaving all other constraints in the background.
We now define a relaxation of a problem P := (B, C):

Definition 1 A subset R of C is a relaxation of a problem
P = (B,C) iff BU R has a solution.

A relaxation exists iff B is consistent. Over-constrained
problems can have an exponential number of relaxations. A
user typically prefers to keep the important constraints and
to relax less important ones. That means that the user is at
least able to compare the importance of some constraints.
Thus, we will assume the existence of a strict partial or-
der between the constraints of C, denoted by <. We write
c1 < co iff (the selection of) constraint ¢, is preferred to
(the selection of) co. (Junker & Mailharro 2003) show how
those preferences can be specified in a structured and com-
pact way. There are different ways to define preferred re-
laxations on such a partial order (cf. e.g. (Junker 2002)).
In this paper, we will pursue the lexicographical approach
of (Brewka 1989) which assumes the existence of a unique

168 CONSTRAINT SATISFACTION & SATISFIABILITY

ranking among the constraints. The partial order < is con-
sidered an incomplete specification of this ranking. We will
introduce three extensions of this partial order:

e Alinearization < of <, which is a strict total order that is
a superset of < and which describes the ranking.

e Two lexicographic extensions of <, denoted by <;., and
<antilex» Which are defined over sets of constraints.

Those lexicographic orders will be defined below. For now,
we keep only in mind that two relaxations can be compared
by the lexicographic extension <.

Similarly, an over-constrained problem may have an ex-
ponential number of conflicts that explain the inconsistency.

Definition 2 A subset C of C is a conflict of a problem P :=
(B, C) iff BU C has no solution.

A conflict exists iff BUC is inconsistent. Some conflicts are
more relevant for the user than other conflicts. Suppose that
there are two conflicts in a given constraint system:

e Conflict 1 involves only very important constraints.
e Conlflict 2 involves less important constraints.

The intuition is that conflict 1 is much more significant for
the user than conflict 2. Indeed, in any way, the user will
have to resolve the first conflict, and thus, he will have to
relax at least one important constraint. As for the second
conflict, a less important constraint can be relaxed and the
user will consider such a modification as more easy to do.

We now give a formalization of the above intuitions. We
define preferred relaxations following (Brewka 1989) and
then give an analogous definition for preferred conflicts.
Firstly, we recall the definition of the lexicographic exten-
sion of a total order.

Definition 3 Given a total order < on C, we enumerate the
elements of C in increasing <-order ¢4, .. ., ¢, starting with
the most important constraints (i.e. ¢; < c¢; implies i < j)
and compare two subsets X, Y of C lexicographically:

X <pex Y
iff
e, € X — Y and @

Xﬂ{cl,...,ck_l}:Yﬂ{cl,...,ck_l}

Next, we define preferred relaxations, first for a total order
over the constraints, and then for a partial order:

Definition 4 Let P := (B,C, <) be a totally ordered prob-
lem. A relaxation R of P is a preferred relaxation of P iff
there is no other relaxation R* of P s.t. R* <jex R.

Definition 5 Let P := (B,C,<) be a partially ordered
problem. A relaxation R of P is a preferred relaxation of
P iff there is a linearization < of < s.t. R is a preferred
relaxation of (B,C, <).

A preferred relaxation R is maximal (non-extensible) mean-
ing that each proper superset of R has no solution. If no
preferences are given, i.e. < is the empty relation, then the
maximal relaxations and the preferred relaxations coincide.
If < is a strict total order and B is consistent, then P has a
unique preferred relaxation.

The definitions of preferred conflicts follow the same
scheme as the definitions of the preferred relaxations. In
order to get a conflict among the most important constraints,
we prefer the retraction of least important constraints:

Definition 6 Given a total order < on C, we enumerate the
elements of C in increasing order cy,...,c, (ie. ¢ < ¢
implies 7 < j) and compare X and Y lexicographically in
the reverse order:

X <antilex Y
iff @)
Jdk:c, €Y — X and

X N{cks1y---ent =Y N {crar,-.
A preferred conflict can now be defined:

Definition 7 Let P := (B,C, <) be a totally ordered prob-
lem. A conflict C of P is a preferred conflict of P iff there is
no other conflict C* of P s.t. C* <untites C.

