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Abstract
In the context of wireless sensor networks (WSNs), the utilization of artificial intelligence
(AI)-based solutions and systems is on the ascent. These technologies offer significant poten-
tial for optimizing services in today’s interconnectedworld.AI andnature-inspired algorithms
have emerged as promising approaches to tackle various challenges in WSNs, including
enhancing network lifespan, data aggregation, connectivity, and achieving optimal cover-
age of the targeted area. Coverage optimization poses a significant problem in WSNs, and
numerous algorithms have been proposed to address this issue. However, as the number of
sensor nodes within the sensor range increases, these algorithms often encounter difficulties
in escaping local optima. Hence, exploring alternative global metaheuristic and bio-inspired
algorithms that can be adapted and combined to overcome local optima and achieve global
optimization in resolving wireless sensor network coverage problems is crucial. This paper
provides a comprehensive review of the current state-of-the-art literature on wireless sensor
networks, coverage optimization, and the application ofmachine learning and nature-inspired
algorithms to address coverage problems in WSNs. Additionally, we present unresolved
research questions and propose new avenues for future investigations. By conducting biblio-
metric analysis, we have identified that binary and probabilistic sensing model are widely
employed, target and k-barrier coverage are the most extensively studied coverage scenarios
in WSNs, and genetic algorithm and particle swarm optimization are the most commonly
used nature-inspired algorithms for coverage problem analysis. This review aims to assist
researchers in exploring coverage problems by harnessing the potential of nature-inspired
and machine-learning algorithms. It provides valuable insights into the existing literature,
identifies research gaps, and offers guidance for future studies in this field.

Keywords Wireless sensor networks · Coverage optimization · Machine learning · Deep
learning · Nature-inspired algorithms
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ANN-PSO Artificial Neural Network-Particle Swarm Optimization
ANN Artificial Neural Networks
BPNN Back Propagation Neural Network
BOA Bat Optimization Algorithm
CH Cluster Head
CFPA Chaotic Flower Pollination Algorithm
DPSO Democratic Particle Swarm Optimization
DE Differential Evolution
Ex-GWO Expanded Grey Wolf Optimization
FOA Fruit Fly Optimization Algorithm
GA Genetic Algorithm
GPS Global Positioning System
GSO Glowworm Swarm Optimization
GDMIP Graph-based Dynamic Multi-Mobile Agent Itinerary Planning approach
GWO Grey Wolf Optimization
I-GWO Incremental Grey Wolf Optimization
HMCR Harmony Memory Consideration Rate
HMS Harmony Memory Size
HAS Harmony Search Algorithm
ICS Improved Cuckoo Search
IoT Internet of Things
KF Kalman Filter
LA Learning Automata
ML Machine Learning
MAC Medium Access Control
MADIT Mobile Agent Distributed Intelligence Tangle-based
MWSM Mobile Wireless Sensor Network
PSO Particle Swarm Optimization
PAR Pitch Adjustment Rate
PSC Probabilistic Sensing Coverage
QoS Quality of Service
RoI Region of Interest
SOM Self-Organizing Map
SIR Sensor Intelligence Routing
SN Sensor Node
SCP Smart Car Park
STCDRR Spatial and Temporal Correlation-based Data Redundancy Reduction
SVM Support Vector Machine
SI Swarm Intelligence
TLBO Teaching–learning-based optimization
TCO Termite Colony Optimization
TPSMA Territorial Predator Scent Marking Algorithm
WOA Whale Optimization Algorithm
WSNs Wireless Sensor Networks
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1 Introduction

Networks play a crucial role in various aspects of human life, providing significant benefits
and streamlining numerous complex tasks.Wireless sensor networks are cooperative systems
composed of distributed and autonomous devices that monitor and observe environmental
phenomena. The primary objective of these networks is to sense and collect data regarding
physical environmental features, which are then transmitted to a central sink node for user
analysis and inference. Often, a substantial number of nodes in the sensor network collaborate
to monitor the target environment effectively. However, managing such a massive network
poses challenges and requires efficient and scalable procedures (Chaturvedi et al., 2021; Jiang
et al., 2020).

One important criterion for evaluating the monitoring capabilities of wireless sensor net-
works is network coverage, which refers to the installation of nodes to achieve optimal
coverage over a monitoring area. The goal is to enhance the stability and effectiveness of
information transmission. In wireless sensor networks, coverage optimization involves deter-
mining the optimal placement and configuration of sensors within the network to ensure
sufficient coverage of the entire monitored area (Yick et al., 2008). This is critical to ensure
the network can gather and process information from any point within the coverage region
(Tarnaris et al., 2020). Several factors can influence the coverage of a wireless sensor net-
work, including the range and sensitivity of the sensors, the number of sensors deployed, and
the characteristics of the monitored environment. These factors must be carefully considered
to select the best sensor network configuration for achieving optimal coverage (More & Patil,
2021).

One common approach to improving coverage in wireless sensor networks is using simu-
lation tools to model the network’s coverage under various configurations (Hammouti et al.,
2018; Njoya et al., 2017; Tripathi et al., 2021). This aids in identifying the most suitable
sensor locations and arrangements to ensure comprehensive coverage of the entire region.
Additionally, algorithms can be employed to optimize the placement and configuration of
sensors, or intelligent routing protocols can be developed to efficiently transfer data collected
by the sensors to a central processing point for analysis. Coverage optimization is crucial in
advancing wireless sensor networks by enabling efficient data collection and transmission
from all locations within the coverage region.

Coverage optimization is a significant problem in wireless sensor networks (WSNs)
that numerous algorithms have addressed. Optimization problems are prevalent in various
domains of human life (Agushaka et al., 2023). In WSNs, coverage optimization involves
strategically planning the placement of sensor nodes and communication strategies to opti-
mize the coverage area while minimizing costs and energy consumption. Literature reports
several approaches focusing on coverage optimization in WSNs, including: (1) Placement
optimization: This approach aims to determine the optimal locations for sensor nodes to
maximize coverage while utilizing the fewest nodes possible. (2) Communication range
optimization: This approach involves adjusting the communication range of sensor nodes to
expand coverage while minimizing energy usage (Ammari, 2010). (3) Routing optimization:
This approach focuses on planning the routing strategy of sensor nodes to enhance coverage
while minimizing energy consumption and network congestion (Abbasi & M. S. bin Abd
Latiff et al., 2013). (4) Topology control: This approach involves modifying the network’s
topology, including the number and placement of nodes, to improve coverage and conserve
energy (Mohd et al., 2019).
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Designing WSNs can encounter challenges such as localization, deployment, data gath-
ering, tracking, and communication coverage. The knowledge of the precise location of
all sensor nodes deployed in the network is crucial for effective data collection. Location
information enables the detection and recording of events within the network. Abdulwahid
and Mishra (Abdulwahid & Mishra, 2022) emphasized the challenge of deployment, which
is fundamental in designing a wireless sensor network monitoring system that leverages
Internet of Things (IoT) technologies. While many studies aim to prolong the lifespan of
wireless sensor networks by focusing on routing and deployment strategies, they often give
less attention to ensuring adequate coverage of the target region. Therefore, as highlighted
in this study, conducting a comprehensive assessment of coverage optimization in wireless
sensor networks and exploring the potential benefits of combining machine learning and
bio-inspired algorithms is imperative.

Connectivity and coverage are crucial considerations inwireless sensor networks (WSNs).
Coverage can be defined as the ability of a sensor node to identify and monitor an object
within the designated area. There are three types of coverage: area, point, and barrier. In area
coverage, the objective is to ensure that every point in the monitoring area is covered by at
least one operational sensor node. Depending on the network’s specific requirements, such
as in a battlefield scenario where precise knowledge of the observed region is necessary, full
coverage with one sensor node per point or k (where k ≥ 1) nodes might be needed. In other
environmental applications, partial coverage may be acceptable for insufficient sensor nodes.
Partial coverage can still increase energy efficiency and prolong the network’s lifespan.

Point coverage involves monitoring a specific point or target, which can be stationary
or in motion. Examples include observing the activity of an animal in a specific area or
monitoring key locations on an enemy battlefield. Barrier coverage, on the other hand, focuses
on detecting any signs of unauthorized activity outside a defined boundary. According to the
Poisson point process model, full and partial coverage can be achieved by positioning a small
number of sensors.

Connectivity, on the other hand, refers to the ability of the sensor nodes to establish
communication paths with each other and the sink node. A network is fully connected when
every sensor node can communicate with the sink node for data transmission and reception
(Chaturvedi et al., 2021). It is essential to ensure both coverage and connectivity when
deploying WSNs, as complete coverage without connectivity can lead to a degradation in
the quality of service. In some applications, complete coverage is necessary to enable data
collection and transmission to the central node. Connectivity can be categorized into two
types: one-connectivity, where there is a single path connecting each sensor node to the
processing nodes, and k-connectivity, where multiple paths exist between the sensor node
and processing node (Lee & Shin, 2017). Considering both coverage and connectivity is
crucial for successfully deploying and operating WSNs.

1.1 Related works

Numerous reviews and research articles have been published to address the wide range of
coverage problems in wireless sensor networks (WSNs). In Table 1, we have compiled these
studies, which directly or indirectly cover the topic, providing an overview of pioneering
works that have examined or utilized nature-inspired algorithms for solving coverage prob-
lems in WSNs. To facilitate analysis, we have categorized these works based on different
attributes, including coverage methods (theory, advantages, and limitations), bibliometric
analysis, and machine learning. We delve into the theoretical underpinnings of the works,
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dissecting the core principles and methodologies they employ. We not only explore the foun-
dations upon which these studies are built but also shed light on their practical implications
and the advantages they bring to the field. Furthermore, we critically assess the limitations
inherent in these approaches, offering a balanced perspective on their applicability and poten-
tial shortcomings. In addition, we employ bibliometric techniques to scrutinize the corpus of
literature under review. By examining citation patterns, authorship trends, emerging topics
and publication sources, we aim to uncover the broader scholarly landscape in which these
works exist. This analysis not only provides insights into the impact and influence of these
studies but also highlights emerging trends and gaps in the existing literature. In the realm of
machine learning,we take a deep dive into themethodologies and algorithms employed by the
included works. We also explore how machine learning techniques are leveraged to address
the research questions at hand, highlighting the innovative approaches and breakthroughs
achieved. Additionally, we consider the broader implications of machine learning in the con-
text of the subject matter and assess the potential for future advancements in this domain. In
essence, our categorization scheme serves as a comprehensive framework for dissecting and
evaluating the collected works, allowing us to provide a nuanced and thorough analysis of
their contributions to the field. By addressing the theory, advantages, limitations, conducting
bibliometric analysis, and exploring the role of machine learning, we aim to provide a holistic
understanding of the research landscape in question. Notably, none of the existing review or
research articles have presented a comprehensive perspective by integrating nature-inspired
algorithms, machine learning, and bibliometric analysis to tackle coverage problems in the
domain of WSNs.

Existing studies have focusedmajorly ondeveloping algorithms for data routing inwireless
sensor networks to increase the network’s lifespan, neglecting area coverage and connectivity
challenges. The major contributions of this review is summarized as follows:

1. We present a summary of coverage optimization models in wireless sensor networks.
2. Identify and discuss existing approaches in solving coverage problems in wireless sensor

networks.
3. A comprehensive discussion on the applications of machine learning algorithms in solv-

ing functional challenges in wireless sensor networks and nature-inspired techniques in
solving coverage optimization problems in WSNs.

4. We identify research directions in coverage optimization inWSNsusingmachine learning
and meta-heuristics algorithms.

1.2 Review scope

The coverage problem in wireless sensor networks (WSNs) is widely recognized as one of
themost important issues in this domain.We conducted a bibliometric analysis to gain deeper
insights into this problem, considering all the research publications that focus on coverage
problems in WSNs. Our analysis revealed that the coverage problem in WSNs has garnered
significant interest since 2003. We collected metadata from Scopus for 2280 research items
addressing the coverage issue. The data showed an exponential growth in the number of
research items, emphasizing the significance of this topic.

From 2003 to May 15th, 2023, our analysis identified 1189 original articles, 959 confer-
ence proceedings, 56 book chapters, 42 review articles, and 35 other items (such as editorials
and comments), as illustrated in Fig. 1. China emerged as the leading contributor with 665
research articles, followed by India (431), the US (296), Taiwan (126), and Canada (98).Most
of these studies have employed conventional approaches to tackle the coverage problem.
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Fig. 1 aNumber of publications (including research article, conference proceedings, book chapters, and review
papers) in the last 20 years (from 2003 to 2023) on WSNs coverage problem (data from Scopus). b Catego-
rization based on publication type, and c Country-wise distribution of publications (only top 5 countries)

Notably, there is a scarcity of review papers focusing on the coverage problem, highlighting
the need for comprehensive overviews. No review paper has been published that specifi-
cally discusses the coverage problem using nature-inspired algorithms and machine-learning
techniques.

1.3 Contributions and structure

This review paper is organized into eight sections. Section 1 discusses the introduction part,
which introduces the coverage problem in WSNs. We also compared the existing review
article and discussed the need for this review paper. Section 2 introduces the basic termi-
nologies and theory of the coverage models and types of coverage in WSNs. In the first part
of Sect. 2, we discussed frequently used sensing models such as the binary sensing model,
probabilistic sensing model, shadow-fading sensing model, and Elfes sensing model. Lastly,
we also discussed the finding of the bibliometric analysis. In the second part of Sect. 2, we
discussed different types of coverage, such as area, target, and barrier coverage. We also
performed a bibliometric analysis and discussed its findings. Section 3 discusses the widely
used nature-inspired algorithms such as particle swarm optimization, ant colony optimiza-
tion, artificial bee colony, genetic algorithm, teaching learning-based optimization, harmony
search algorithms, and the corresponding bibliometric analysis. Section 4 discusses the func-
tional challenges in WSNs from the machine learning aspect. Sections 5 and 6 discussed
the pioneer studies on coverage problems using machine learning and deep learning, respec-
tively. In Sect. 7, we highlighted the open research problem in WSNs. Finally, in Sect. 8,
we concluded and discussed future work. Figure 2 illustrates the road map of the presented
review.
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Fig. 2 Structure and contribution of the review paper

2 Preliminaries

In the field of wireless sensor networks, themajority of published articles have predominantly
focused on energy-saving methods and routing protocols aimed at prolonging the network’s
lifespan. Conversely, coverage and connectivity, considered two crucial challenges inWSNs,
have received comparatively less attention. However, coverage optimization is a critical issue
in WSN due to its direct impact on the network’s dependability and performance.

Achieving adequate coverage is essential for monitoring all relevant areas effectively. It
enables efficient data collection and transmission, ensuring that the network functions opti-
mally. Despite its significance, coverage optimization has been relatively overlooked in the
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scholarly literature ofwireless sensor networks. To address this gap, further research is needed
to develop strategies and algorithms focusing on coverage optimization. By emphasizing the
importance of coverage and dedicating more attention to its optimization, researchers can
enhance wireless sensor networks’ overall performance and reliability. In this section, we
present the key preliminaries, definitions, and terminologies related to coverage problems in
the domain of wireless sensor networks (WSNs). These concepts serve as the foundation and
background for our study.

2.1 Coveragemodels inWSNs

The WSNs coverage models measure the monitoring ability of the events that occur in the
Region of Interest (RoI). The sensing range and communication range are typically necessary
for the sensor node’s coverage functionality. For each application, coverage and connection
are constantly correlated. Figure 3 shows that the connectivity range (Rc) is always assumed
to be twice as large as the sensing range (Rs).

It is assumed that at coordinates (x , y), there is a point P and at coordinates (xi , yi ), there
is a sensor node Si, and the Euclidean distance between point P and sensor node Si is given
as:

d(Si , P) �
√
(xi − x)2 + (yi − y)2 (1)

A sensor node’s overall sensitivity at point P is represented as:

(Si , P) � δ

(d(Si , P))k
(2)

From Eq. (2), δ, represents the coverage region while k represents the total number of
sensor nodes in the coverage region.

The coverage models in the literature are categorized into the following two groups based
on the likelihood that events would be detected in the RoI: binary coverage model and
probabilistic coverage model (Abidin et al., 2014).

Fig. 3 Communication range (Rc)
and Sensing range. Source: Nath
et al. (2021)

Sensor

Rs
Rc
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Fig. 4 Binary sensing model

Rs

Si

2.1.1 Binary sensing model

The binary or deterministic sensing model is regarded as the simplest sensing model as
shown in Fig. 4. In this sensing model, a sensor node only senses the events that lie within
the range of sensing and any events that are not within the coverage region are not captured
(Abdollahzadeh & Navimipour, 2016; Amutha et al., 2020). If the position of P can be
reached based on the sensing ability of the sensor node Rs, then, it may be argued that the
sensor node covers this place; otherwise, it cannot. The equation for this coverage model is
given as:

Cxy(Si) �
{
1 i f d(Si , P) < Rs
0 othewise

(3)

where d(Si , P) represents the Euclidean distance.