Definition 8 Let P := (B,C, <) be a partially ordered
problem. A conflict C of P is a preferred conflict of P iff
there is a linearization < of < s.t. C'is a preferred conflict
of (B,C, <)

A preferred conflict C' is minimal (irreducible) meaning that
each proper subset of C' has a solution. If no preferences
are given (< is empty), then the minimal conflicts and the
preferred conflicts coincide. If < is a strict total order and
B UC is inconsistent, then P has a unique preferred conflict.
Hence, a total order uniquely specifies or characterizes the
conflict that will be detected by our algorithms. It is also
interesting to note that the constraint graph consisting of the
constraints of a minimal conflict is connected.

Proposition 1 Let C be a conflict fora CSP P := (0, C, <).
If C is a minimal conflict of P, then the constraint graph of
C consists of a single strongly connected component.

There is a strong duality between relaxations and conflicts
with a rich mathematical structure. The relationships be-
tween < ntier aNd <;o,. €an be stated as follows:

Proposition 2 X <,ntiter Y Iff Y (<7100 X.

Conflicts correspond to the complements of relaxations of
the negated problem with inverted preferences:
Proposition 3 Let —¢; >’ —¢; iff ¢; < ¢;. R is a preferred
relaxation (conflict) of (B,C, <) iff {-c | c€ C—C}isa
preferred conflict (relaxation) of (=B, {-c | c € C},>").
The definition of preferred relaxations and preferred con-
flicts can be made constructive, thus providing the basis for
the explanation and relaxation algorithms. Consider a to-
tally ordered problem P := (B,C, <) s.t. B is consistent,
but not BUC. We enumerate the elements of C in increasing

.,Cn}

<-order ¢y, . .., c,. We construct the preferred relaxation of
P by Ry :=0and
R Ri_1U{c;} iFBUR;_1U{c;} hasasolution
) R otherwise

The preferred conflict of P is constructed in the reverse or-
der. LetC), :=C and

O, = { Cit1—{ci}

Cita otherwise

if BUC;4+1 — {¢;} has no solution

Adding a constraint to a relaxation thus corresponds to the
retraction of a constraint from a conflict. As a consequence
of this duality, algorithms for computing relaxations can be
reformulated for computing conflicts and vice versa.

Preferred conflicts explain why best elements cannot be
added to preferred relaxations. In fact, the <-minimal ele-
ment that is not contained in the preferred relaxation R of a
problem P := (B,C, <) is equal to the <-maximal element
of the preferred conflict C' of P:

Proposition 4 If C'is a preferred conflict of P := (5,C, <)
and R is a preferred relaxation of P, then the <-minimal
element of C — R is equal to the <-maximal element of C.

Preferred conflicts permit an incremental construction of
preferred relaxations while avoiding unnecessary commit-
ments. For example, consider « < 3 < ~ and the back-
ground constraints -3 V =, =y V —d. Then {3, 0} is a pre-
ferred conflict for the order o < B8 < v < 4. Since ~ is nei-
ther an element of the conflict {3, §}, nor <-preferred to any
of its elements, we can move it behind ¢, thus getting a new
linearization o <’ 8 <’ & <’ ~. The linearizations < and
<’ have the same preferred conflict and the same preferred
relaxation. This observation shows that we can construct
the head (or start) of a preferred relaxation from a preferred
conflict C of <. We identify a worst element for C, precede
it by the other elements of C' and all constraints Pred(C)
that are preferred to an element of C. We then reduce the
problem to

(BU Pred(C)UC —{a},C — Pred(C) — C, <)

Please note that non-preferred conflicts such as {v,d} in-
clude irrelevant constraints such as ~ and do not allow this
reduction of the problem. Given different preferred con-
flicts, we can construct different preferred relaxations. This
is interesting in an interactive setting where the user wants
to control the selection of a relaxation.

Computing Preferred Explanations

We compute preferred conflicts and relaxations by follow-
ing the constructive definitions. The basic algorithm will
(arbitrarily) choose one linearization < of the preferences
<, thus fixing the resulting conflict or relaxation. It then in-
spects one constraint after the other and determines whether
it belongs to the preferred conflict or relaxation of <. It
thus applies a consistency checker isConsistent(C') to a se-
quence of subproblems. In this section, we assume that the
consistency checker is complete and returns true if C' has a
solution. Otherwise, it returns false. For a CSP, complete
consistency checking can be achieved as follows:

e arc consistency AC is sufficient for tree-like CSPs.

e systematic tree search maintaining AC is needed for arbi-
trary CSPs.

Incomplete checkers can provide non-minimal conflicts, as
will be discussed in the next section.

Iterative Addition and Retraction

The basic algorithm successively maps a problem to a sim-
pler problem. Initially, it checks whether the background is

CONSTRAINT SATISFACTION & SATISFIABILITY 169

Algorithm QuUICKXPLAIN(B, C, <)

1. ifisConsistent(B U C) return ‘no conflict’;
2. eseif C = ¢ then return ;
3. dsereturn QUICKXPLAIN’(B, B, C, <);

Algorithm Quick XPLAIN’(B, A, C, <)

4. if A # () and not isConsistent(3) then return ;
5. if C = {a} thenreturn {a};
6. letas,...,a, beanenumeration of C that respects <;
7. letk be split(n) where 1 < k < n;
8. Cy:= {al,...,oek}andCQ = {ak+1,...,an};
9. Ay := QUICKXPLAIN’(BUC1,C1,Ca, <);
10. Ap := QUICKXPLAIN'(BU Az, Az, C1, <);
11, return Ay U As;

Figure 1: Divide-and-Conquer for Explanations.

inconsistent. If C is empty, then the problem can immedi-
ately be solved:

Proposition 5 Let P := (B,C, <). If B is inconsistent then
the empty set is the only preferred conflict of 77 and P has no
relaxation. If BUC is consistent then C is the only preferred
relaxation of P and P has no conflict.

If C is not empty, then the algorithm follows the constructive
definition of a preferred relaxation. In each step, it chooses a
<-minimal element « and removes it from C. If BURU{«}
is consistent, « is added to R. A preferred relaxation can be
computed by iterating these steps.

The constructive definition of a preferred conflict starts by
checking the consistency of the complete set C U B and then
removes one constraint after the other. Whereas the addi-
tion of a constraint is an incremental operation for a consis-
tency checker, the removal is a non-incremental operations.
Therefore, the computation of a conflict starts with the pro-
cess of constructing a relaxation R;. When the first incon-
sistency is obtained, then we have detected the best element
a+1 that is removed from the preferred relaxation. Accord-
ing to Proposition 4, ay 1 is the worst element of the pre-
ferred conflict. Hence, the preferred conflict is a subset of
R U{ag+1}and C,_y isequal to {ay.1}. We now switch
over to the constructive definition of preferred conflicts and
use it to find the elements that are still missing.

Example 2 As a simple benchmark problem, we consider n
boolean variables, a background constraint " | k; - ; <
3n (with k; = nfor¢ =9,10,12 and k; = 1 otherwise) and
n constraints x; = 1. The algorithm introduces the con-
straints for ¢ = 1,...,12, then switches over to a removal
phase.

Divide-and-Conquer for Explanations

We can significantly accelerate the basic algorithms if con-
flicts are small compared to the number of constraints. In
this case, we can reduce the number of consistency checks
if we remove whole blocks of constraints. We thus split C
into subsets C; and C,. If the remaining problem C; is in-
consistent, then we can eliminate all constraints in C, while
needing a single check. Otherwise, we have to re-add some

170 CONSTRAINT SATISFACTION & SATISFIABILITY

of the constraints of C,. The following property explains
how the conflicts of the two subproblems can be assembled.

Proposition 6 Suppose C; and Cs are disjoint and that no
constraint of C, is preferred to a constraint of C :

1. If Ay is a preferred relaxation of (8,C;, <) and As is a
preferred relaxation of (BU Ay, Ca, <), then A; U Ay is
a preferred relaxation of (B,C; U Ca, <).

2. If Ay is a preferred conflict of (B U Cy,Cq, <) and Ay is
a preferred conflict of (BU A,,Cq, <), then A; UAyisa
preferred conflict of (B,C; U Ca, <).

We divide an inconsistent problem in this way until we ob-
tain subproblems of the form P’ := (B, {«a}, <), where all
but one constraint are in the background. We then know that
B U {a} is inconsistent. According to Proposition 5, it is
sufficient to check whether B is consistent in order to deter-
mine whether {«a} is a preferred conflict of 5. Algorithm
QuICKXPLAIN (cf. Figure 1) exploits propositions 5 and
6. It is parameterized by a split-function that chooses the
subproblems for a chosen linearization of < (see line 6):

Theorem 1 The algorithm QUICKXPLAIN(S, C, <) always
terminates. If 3 U C has a solution then it returns ‘no con-
flict’. Otherwise, it returns a preferred conflict of (B, C, <).