2.1.2 Probabilistic sensing model

The binary coverage model does not accurately represent the behavior of the sensor unit and
calls for high precision. As a result, the likelihood of monitoring the events can be added to
the binary coverage model to create the Probabilistic Sensing Coverage (PSC) model. In the
probabilistic model, the more the distance among the sensor nodes, the more the ability of the
nodes to sense eents decreases. This model, which posits that the detected event, the design
of the sensor, and environmental variables are all stochastic in nature, is more realistic and
complete than the binary model (Abdollahzadeh & Navimipour,2016; More & Raisinghani,
2017). The coverage model is expressed as follows:

Cxy(Si) �

⎧
⎪⎨
⎪⎩

0, i f Rs + Re ≤ d(Si , P)

e−δαβ
i f Rs − Re < d(Si , P) < Rs + Re

1, i f Rs − Re ≥ d(Si , P)

(4)

where Re represents the presence of unstable measure in sensor detection,0 < Re < Rs,α �
d(Si , P)−(Rs−Re);δ andβ are variables that show themeasurement of detectionprobability
when there is a distance of Rs from the target.Rs − Re < d(Si , P) < Rs + Re.

The diagrammatical representation of probabilistic sensing model is shown in Fig. 5.
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Fig. 5 Probabilistic sensing model

Rs + Re

Rs - Re

Si

Event

2.1.3 Shadow-fading sensing model

Shadowing in radio wave propagation is comparable to this sensing concept. The sensing
capacity of each node in this sensing model varies with respect to the directions it can sense.
This model takes into account the dependency of all the factors (obstacles such as foliage and
building). In this sensing model, different directions have different sensing radius (Hossain
et al., 2008). The likelihood that an event at a distance x from the node would be detected is
determined by the log-normal shadowing path loss model expressed as:

Pdet (x) � Q

(
10nlog10(x/rs)

σ

)
(5)

where the path loss exponent expressed as (2 ≤ n ≤ 4) is represented by n, the radius of
sensing without fading is denoted by rs , the fading parameter is represented by σ .

2.1.4 Elfes sensing model

This model gives the expression in Eq. (6) as the likelihood that a sensor will detect an event
at a distance x .

p(x) �
⎧
⎨
⎩

1, x ≤ R1

e−λ(x−R1)γ

0, x ≥ Rmax

, Rmax > x > R1 (6)

where, R1 indicates possibilities of uncertainty in sensed data and the parameters λ and γ are
adjusted in line with the physical characteristics of the sensor. Rmax is the maximum range
the node can sense ((Hossain et al., 2008; Wang et al., 2015)).

2.1.5 Bibliometric analysis

We performed bibliometric analysis using Scopus data. We performed a query and extracted
the keywords usingWSNs and Sensing models. We found that a total of 885 research articles
are published, which includes both WSNs and sensing models as author keywords. In total,
these articles consist of 6000+ keywords which we filtered by the number of occurrences.We
extracted those keywords that are repeated in at least five research publications, resulting in a
total of 939 keywords that get clustered into 17 clusters (shown in 17 different colors) using
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Fig. 6 Bibliometric analysis of keywords “WSNs” and “Sensing models.”

the bibliometric clustering algorithm. These clusters form 17,885 links among them, with a
total link strength of 21,810. We found that the total link strength associated with binary and
probabilistic sensing models is high, indicating their wide usage. The illustration is given in
Fig. 6.

2.2 Classification of coverage inWSNs

Coverage in WSNs is classified as follows:

2.2.1 Area coverage

The area coverage, which can also be regarded as blanket coverage monitors the RoI using
a collection of sensor nodes that are deployed in wireless sensor networks. Figure 7 is an
example of a WSN that is randomly deployed to monitor a given RoI. In the network, the
sensing range of the sensor nodes are represented by circles. The arrow in the circle indicates
the sensing radius of each sensor node represented by the circle.

The coverage optimization problem is assumed to begin with a two-dimensional domain
of A-sized W x H and a defined size of sensors. The entire set of sensors consist of k different
types and the sensors that belong to type i have a predetermined sensing radius ri . The main
goal is to achieve an optimal deployment strategy for all the sensor nodes in the network such
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RS

Fig. 7 Area coverage in a sensor network

that their coverage area denoted as coA on A is optimized. The CoverageArea − coA of n
sensor nodes regarded as the total coverage area casted on the domain A is optimized as:

coA � area

⎛
⎝

k⋃
i�1

ni⋃
j�1

cri (xi j , yi j ) ∩ A

⎞
⎠ → max (7)

cri (xi j , yi j ) shows the representation of the circle at (xi j , yi j ) and ri represents the radius.
The area(X ) represents the area of the domain X. This coverage optimization problem is
however NP-hard.

2.2.2 Target coverage

The target coverage, also referred to as point coverage monitors a particular targets in the
RoI. Figure 8 shows a target coverage representation in which five targets are monitored by
the deployed three sensor nodes in the RoI. As shown in Fig. 8, t1, t2, t3, t4 and t5 represent
targets in the network which shows the points sensor nodes are deployed to gather physical
phenomenon from. S1, S2 and S3 are sensor nodes that are deployed to monitor defined
targets in the network. In the network, only one sensor node is deployed to cover targets t1,
t3, and t4. Two sensor nodes are deployed to cover targets t2 and t5 simultaneously. The S1
is a sensor node that monitors the targets within its sensing radius which are t1 and t2. The
energy utilization is minimized by the target coverage since it is only a particular location in
the RoI that is monitored. Toloueiashtian et al. (Toloueiashtian et al., 2022) reported a model
for solving point coverage problem in WSNs. However, as more sensor nodes are added to
the sensory area, the algorithm become stuck in a local optimum.

However, in the network design that would be proposed in our subsequent studies, the
network would be designed with a certain level of Quality of Service (QoS) for maximum
coverage. Presence of holes affects the reliability, network coverage rate and QoS. In order
to address these issues, more sensor nodes can be deployed in critical areas.
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Fig. 8 Wireless sensor networks target coverage

2.2.3 Barrier coverage

The major focus of barrier coverage is on constructing a barrier that detects intrusion. In this
classification of coverage, sensor nodes detect any intrusion that takes place along the barrier.
Phenomena such as shadowing, interference, multipath losses and fading are common with
radiowaves propagationwhich eventually affect the strength andquality of the signal. Sensing
range is a pivotal feature for predicting k-coverage probability (Nagar et al., 2023). Intrusion
detection at border areas of critical network infrastrucuture is importance and demands a
high level of accuracy. For accurate barrier coverage provisioning, at least one barrier must
exist for every possible intrusion path. Maintaining this strategy can identify and prevent any
intrusion attempts in a timely and safe manner (Singh et al., 2022a, 2022b).

The coverage areas of various nodes interact with crossing pathways in the region of
interest to create a barrier path. There must be at least one barrier passage from one side
of the border region to the other parallel side in order to guarantee barrier coverage. By
monitoring every point along the barrier path in this manner, the deployed network would be
able to identify any intrusion to the area of interest (Amutha et al., 2020). Barrier coverage
is divided into two categories which are weak barrier coverage and strong barrier coverage.
The quality of events detection on the boundary of the RoI determines this categorization.
Figure 9 shows an illustration of strong barrier coverage. Strong barrier coverage provides
continuous coverage and ensures that every event or intrusion since any crossing needs to
traverse a barrier. Where there are some uncovered region or holes, it is regarded as weak
barrier coverage as shown in Fig. 10. Unconvered regions in Fig. 10 means that there is no
global barrier coverage in the network domain. In that case, sensitive events that take place
within the region can go undetected.

In weak barrier coverage, the horizontal projections of sensing regions overlap and guar-
antee to detect movements only along the vertical traversing paths (Tripathi et al., 2018).
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Covered region

Fig. 9 Strong barrier cov + erage

Uncovered region
or holes

Fig. 10 Weak barrier coverage illustration

2.2.4 Bibliometric analysis

We performed bibliometric analysis using Scopus data. We performed a query and extracted
the keywords using WSNs and Coverage. We found that a total of 1200+ research articles
are published, which includes both WSNs and coverage as author keywords. In total, these
articles consist of 9084 keywords which we filtered by the number of occurrences. We
extracted those keywords that are repeated in at least five research publications, resulting in
a total of 1000+ keywords that get clustered into 14 clusters (shown in 14 different colors)
using the bibliometric clustering algorithm. These clusters form 46,033 links among them,
with a total link strength of 102,851. We found that the total link strength associated with
target and k-barrier coverage is high, indicating their wide usage. The illustration is as shown
in Fig. 11.

3 Nature-inspired algorithms for solving functional challenges inWSNs

In the dynamic landscape ofWSNs, the quest for effective and flexible solutions to amultitude
of operational challenges has taken center stage. These challenges cut across a wide spectrum
of problem areas, encompassing tasks such as optimizing energy consumption, improving
data routing, enhancing network coverage, and bolstering resilience against ever-changing
environmental conditions. It’s in this demanding arena that nature-inspired algorithms have
emerged as a beacon of promise. These algorithms, drawing inspiration from the intricate
workings of the natural world, present a novel and innovative approach to addressing the
intricate issues that permeate the world of WSNs. In this section, we embark on a journey to
explore the transformative potential of nature-inspired algorithms, illuminating their practical
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Fig. 11 Bibliometric analysis of keywords “WSNs” and “Coverage.”

applications across diverse problem domains within WSNs and showcasing their capacity to
deliver solutions that are not only efficient but also adaptive and sustainable (Fan et al., 2023).
These algorithms exhibit robustness and remarkable adaptability, rendering them highly
suitable for tackling challenging problems within both theoretical research and engineering
technology. Notable wireless network issues, including routing, clustering, data aggregation,
event detection, and query processing, can be effectively addressed through the application of
artificial simulations inspired by swarm intelligence-based solutions, drawing insights from
the foraging behavior of ants, termites, and honey bees (Datta & Nandakumar, 2017; Singh
et al., 2021b).

3.1 Routing

In Wireless Sensor Networks (WSNs), the task of finding the most efficient paths in terms
of energy usage is of utmost importance. There have been various methods proposed in
scientific literature to tackle this challenge. However, designing a routing technique that can
work effectively across different scenarios while maintaining network integrity, connectivity,
and inclusiveness is both complex and resource-intensive. These challenges fall into the
category of Non-deterministic Polynomial-time (NP-hard) problems, which means they are
computationally demanding and difficult to solve precisely within a reasonable amount of
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time. Given the complexity of NP-hard problems, it is appropriate to employ metaheuristic
algorithms to find approximate solutions.Metaheuristic algorithms are a class of optimization
techniques that take inspiration from natural processes or behaviors to find good solutions
to difficult problems. They are particularly well-suited for addressing NP-hard problems
because they can efficiently explore solution spaceswithout guaranteeing the absolute optimal
solution.

Seyyedabbasi et al., as discussed in reference Wang et al. (2015), introduced a versatile
architectural framework capable of performing routing tasks without incurring any additional
cost. This architecture is designed to seamlessly integratewith a variety ofmetaheuristic algo-
rithms. Its generic nature allows it to adapt and work effectively with different metaheuristic
algorithms, making it suitable for various purposes and problem-solving scenarios. Routing
is a critical challenge in WSNs, and finding an exact deterministic solution for it is currently
not known. This implies that there is no straightforward, fixed method to solve the rout-
ing problem in WSNs with guaranteed optimality. Consequently, researchers have turned
to nature-inspired optimization algorithms, such as those inspired by biological or physi-
cal processes, to discover cost-effective routing paths and other techniques to improve the
performance of WSNs. These nature-inspired algorithms provide solutions that may not be
optimal but are often close to it while being computationally feasible. They offer low-cost
routing options and are one of the approaches used to tackle the complex routing problems
in WSNs.

3.2 Clustering and data aggregation

In Wireless Sensor Networks (WSNs), clustering is a fundamental strategy where the net-
work is divided into smaller groups known as clusters, each managed by a cluster head. The
primary goal of clustering in WSNs is to aggregate data efficiently, potentially extending
the network’s lifetime by reducing energy consumption through data grouping. Within this
clustering approach, a critical element is the Cluster Head (CH), chosen to handle the trans-
mission of data from the cluster to a central point referred to as the sink node (Vellaichamy,
et al., 2023). Cluster heads are responsible for coordinating data collection and aggregation
within their respective clusters, making them crucial nodes in the network.

The network hierarchy consists of top-level nodes, which serve as cluster heads, and
next-level nodes, responsible for data collection and relaying it to the cluster head for further
processing. Communicationwithin clusters is facilitated by neighbor nodes, forming the local
communication backbone.While conventional clusteringmethods have been employed in the
past, they may not consistently deliver efficient results in terms of energy usage and network
performance. To address these limitations, clustering-based optimization techniques have
gained prominence. These techniques utilize various optimization algorithms to determine
the optimal clustering scheme that minimizes energy consumption and maximizes network
efficiency (Feng et al., 2019a).

Data aggregation, particularly within heterogeneous sensor networks, holds significant
importance for ensuring efficient network operation. The process of scheduling data aggrega-
tion is a critical aspect in achieving this efficiency, often accomplished through the application
of optimization techniques such as Particle Swarm Optimization (PSO). PSO, drawing inspi-
ration from the social behavior of animals, stands out as a widely adopted optimization
method utilized to refine clustering schemes and bolster the performance of Wireless Sensor
Networks (WSNs). In essence, the concept of clustering in WSNs involves the organization
of sensor nodes into distinct clusters, each led by a designated cluster head. This clustering
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mechanism serves to streamline the management of data aggregation and transmission. The
introduction of clustering-based optimization approaches, exemplified by the use of PSO,
has paved the way for the development of more energy-efficient and performance-enhanced
clustering strategies. Ultimately, these advancements contribute significantly to the overall
effectiveness and reliability of WSNs (Singh et al., 2022a).

3.3 Event detection and query processing

Ensuring the precision and dependability of data gathered by sensor nodes constitutes a
critical hurdle in the realm of Wireless Sensor Networks (WSNs). When the data within the
network lacks reliability, it can yield far-reaching consequences, including the degradation of
original data quality, adverse impacts on network performance, and a skewedportrayal of real-
world events within the network’s purview. As noted by Fan et al. in their work referenced in
Abdollahzadeh and Navimipour (2016), they introduced an ingenious solution that employs
a Particle Swarm Optimization (PSO) algorithm to optimize the initial weights and biases
of a Back Propagation Neural Network (BPNN). This optimization methodology not only
reduces the training time of the neural network but also bolsters its predictive accuracy. By
elevating the efficiency and accuracy of data processing within sensor nodes, this approach
substantially enhances the overall dependability of data collected by the network. Addressing
the challenge of guaranteeing dependable and precise data collection in WSNs necessitates
the incorporation of various key considerations and technologies:

3.3.1 WSN protocol design

Crafting WSN protocols that prioritize dependable and precise data collection by sensor
nodes is paramount. This encompasses the formulation of communication strategies, data
aggregation techniques, and error correction mechanisms aimed at elevating data quality.

3.3.2 Anomaly detection

Anomaly detection technology assumes a pivotal role in discerning abnormal or erroneous
data points within the continuous flow of sensor data. The identification of anomalies empow-
ers the network to take corrective actions to mitigate the impact of unreliable data.

3.3.3 Bio-inspired algorithms

Drawing inspiration fromnatural processes, bio-inspired algorithms have emerged as promis-
ing tools in confronting diverse challenges in WSNs. These algorithms exhibit particular
efficacy in event detection and query processing, thereby enhancing the precision and depend-
ability of real-world event identification within the network’s monitoring domain.

In summation, assuring the accuracy and reliability of data collected by sensor nodes in
WSNs is a multifaceted endeavor. It encompasses considerations in protocol design, the inte-
gration of anomaly detection technologies, and the application of bio-inspired algorithms to
streamline data processing. These concerted efforts collectively yield more trustworthy data,
ultimately elevating the overall performance and utility ofWSNs for real-world applications.
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3.4 Localization and object targeting

Accurate information localization stands as a pivotal element within the realm of Wireless
Sensor Networks (WSNs). In the context of WSNs, localization pertains to the process of
pinpointing the geographic coordinates of sensor nodes, a critical requirement for a mul-
titude of applications. This localization process encompasses several key steps, including
event location determination, data gathering from neighboring devices, and assessment of
network coverage. Conventional techniques for localizing sensor nodes, such as relying on
Global Positioning System (GPS) services and other established methods, often incur sig-
nificant costs and energy expenditure. Consequently, researchers have introduced alternative
localization approaches that enable nodes to ascertain their positions more efficiently. These
approaches generally fall into two main categories: range-based and range-free techniques,
as elaborated in reference (Singh et al., 2022b).

3.4.1 Range-based techniques

Range-based localization methods revolve around the measurement of distances or ranges
between sensor nodes, employing techniques such as time-of-flight, signal strength, or angle
of arrival. These measurements facilitate the estimation of node positions relative to one
another through triangulation. However, it’s worth noting that these methods may demand
precise hardware and can consume substantial energy resources.

3.4.2 Range-free techniques

In contrast, range-free localization methods do not rely on exact distance measurements.
Instead, they utilize proximity or connectivity information to approximate node positions.
These techniques often prove more energy-efficient but may compromise on accuracy.

In the realm of localization algorithms, the primary objective remains the swift and precise
determination of sensor node locations. However, within the context ofWSNs, considerations
surrounding energy efficiency and computational resources are paramount. Localization pro-
tocols must be thoughtfully designed to minimize energy consumption and computational
overhead, ensuring the network operates efficiently and boasts an extended lifespan. One par-
ticular algorithm mentioned in the provided text is the Bat Optimization Algorithm (BOA).
BOA stands as an exemplary instance of an optimization algorithm applied to address the
challenge of node localization. Its aim is to enhance the accuracy and efficiency of node
localization when compared to existing optimization algorithms. BOA achieves this by miti-
gating localization errors and reducing computational time, aspects of utmost importance in
resource-constrained WSN environments.