QUICKXPLAIN spends most of its time in the consistency
checks. A subprocedure QUICKXPLAIN’ is only called if
C is a non-empty conflict and if a part of the background,
namely B — A has a solution. Figure 2 shows the call graph
of QuIcKXPLAIN’ for example 2. If no pruning (line 4) oc-
curs, then the call graph is a binary tree containing a leaf for
each of the n constraints. This tree has 2n — 1 nodes. The
square nodes correspond to calls of QUICK XPLAIN’ that test
the consistency of the background (line 4). Successful tests
are depicted by grey squares, whereas failing tests are repre-
sented by black squares. For example, the test fails for node
n11, Meaning that nq; is pruned and that its subtree is not
explored (indicated by white circles). The left sibling no of
the pruned node n,; does not need a consistency check (line
4) and is depicted by a grey circle. If a test succeeds for a
leaf, then its constraint belongs to the conflict (line 5) and
will be added to the background.

If we choose split(n) := 5 then subproblems are divided
into smaller subproblems of same size and a path from the
root to a leaf contains logn nodes. If the preferred conflict
has & elements, then the non-pruned tree is formed of the k
paths from the root node to the & leaves of those elements. In
the best case, all k& elements belong to a single subproblem
that has 2k — 1 nodes and there is a common path for all
elements from the root to the root of this subproblem. This
path has the length log n — log k = log7. In the worst
case, the paths join in the top in a subtree of depth log k.
Then we have £ paths of length log 7 from the leaves of this
subtree to the leaves of the conflict. All other cases fall in
between these extremes. For problems with one million of
constraints, QUICK XPLAIN thus needs between 33 and 270
checks if the conflict contains 8 elements. Table 4 gives the
complexities of different split-functions. For lines 2 and 3,
the shortest path has length 1, but the longest one has length
n.

Cl C2 C3 C4 C5 Cg C7r Cg Cg C10C11C12C13 C14C15 C16

Figure 2: Call graph for QUICKXPLAIN.

Method Split Best Case Worst Case
1. split(n) =n/2 logy +2k 2k-logy + 2k
2. split(n) =n—1 2k 2n

3. split(n) = 1 k n+k

Table 4; Number of Consistency Checks.

If a problem is decomposable and the preferred conflict
is completely localized in one of the subproblems, say P*,
then the size of the conflict is bounded by the size of P*.
Quick XPLAIN will prune all subtrees in the call graph that
do not contain an element of P* and thus discovers irrele-
vant subproblems dynamically. Similar to (Mauss & Tatar
2002), it thus profits from the properties of decomposable
problems, but additionally takes preferences into account.

Further improvements of QUICKXPLAIN are possible if
knowledge of the constraint graph is exploited. Once an
element ¢ of the conflict has been determined, all non-
connected elements can be removed. If two elements cq, o
have been detected and all paths from ¢; and ¢; go through
a constraint from X, then at least one element of X belongs
to the conflict. Hence, graph algorithms for strongly con-
nected components and cut detection make QUICKXPLAIN
more informed and enable deductions on conflicts.

Multiple Preferred Explanations

We use preference-based search (Junker 2002) to determine
multiple preferred relaxations. It sets up a choice point each
time a constraint ¢; is consistent w.r.t. a partial relaxation
R;_1. The left branch adds ¢; to R;_; and determines pre-
ferred relaxations containing c;. The right branch adds other
constraints to R;_; that entail —¢;. We can adapt PBS to the
constructive definition of preferred conflicts. We set up a
choice point when ¢; is removed from C;_ ;. The left branch
removes ¢; from C;; and determines preferred conflicts not
containing ¢;. The right branch removes other constraints
from C; 1 such the removal of ¢; leads to a solution.

Consistency Checking with Search

If search fails, but not constraint propagation, then the
consistency checking of QUICKXPLAIN requires multiple
searches through similar search spaces.