In summation, the precision of information localization holds immense significancewithin
WSNs, catering to a diverse range of applications. Traditional localization techniques often
come with notable costs and energy consumption, prompting the development of alternative
methodologies, including range-based and range-free approaches. The overarching objective
of localization algorithms is to swiftly and accurately determine node positions, all while
meticulously considering energy efficiency and computational resources. Algorithms such
as BOA symbolize significant advancements in this field, offering heightened accuracy and
reduced computing time for node localization in WSNs.
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3.5 Medium access control

The efficiency of Wireless Sensor Networks (WSNs) plays a crucial role in ensuring their
effective operation. To achieve this efficiency, it is imperative to carefully design theMedium
Access Control (MAC) routing protocol, which is responsible for transmitting information
to the sink node while utilizing low-cost communication links. A MAC protocol for data
communication is essential among nodes within a WSN, as it is tasked with determining
a reliable path for data transmission throughout the network. Many data communication
protocols have been devised to maximize energy efficiency, evenly distribute the energy load
across all nodes, and minimize power consumption in the network.

In a notable contribution, Vellaichamy et al. (as documented in reference Toloueiashtian
et al., 2022) proposed a multi-criteria optimal bio-inspired MAC protocol. This innova-
tive protocol was designed with the primary goals of enhancing the network’s lifetime and
prolonging the operational time of WSN-based applications. This research underscores the
significance of developing MAC protocols that can effectively address the unique challenges
and requirements of WSNs. It is important to note that designing MAC protocols for WSNs
presents a complex problem that has garnered considerable attention from researchers in the
field. This problem is regarded as NP-hard, meaning that finding optimal solutions can be
extremely challenging and computationally intensive. Consequently, researchers have turned
to optimization algorithms inspired by nature, such as genetic algorithms or particle swarm
optimization, to explore efficient alternatives among various options (as indicated in refer-
ence Fan et al., 2023). These nature-inspired algorithms leverage principles from biology or
natural phenomena to seek optimal or near-optimal solutions for MAC protocol design, thus
mitigating the computational complexity of the problem.

In the context of WSNs, route optimization algorithms go beyond considering just the
shortest path distance. They also take into account factors such as energy efficiency and
network lifespan. This holistic approach to routing optimization ensures that data is trans-
mitted not only efficiently but also with a focus on preserving the network’s energy resources
and overall longevity. In summary, the efficient design of MAC routing protocols and the
incorporation of optimization algorithms are pivotal in achieving the desired performance
and longevity of Wireless Sensor Networks.

Table 2 provides a summary of various bio-inspired algorithms utilized to tackle significant
challenges within the realm of Wireless Sensor Networks (WSN). The selection of a specific
bio-inspired algorithm depends on the particular problem at hand. Additionally, the survey
reveals that multiple authors have employed diverse evaluation metrics to assess the effec-
tiveness of their protocols and methodologies. Across several of the functional challenges
discussed, two commonly used evaluation criteria are throughput and network lifetime.

4 Nature-inspired algorithms for coverage problems

In this section, we explore the existing approaches that have been reported in addressing the
coverage challenges of wireless sensor networks (WSNs).

The deployment strategy of sensor nodes plays a crucial role in determining the level
of coverage achieved by the nodes in the target region and how the sensory data can be
effectively communicated to the sink node. When evaluating the performance of a sensing
network, the spatial distribution of nodes becomes a critical factor to consider.

123



Annals of Operations Research

Ta
bl
e
2
Su

m
m
ar
y
of

na
tu
re
-i
ns
pi
re
d
al
go

ri
th
m
s
fo
r
so
lv
in
g
fu
nc
tio

na
lc
ha
lle

ng
es

in
W
SN

s

Fu
nc
tio

na
lc
ha
lle

ng
e

B
io
-i
ns
pi
re
d
al
go

ri
th
m
s

Pe
rf
or
m
an
ce

m
et
ri
cs

R
em

ar
ks

R
ou

tin
g
(D

ay
al
&

B
as
so
o,
20

22
;

Se
yy
ed
ab
ba
si
et
al
.,
20

23
)

In
cr
em

en
ta
lG

re
y
W
ol
f
O
pt
im

iz
at
io
n

(I
-G

W
O
),
E
xp

an
de
d
G
re
y
W
ol
f

O
pt
im

iz
at
io
n
(E
x-
G
W
O
),
R
ed
-D

ee
r

A
lg
or
ith

m

(1
)
N
et
w
or
k
lif
et
im

e,
(2
)
th
e
al
iv
e
no

de
ra
tio

in
th
e
ne
tw
or
k,

(3
)
th
e
pa
ck
et

de
liv

er
y
ra
tio

an
d
lo
st
da
ta
pa
ck
et
s,
(4
)

ro
ut
in
g
ov
er
he
ad
,(
5)

th
ro
ug

hp
ut
,a
nd

(6
)
co
nv
er
ge
nc
e
be
ha
vi
or

T
he

au
th
or
s
pr
op
os
ed

a
ge
ne
ri
c
sy
st
em

ar
ch
ite

ct
ur
e
th
at
co
m
bi
ne
s
th
e

m
et
ah
eu
ri
st
ic
an
d
ne
tw
or
k
m
od
el
to

pr
ov
id
e
an

ad
ap
ta
bl
e
sy
st
em

th
at
ca
n

se
rv
e
nu

m
er
ou

s
pu

rp
os
es

L
oc
al
iz
at
io
n
(A

ld
ee
n
et
al
.,
20

23
)

Pa
rt
ic
le
Sw

ar
m

O
pt
im

iz
at
io
n

av
er
ag
e
lo
ca
liz
at
io
n
er
ro
r,
no
rm

al
iz
ed

lo
ca
liz

at
io
n
er
ro
r
an
d
ro
ot
-m

ea
n-
sq
ua
re

er
ro
r

T
he

au
th
or
s
ad
op

te
d
PS

O
te
ch
ni
qu

e
fo
r

th
e
se
le
ct
io
n
of

ca
nd

id
at
e
no

de
s
an
d

th
ei
r
co
or
di
na
te
s
ca
lc
ul
at
io
n

C
lu
st
er
in
g
an
d
da
ta
ag
gr
eg
at
io
n

(V
el
la
ic
ha
m
y,
et
al
.,
20

23
)

M
ot
h
Fl
am

e
an
d
Sa
lp

Sw
ar
m

O
pt
im

iz
at
io
n
al
go
ri
th
m
s

E
ne
rg
y
co
ns
um

pt
io
n,

th
ro
ug

hp
ut
,

en
d-
to
-e
nd

de
la
y,
la
te
nc
y,
lif
et
im

e,
an
d

pa
ck
et
de
liv

er
y
ra
te

A
co
m
bi
ne
d
bi
o-
in
sp
ir
ed

al
go

ri
th
m

th
at

se
rv
es

as
a
be
tte
r
su
bs
tit
ut
e
fo
r

en
er
gy

-e
ffi
ci
en
tr
ou

tin
g
fo
r
th
e
W
SN

w
as

pr
ov
id
ed
.M

in
im

al
en
er
gy

co
ns
um

pt
io
n
w
as

at
ta
in
ed

in
te
rm

s
of

th
ro
ug

hp
ut
,m

in
im

al
la
te
nc
y,
an
d

m
ax
im

um
pa
ck
et
de
liv

er
y

E
ve
nt

de
te
ct
io
n
an
d
qu

er
y
pr
oc
es
si
ng

(F
an

et
al
.,
20

23
)

Pa
rt
ic
le
Sw

ar
m

O
pt
im

iz
at
io
n

D
et
ec
tio

n
ac
cu
ra
cy

an
d
Fa
ls
e
po
si
tiv

e
ra
te

Im
pr
ov
ed

pa
rt
ic
le
sw

ar
m

al
go
ri
th
m

w
as

co
m
bi
ne
d
w
ith

B
ac
k
Pr
op
ag
at
io
n

N
eu
ra
lN

et
w
or
k
to

ac
hi
ev
e
ev
en
ts

de
te
ct
io
n
in

W
SN

s

L
oc
al
iz
at
io
n
an
d
ob
je
ct
ta
rg
et
in
g

(D
ev
,2

02
3)