We consider a variant of example 1, where the type of
each option needs to be chosen from a product catalogue in
order to determine its precise price. Furthermore, we sup-
pose that there are several compatibility constraint between

those types. A solution consists of a set of options and their
types such that the budget and the compatibility constraints
are met. Propagation is insufficient to detect the infeasibility
of an option if the constraint network contains one or several
cycles.

Hence, the consistency checker will search for a solution
to prove the consistency of a set X of constraints. If success-
ful, QuICKXPLAIN adds further constraints A and checks
X U A. For example, X may contain a requirement for a
CD-player and A may refine it by requiring a CD-player of
type A if one is selected. In order to prove the consistency of
X, the checker must be able to produce a solution S of X. If
S contains a CD-player of type A, then it satisfies A and it is
not necessary to start a new search. Or we may repair S by
just changing the type of the CD-player. We therefore keep
the solution S as witness for the consistency of X. This wit-
ness of success can guide the search for a solution of X U A
by preferring the variable values in S. It can also avoid a re-
exploration of the search tree for X if the new search starts
from the search path that produced S.

If a consistency check fails for X, then QUICKXPLAIN
removes some constraints A from X and checks X — A.
For example, X may contain requirements for all options,
including that for a CD-player of type A. Suppose that the
inconsistency of X can be proved by trying out all different
metal colors. Now we remove the requirement for a CD-
player of type A from X. If the CD-player type was not
critical for the failure, then it is still sufficient to instantiate
the metal color in order to fail. Otherwise, we additionally
instantiate the type of the CD-player. Since these critical
variables suffice to provoke a failure of search, we can keep
them as witness of failure and instantiate them first when
checking X — A. Decomposition methods (Dechter & Pearl
1989) such as cycle cutset give good hints for identifying a
witness of failure.

This analysis shows that QuUICK XPLAIN does not need to
start a search from scratch for each consistency check, but
can profit from witnesses for failure and success. The wit-
ness of success guides a least-commitment strategy that tries
to prove consistency, whereas a first-fail strategy is guided
by a witness of failure and tries to prove inconsistency.

If problems are more difficult, but search of the complete
problem fails in a specified time, then approximation tech-
niques can be used. Firstly, QUICKXPLAIN can be stopped
when it has found the & worst elements of a preferred con-
flict, which is sometimes sufficient. Secondly, a correct, but
incomplete method can be used for consistency checking.
An arc consistency based solver has these properties. An-
other example is tree search that is interrupted after a lim-
ited amount of time. If such a method reports false, QuUiCK-
XPLAIN knows that there is a failure and proceeds as usual.
Otherwise, QUICK XPLAIN has no precise information about
the consistency of the problem and does not remove con-
straints. As a consequence, it always returns a conflict, but
not necessarily a minimal one. Hence, there is a trade-off
between optimality of the results and the response time.

CONSTRAINT SATISFACTION & SATISFIABILITY 171

Related Work

Conflicts and relaxations are studied and used in many ar-
eas of automated reasoning such as truth maintenance sys-
tems (TMS), nonmononotonic reasoning, model-based diag-
nosis, intelligent search, and recently explanations for over-
constrained CSPs. Whereas the notion of preferred relax-
ations found a lot of interest, e.g. in the form of extensions
of prioritized default theories (Brewka 1989), the concept of
a preferred explanation appears to be new. It is motivated by
recent work on interactive configuration, where explanations
should contain the most important user requirements.

Conflicts can be computed by recording and analyzing
proofs or by testing the consistency of subsets. Truth main-
tenance systems elaborate the first approach and record the
proof made by an inference system. Conflicts are com-
puted from the proof on a by-need basis (Doyle 1979) or
by propagating conflicts (de Kleer 1986) over the recorded
proof. There have been numerous applications of TMS-
techniques to CSPs, mainly to achieve more intelligent
search behaviour, cf. e.g. (Ginsberg & McAllester 1994;
Prosser 1993; Jussien, Debruyne, & Boizumault 2000).
More recently, TMS-methods have been embedded in CSPs
to compute explanations for CSPs (Sqalli & Freuder 1996).