H
yb
ri
d
Pa
rt
ic
le
Sw

ar
m

O
pt
im

iz
at
io
n

(P
SO

)-
G
re
y
W
ol
f
O
pt
im

iz
at
io
n
(G

W
O
)

al
go

ri
th
m

w
ith

Po
or
-f
or
-C

ha
ng

e
st
ra
te
gy

O
bj
ec
tl
oc
al
iz
at
io
n
er
ro
r

In
th
e
pr
op

os
ed

st
ud

y,
un

kn
ow

n
no

de
lo
ca
tio

ns
w
er
e
es
tim

at
ed

us
in
g

tr
ad
iti
on
al
al
go
ri
th
m
s
w
hi
le
in

st
ep

2,
th
e
hy
br
id

na
tu
re
-i
ns
pi
re
d
al
go

ri
th
m

w
ith

po
or
-f
or
-c
ha
ng

e
st
ra
te
gy

w
as

us
ed

fo
r
m
in
im

iz
at
io
n
of

th
e
lo
ca
liz
at
io
n

er
ro
r

M
ed
iu
m

A
cc
es
s
Pr
ot
oc
ol

(S
ey
ye
da
bb
as
ie
ta
l.,

20
23

)
In
cr
em

en
ta
lG

re
y
W
ol
f
O
pt
im

iz
at
io
n

(I
-G

W
O
)
an
d
E
xp

an
de
d
G
re
y
W
ol
f

O
pt
im

iz
at
io
n
(E
x-
G
W
O
)
al
go
ri
th
m
s

N
et
w
or
k
lif
et
im

e,
al
iv
e
no
de

ra
tio

in
th
e

ne
tw
or
k,

pa
ck
et
de
liv

er
y
ra
tio

an
d
lo
st

da
ta
pa
ck
et
s,
ro
ut
in
g
ov
er
he
ad
,

th
ro
ug

hp
ut
,a
nd

co
nv
er
ge
nc
e
be
ha
vi
or

T
he

pr
op

os
ed

m
et
ho

ds
pr
ov
id
e
m
or
e

ef
fic
ie
nt

ex
ec
ut
io
n
tim

e
an
d
C
PU

po
w
er

in
tim

e
an
d
sp
ac
e
co
m
pl
ex
iti
es

123



Annals of Operations Research

Deploying WSNs poses a significant challenge, and various algorithms and models have
been proposed in the literature to solve this problem and maximize coverage and connec-
tivity. One of the key issues addressed is optimization, which can be approached using
single-objective or multi-objective methods. Single-objective optimization techniques focus
on maximizing a specific performance indicator. However, in real-world applications, rely-
ing solely on single-objective optimization may lead to undesirable trade-offs. For example,
optimizing coverage alone may result in a large number of sensor nodes, leading to increased
energy consumption and reduced network lifetime.

To overcome this limitation, the recommendation is to employ multi-objective optimiza-
tion techniques inWSNdeployment. These techniques aim to simultaneously satisfymultiple
objectives while considering various constraints and restrictions. By considering multiple
objectives, such as coverage, energy efficiency, network lifetime, and connectivity, amore bal-
anced and efficient deployment of sensor nodes can be achieved. By utilizing multi-objective
optimization techniques, researchers and practitioners can find deployment strategies that
strike a balance between coverage and other performance metrics, resulting in more robust
and sustainable wireless sensor networks (Abdulwahid & Mishra, 2022).

The placement of sensor nodes is a critical challenge in the deployment of wireless sensor
networks (WSNs). If the nodes are not strategically positioned, coverage holes can occur,
where certain areas of the terrain are not monitored by any sensor node. These coverage holes
lead to a lack of data collection and potential gaps in network connectivity. Achieving full
connectivity among sensor nodes can be challenging due to the distance between them.When
nodes are far apart, it becomes difficult to establish reliable communication links, resulting
in increased energy consumption for sensing and communication tasks.

In a study by Akbar et al. (2019), the Fruit Fly Optimization (FOA) algorithm was com-
pared with Particle Swarm Optimization (PSO) and the Territorial Predator Scent Marking
Algorithm (TPSMA) to address the coverage holes problem. The performance of these
algorithms was evaluated based on metrics such as energy consumption, coverage, and
connectivity. Another study by Boualem et al. (2018) discussed deterministic and random
deployment techniques for achieving coverage in wireless sensor networks. The researchers
highlighted that random deployment can be effective in vast areas where human intervention
is limited or impractical. On the other hand, deterministic deployment provides an alternative
when human intervention is possible for troubleshooting, battery replacement, configuration
adjustments, and node repositioning. The size of coverage within the network plays a cru-
cial role in ensuring that an Area of Interest (AoI) is adequately monitored in most WSNs.
By carefully considering deployment strategies and optimizing coverage, WSNs can effec-
tively capture and monitor the desired areas of interest, leading to improved performance and
reliable data collection.

Efficient mechanisms for deploying sensor nodes are crucial to maximize coverage rates
in wireless sensor networks. However, previous studies have not fully addressed the impact
of the increasing size of mobile agents as they move between nodes for data gathering.
To tackle this issue, Alsboui et al. (2022) proposed a Graph-based Dynamic Multi-Mobile
Agent Itinerary Planning approach (GDMIP). This method aims to handle node failures
caused by diminishing energy levels and optimize travel routes for mobile agents, ensuring
timely data transmission to processing nodes. In the context of Internet of Things (IoT)
applications, Alsboui et al. (2020) introduced the Mobile Agent Distributed Intelligence
Tangle-based architecture (MADIT). MADIT enables scalable and efficient IoT applications
by facilitating local interactions among Internet-enabled devices. Computation is offloaded
to resource-rich devices, thereby conserving energy usage. These approaches address specific
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challenges posed by wireless sensor networks and contribute to the development of protocols
and tools tailored to their unique characteristics.

Wireless sensor networks present various challenges related to routing, scheduling, secu-
rity, node clustering, localization, data aggregation, data integrity, fault detection, and
coverage. Machine learning techniques offer promising solutions to enhance the capacity
of wireless sensor networks to adapt to environmental changes (Alsheikh et al., 2014). How-
ever, there is a need to consider the limited resources of the network and select appropriate
learning themes and patterns that effectively address the specific problem at hand. Addition-
ally, further investigation is required to address coverage and connectivity issues in wireless
sensor networks.

Researchers, such as Al-twalah et al. (2020), have explored the use of deep learning
techniques to develop routing algorithms and improve wireless network performance. Deep
learning, a subfield of machine learning based on artificial neural networks, allows for the
simulation of human brain functions. By leveraging dynamic alternative paths and reducing
data traffic, deep learning can optimize routing paths, enhance performance, and increase
routing accuracy in wireless networks.

Ardakani (2021) introduced the MINDS protocol, which utilizes mobile agents for the
collection of sensory data. MINDS aims to reduce network congestion, enhance data robust-
ness, and minimize delay. The protocol divides the sensor network into data-centric clusters
using the Hamming distance approach, with cluster-heads forming a tree-based data-centric
communication infrastructure based on named data networking. Mobile agents traverse this
tree-like infrastructure using a modified version of the Depth-First Search algorithm, consid-
ering hop count to optimize their movement. These studies demonstrate the ongoing efforts
to develop innovative approaches and protocols to address deployment, routing, and perfor-
mance challenges inwireless sensor networks. By incorporatingmachine learning techniques
and optimizing resource utilization, these advancements contribute to the improvement of
coverage, connectivity, and overall network efficiency.

InBhatti’s study (2018), amodelwas developed to address the localization issue inwireless
sensor networks bymapping it onto variousmachine learningmodels.Unlike previous studies
that treated localization as a classification problem, Bhatti’s approach treated it as a regression
problem. The study also explored the impact of deploying anchor nodes in a grid pattern
rather than randomly throughout the network domain. Various network parameters such as
anchor node population, network size, transmitted signal power, and wireless channel quality
were considered. Simulations were conducted to analyze the performance of the localization
models after defining feature vectors and mapping them onto regression models.

Nguyen et al. (2021) proposed an energy-efficient distributed algorithm for solving the
target coverage problem in wireless sensor networks. The algorithm involved the rotation
of a group of sensor nodes to monitor events based on cover sets and available energy for
each time slot. To reduce control message overhead, a clustering approach based on target
point locations was introduced. The study also presented a cover set construction algorithm
to group sensor nodes that could collectively cover all target points within a cluster. However,
classicalmachine learning or bio-inspired algorithmswere not utilized in this particular study.
Another study byNguyen andSo-In (2018) focused on a distributed deployment technique for
improving barrier coverage in wireless sensor networks with mobile sensors. The technique
allowed for the relocation of sensor nodes after the initial deployment. However, global
optimization was not achieved through the use of soft computing strategies in this study.

The concept of "swarm" refers to a gathering of cooperating insects or flying objects that
work together to achieve a common goal. Swarm intelligence (SI) refers to the collective
intelligence exhibited by a group of units within a network. SI draws inspiration from the
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organization, communication, warning systems, army maintenance, and division of labor
observed in social insects such as ants, wasps, termites, and bees. The adaptability and
flexibility of these social insect colonies have led researchers to adopt swarm intelligence
concepts for both inter-cluster and intra-cluster communication. Observations of individual
insects within colonies, such as bee dancing, ant pheromone secretion, and specific signaling
behaviors, have influenced the development of nature-inspired algorithms for wireless sensor
networks.

These nature-inspired algorithms are widely used in the field, leveraging the concepts
derived from swarm intelligence. By emulating the behaviors and interactions observed in
social insects, these algorithms aim to improve the efficiency and performance of wireless
sensor networks.

4.1 Particle swarm optimization

PSO is a popular intelligent optimization algorithm that is based on population. The search
space is first initialized with a set of particles.With three indications of position, velocity, and
fitness value, each particle represents a potential best-case scenario for solving the extremum
optimization issue. The predefined fitness function is used to assess the benefits and limita-
tions of the particle’s position as it progresses across the solution space (Gou & Sun, 2021).
Particles track their individual historical extremum and population extremum during each
cycle, updating their velocity and position accordingly.

The original PSOmodel consists of a swarmof particlesmoving in an n-dimensional space,
randomly generated within real-valued search space. In the PSO formulae, the subscript (i,
j) denotes the ith particle in the jth dimension, and j is from 1 to n (j ∈ 1,…,n).

Fan and Chiu in Fan and Chiu (2007) provided the foundation for the update formula
given as follows:

Vi j (t + 1) � ωt Vi j (t) + c1r1[pi j (t) − xi j (t)] + c2r2[gi j (t) − xi j (t)] (8)

At each time step t, the old velocity is updated to generate the new velocity Vij(t + 1).
In Eq. (8), the number of current iteration is represented by t; ωt represents the weight of

inertia. The inertia weight is a scaling factor associated with the velocity from the previous
time step; Vi j is the velocity vector of the i th particle in the j th dimension at time t. c1 and
c2 represent the learning factors which are also regarded as acceleration constants or control
parameters; the random numbers between 0 and 1 are represented by r1 and r2. pi j (t) is the
historical optimal position of particle i at dimension j. The randomness of particle movement
is increased by these numbers. xi j (t) is the current position of the particle, and gi j (t) is
the global optimal position of the current population. ωt is defined as a linearly decreasing
weight which is expressed as:

ωt � ωmax − ωmax − ωmin

tmax
× t (9)

where tmax is the highest iterations number, ωmax and ωmin are the respective initial and
final values of inertia weight. The inertia weight regulates howmuch of the previous velocity
should be retained from the previous step. A larger inertia weight facilitates a global search,
while a smaller inertia weight facilitates a local search. The velocity change informs the
updating of the position of the particle as expressed in the formula given in Eq. (10) which
shows that a new position is calculated as the sum of the previous position and the new
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velocity.

xi , j (t + 1) � xi , j (t) + Vi , j (t + 1) (10)

Updating the position of particle i at dimension j given as xi , j (t + 1) is dependent on
the current position of particle i at dimension j and the new velocity vector represented as
xi , j (t) and Vi , j (t + 1) respectively.

Many authors have attempted to solve many challenges of WSN on the basis of PSO tech-
nique and in collaboration with other classical algorithms. Olayode et al. (2021) applied an
artificial neural network combinedwith particle swarm optimization (ANN-PSO) to solve the
problem of traffic congestion at signalized road intersections. Sixu et al. (2022) introduced
a fusion of artificial bee colony and particle swarm optimization techniques for clustering
in WSNs. While an artificial bee colony was utilized to create the base station traversal
path, PSO was employed to determine the cluster heads and sojourn sites of the base sta-
tion. The resilience of the strain–displacement transfer connection was the main topic of
earlier research projects that used single-objective optimization. Studies have demonstrated
that using single-objective optimization, it is challenging to strike a compromise between
resilience and accuracy. Zhao et al. (2019) highlighted a bi-objective optimalmodel for sensor
nodes distribution scheme. Particle swarm optimization was combined with chaos optimiza-
tion to solve coverage problem in wireless sensor networks (Zhao et al., 2022). The study
represents all sensor locations as a particle position. However, multi-objective optimization
was not considered in the study.

PSO suffers from the same issues as other meta-heuristic algorithms, including local
optimal stagnation and poor convergence accuracy. Scholars will continue to explore the
opportunities to improve the execution efficiency and global search ability of the algorithm.

4.2 Ant colony optimization

The ant colony optimization algorithm is a probabilistic technique that is modeled after
how natural ants behave. The fundamental concept behind this swarm intelligence technique
is similar to how ants use pheromone to determine the optimal path between two points.
Figure 12 shows the concentration of ants’ pheromone based on number of ants that follow
a particular path.

Fig. 12 Natural behavior of ants
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In Fig. 12, S stands for the source ants start their search for food from while D stands
for destination. As shown in Fig. 12, the search activities of the ants begin from step 1 and
ants do not start emitting pheromone until they carry food from their destination. In step 2,
the ants in the search space followed different paths to the destination and in step 3, as ants
return to the source, the path that shows red line (pheromone) indicates the route more ants
with food followed back to the souce.

Starting with a set of random solutions, the algorithm iteratively improves them until
they satisfy a predetermined stopping condition. This is done after initializing settings and
modeling the problem’s search space. Based on a likelihood that is impacted by pheromone
and heuristic, ants choose how to construct a solution. At the end of each iteration, when all
the ants have offered a solution to the problem, the pheromone matrix is updated based on
the quality of the solution, which is the corresponding cost. The best ant, or the one with the
lowest cost (for the minimization problem), is stored at the end of an iteration (Khoshrangbaf
et al., 2022).

4.3 Artificial bee colony

A novel heuristic technique called artificial bee colony optimization uses three bee groups in
the colony: scouts, onlooker, and employed bees. Every bee in the search space indicates a
position. The bee populations are used to determine the algorithm’s ideal path. A scout bee is
a bee that randomly hunts for food. An onlooker bee is a bee that chooses a food source while
waiting in the dance area, whereas an employed bee goes to a food source that has already
been visited. The locations of food sources suggest potential solutions to the optimization
problem (Yue et al., 2016).

There are four steps in artificial bee colony optimization.

Initialization: if the population size is assumed to be SN and the first generated food source
is N , the initial population Xi � {Xi1, Xi2, . . . , Xi D}(i � 1, 2, . . . , N ), with D given as
the vector dimension. The initial population is randomly expressed as:

Xi � Xmin + rand(0, 1) • (Xmax − Xmin) (11)

where Xmin and Xmax are the minimum and maximum values of the population. rand(0, 1)
is the numerical value between randomly produced (− 1, 1) which controls the producing
range of Xij neighborhood.

Population Updating: Each employed bee was assigned to a food source after the food
sources were randomly placed in their initial location. Using Eq. (11), each employed bee
then chooses a new food source that is nearby its existing assigned food source as expressed
in Eq. (12).

Vi , j � Xi , j + rand(−1, 1) • (Xi , j − Xk, j ) (12)

where Vi , j is a candidate solution, Xi , j is the current solution and Xk, j is a neighborhood
solution. k ∈ {1, 2, 3, . . . , SN }, j ∈ {1, 2, 3, . . . , D} given D is the vector dimension and
rand(−1, 1) is the numerical value between randomly produced (−1, 1). The neighborhood
scope gradually decreases as the search approaches the optimum solution.
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Bee Source Selection: In this phase, the employed bees move according to the income rate.
High income rates food sources are more likely to be selected according to Eq. (13).

Pi � f i t(Xi )∑SN
n�1 f i t(Xn)

(13)

where f i t(Xi ) is the fitness value of the solution i proportional to the nectar amount of the
food source n ∈ {1, 2, 3, . . . , SN }. SN is the number of food sources equal to the number
of employed bees.

Population Elimination: When a solution is abandoned because it has been stuck in a local
optimum and shows no sign of improving after receiving continual limit cycle updates, the
corresponding onlooker bees transform into scouting bees and generate a new solution at
random using Eq. (13).

Xi j � Xminj + rand(0, 1)(Xmax j − Xminj ) (14)

The new solution replaces the old one and the optimum solution is generated accordingly.
Xi represents the abandoned source. j ∈ {1, 2, 3,..., D}, rand(0, 1) is the numerical value
between randomly produced (− 1, 1), and Xmax and Xmin are the maximum and minimum
values.

4.4 Genetic algorithms

One of the most popular evolutionary algorithms, the genetic algorithm (GA), is widely
used to solve different optimization problems (Gong et al., 2018). The initial population
of the GA method is made up of potential solutions that were generated at random. The
term "chromosome" refers to each distinct solution, which can be represented by a series
of numeric values, symbols, or alphabets. The best few chromosomes are chosen from the
initial population once it has been formed, and a new population is then established using
those chromosomes. The fitness function that was derived assesses the chromosomes’ quality.
The success of a given problem’s desired purpose is greatly impacted by the derivation of
an effective fitness function. Two chromosomes (let’s say, parent chromosomes) are chosen
at random to pair during the crossover operation and produce two kid chromosomes when
the new population is created. Then, to create better chromosomes, a mutation operation is
performed on both of the child chromosomes. If it is determined that the kid chromosomes
are superior to the parent chromosomes, they will take the place of the parent in the new
population. Up until the termination requirement is met, the crossover andmutation operation
is repeated.