The computation of minimal and preferred conflicts, how-
ever, requires the selection of a suitable proof, which can be
achieved by selecting the appropriate subset controlled by
preferences. lterative approaches successively remove ele-
ments (Bakker et al. 1993) or add elements (de Siqueira N.
& Puget 1988) and test conflict membership. QuickX-
PLAIN unifies and improves these two methods by succes-
sively decomposing the complete explanation problem into
subproblems of the same size. (Mauss & Tatar 2002) follow
a similar approach, but do not take preferences into account.
(de la Banda, Stuckey, & Wazny 2003) determine all con-
flicts by exploring a conflict-set tree. These checking-based
methods for computing explanations work for any solver and
do not require that the solver identifies its precise inferences.
This task is indeed difficult for global n-ary constraints that
encapsulate algorithms from graph theory. Moreover, sub-
set checking can also be used to find explanations for linear
programming as shown in (Chinneck 1997).

Conclusion

We have developed algorithms that compute preferred con-
flicts and relaxations of over-constrained problems and thus
help developers and users of Constraint Programming to
identify causes of an inconsistency, while focusing on the
most important constraints. Since the algorithms just sup-
pose the existence of a consistency checker, they can be ap-
plied to all kind of satisfiability problems, including CSPs,
SAT, or different combinatorial problems such as graph col-
oring. A divide-and-conquer strategy significantly accel-
erates the basic methods, ensures a good scalability w.r.t.
problem size, and provides the technological basis for the
explanation facility of a principal industrial constraint pro-
gramming tool (ILOG 2003b) and a CP-based configurator
(ILOG 2003a), which is used in various B2B and B2C con-
figuration applications.

172 CONSTRAINT SATISFACTION & SATISFIABILITY

QUICKXPLAIN has a polynomial response time for poly-
nomial CSPs. For other problems, multiple searches through
similar search spaces are needed. Search overhead can be
avoided by maintaining witnesses for the success and failure
of previous consistency checks. If response time is limited,
the QUICKXPLAIN algorithm can compute an approxima-
tion of a minimal conflict by using an incomplete checker.

Acknowledgements
I thank my colleagues and the anonymous reviewers for
helpful comments. Olivier Lhomme made significant con-
tributions to the clarity of the paper.

References
Bakker, R. R.; Dikker, F.; Tempelman, F.; and Wognum,
P. M. 1993. Diagnosing and solving over-determined con-
straint satisfaction problems. In 1JCAI-93, 276-281.
Brewka, G. 1989. Preferred subtheories: An extended log-
ical framework for default reasoning. In IJCAI-89, 1043—
1048.
Chinneck, J. W. 1997. Finding a useful subset of con-
straints for analysis in an infeasible linear porgram. IN-
FORMS Journal on Computing 9:164-174.
de Kleer, J. 1986. An assumption—based truth maintenance
system. Artificial Intelligence 28:127-162.
de la Banda, M. G.; Stuckey, P. J.; and Wazny, J. 2003.
Finding all minimal unsatisfiable subsets. In PPDP 2003,
32-43.
de Siqueira N., J. L., and Puget, J.-F. 1988. Explanation-
based generalisation of failures. In ECAI-88, 339-344.
Dechter, R., and Pearl, J. 1989. Tree clustering for con-
straint networks. Artificial Intelligence 38:353-366.
Doyle, J. 1979. A truth maintenance system. Artificial
Intelligence 12:231-272.
Ginsberg, M., and McAllester, D. 1994. GSAT and dy-
namic backtracking. In KR’94, 226-237.
ILOG. 2003a. ILOG JConfigurator V2.1. Engine program-
ming guide, ILOG S.A., Gentilly, France.
ILOG. 2003b. ILOG Solver 6.0. User manual, ILOG S.A,,
Gentilly, France.
Junker, U., and Mailharro, D. 2003. Preference program-
ming: Advanced problem solving for configuration. Al-
EDAM 17(1):13-29.
Junker, U. 2002. Preference-based search and multi-
criteria optimization. In AAAI-02, 34-40.
Jussien, N.; Debruyne, R.; and Boizumault, P. 2000. Main-
taining arc-consistency within dynamic backtracking. In
CP°2000, 249-261.
Mauss, J., and Tatar, M. 2002. Computing minimal con-
flicts for rich constraint languages. In ECAI-02, 151-155.
Prosser, P. 1993. Hybrid algorithms for the constraint sat-
isfaction problem. Computational Intelligence 9:268-299.
Sqalli, M. H., and Freuder, E. C. 1996. Inference-based
constraint satisfaction supports explanation. In AAAI-96,
318-325.