4.5 Teaching–learning-based optimization

Teaching–Learning-Based Optimization (TLBO) is a population-based approach that moves
toward the overall solution using a population of solutions. The population is regarded as a
class of learners or a group of learners for TLBO. In TLBO, various design parameters will be
comparable to various learning objectives provided to students, and the students’ performance
will be comparable to their "fitness," as in previous population-based optimization techniques
(Rao et al., 2011). The teacher is considered as the best solution obtained so far.
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There are two stages to the TLBO procedure. The "Teacher Phase" makes up the first
section, while the "Learner Phase"makes up the second. Learning occurs during the "Teacher
Phase," which refers to studying with the instructor, and the "Learner Phase," which refers
to studying with other students.

4.5.1 Teacher phase

A skilled teacher raises the knowledge level of their students to that of the teacher. In reality,
however, this is not feasible, and a teacher may only raise the class mean to a certain level
based on the responses of the class. This proceeds in a random manner based on several
variables.

Assuming Ti is the teacher at any iteration i and Mi is the mean, Ti will attempt to move
mean Mi towards its own level, and the new mean will be Ti designated as Mnew. The
solution is thereafter updated based on the difference between the existing and the new mean
expressed as:

Di f f erenceMeani � ri (Mnew − TF Mi ) (15)

4.5.2 Learner phase

The teacher’s input and the students’ interactions with one another are two separate ways
that learners increase their knowledge. Random interactions between students occur through
group discussions, official correspondence, presentations, etc. If the other student is more
knowledgeable than the learner, the learner gains new knowledge. Learner modification is
expressed as:

Algorithm 1: Pseudo-code for TLBO
1
2 Randomly select two learners and , where 

4
5 Else
6
7 End If
8 End For
9 Accept if it gives a better function value.

Harmony search algorithm (HAS) The harmony search algorithm is a metaheuristic method
that mimics musical improvisation. HSA is based on amusician’s desire for the optimal notes
that will provide the ideal harmony. The method used to find the best options in the given
situation is similar to the method used by a musician seeking a pleasing harmony to the ear
(Dubey et al., 2021).

There are three situations occurring, in which the pitch can be improved by a musician.

1. A stored pitch is performed from the musician’s memory.
2. From the saved pitches, a nearby pitch is played.
3. Any random pitch that falls within the permitted range is played.
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5    Generate Harmony Memory with random harmonies
6 while (t< max number of iterations)
7                   while (i<=number of variables)
8 if (rand<HMCR),
9                               Choose a value from HM for the variable i
10 if (rand<PAR),
11                           Adjust the value by adding certain amount
12 end if
13 else
14                                  Choose a random value
15  end if
16 end while
17                       Accept the New Harmony (solution) if better
18 end while
19   Find the current best solution
20 end

Algorithm 2: Pseudo code of the Harmony Search algorithm (HSA)
1 Begin,
2    Define objective function f(x), x=(x1 ,x2 ,…,xd )T
3    Define Harmony Memory Considering rate (HMCR)
4    Define Pitch adjusting rate (PAR) and other parameters

The main components of HSA are harmony memory size (HMS), harmony memory
consideration rate (HMCR), pitch adjustment rate (PAR), and stopping criteria (i.e., number
of improvisation). These parameters are responsible for exploration and exploitation.

In the context of wireless sensor networks, energy efficiency refers to the deployment
and utilization of the network with minimal energy consumption that guarantees long net-
work lifespan. Self-organizing and self-adapting ability of swarm intelligence optimization
algorithm make it suitable for the robustness and expandability of the network. The network
becomes scalable when other nodes or particles can be added to the network or search space
without compromising the lifespan of the network.

The fault tolerance metric of the algorithm shows that nodes in the network are distributed
and there is no centralized control, even if a node fails, it will not affect the solution to
the problem; that is, it will not affect the overall performance of the network. Convergence
performance is dependent on the ability of the algorithm to acquire global extreme value
while avoiding regional extreme value.

The comparison of different algorithmic requirements that influence the performance of
the algorithms is given in Table 3. It can be deduced from the table that most of the swarm
intelligence algorithms at relatively stable energy level, the network maintains good stability
with high level of fault tolerance at different convergence level. Conventional PSO without
any modification easily fall into local optimum while TLBO proves to survive in a complex
active distribution environment. However, to improve the search rate and avoid premature
convergence of swarm intelligence algorithms, the algorithms can either be improved with
modified version or it is integrated with other algorithms to attain hybrid solutions.

Bibliometric analysis Weused Scopus data for our bibliometric analysis.We ran a query and
usedWSNs, a Nature-inspired method, and Coverage to extract the keywords.We discovered
that there are only 12 published research publications overall, with WSNs, nature-inspired
algorithms, and coverage listed as author keywords. These articles include 120 keywords in
total. In this instance, we took into account all the phrases that the bibliometric clustering
method groups into 8 clusters (shown in 8 distinct colors) as shown in Fig. 13. These clusters
have a total link strength of 1365 and 1316 linkages between them. We discovered that the
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Fig. 13 Bibliometric analysis of keywords “WSNs”, “Nature-inspired algorithm” and “Coverage.”

genetic algorithm and particle swarm optimization had a high overall connection strength,
indicating their widespread use.

5 Machine learning applications to functional challenges inWSNs

Machine learning techniques can be utilized in sensor networks to enable adaptation to
changes in the monitoring environment, eliminating the need for frequent redesign. Design-
ers of sensor networks often view machine learning as a toolbox comprising various tools
and processes for creating prediction models. The field of machine learning holds immense
potential for numerous applications, a fact acknowledged by experts in the field. Familiarity
with these concepts provides valuable insights to scholars interested in integrating machine
learning into their wireless sensor network designs. Given the versatility of machine learn-
ing algorithms, wireless sensor networks can leverage them in a wide range of applications.
The following examples highlight some notable uses of machine learning in wireless sensor
networks (Alsheikh et al., 2014).

5.1 Routing inWSNs

The design of a routing protocol for WSNs must take into account a number of design issues,
including energy usage, scalability, fault tolerance, and data coverage. Nodes of sensors are
designed with a limited amount of memory, bandwidth, and computing power. In wireless
sensor networks, it is customary to characterize a routing problem as a graph G � (V, E),
where V represents the set of all nodes and E denotes the set of channels that connect the
nodes in a bidirectional fashion. According to this paradigm, the routing problem is the
process of determining the lowest-cost route utilizing the available graph edges that starts
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at the source vertex and travels to all destination vertices. The originating node (i.e., a root
node) and destinations are the vertices of this path, which is actually a spanning tree with
the formula T � (V, E) (i.e., leaf nodes that do not have any child nodes). Even when the
complete topology is known, solving such a tree with optimal data aggregation is discovered
to be NP-hard.

A sensor network can use machine learning to learn from prior experiences, choose the
best routing decisions, and adapt to the changing environment. Below are some of the benefits
of machine learning applications for routing in WSNs.

• Ability to learn optimal routing path that is energy efficient and prolong the lifetime of the
network based on the dynamics of the network.

• By breaking the network down into smaller groups or cluster, more manageable sub-
routing problems, a common routing problem can be made less complex. To achieve low
cost, effective, and real-time routing, nodes in each sub-problem create the graph structures
by simply taking into account their local neighbors.

Machine learning protocols such as Self-organizing map (SOM) with "Sensor Intelli-
genceRouting" (SIR), Reinforcement Learning basedGeographic R (RLGR), and distributed
regression framework have been developed specifically for routing in wireless sensor net-
works. SOMwith SIRutilizes unsupervisedmachine learning to detect efficient routing paths.
Reinforcement learning-based routing, on the other hand, offers routing enhancements by
leveraging reinforcement learning techniques. One of the key advantages of using reinforce-
ment learning for routing is that it can generate satisfactory routing solutions without prior
knowledge of the network topology. However, a major drawback of reinforcement learning-
based routing algorithms is their limited ability to anticipate future knowledge or look ahead.
These algorithms typically require some time to discover the best paths, making them less
suitable for highly dynamic environments.

5.2 Clustering and data aggregation inWSNs

In large-scale sensor networks, the direct transmission of all sensed data to the processing
node is not energy efficient due to the limited energy level of sensor nodes. Instead, a more
effective option is to forward the data to a cluster head, also known as a processing node,
which aggregates data from other sensors within its group and transmits it to the sink or base
station (Yue et al., 2016). This cluster-based data aggregation approach is illustrated in Fig. 14.
Any malfunctioning node detected in the network is removed to prevent the generation of
incomplete readings that could impact the overall accuracy of the network. Machine learning
techniques play a crucial role in enhancing the performance of sensor node clustering and
data fusion in wireless sensor networks:

• Cluster heads can compress data locally by using machine learning to efficiently extract
similarity and dissimilarity (for instance, from malfunctioning nodes) in readings from
numerous sensors.Machine learning approaches are utilized to effectively select the cluster
head.

• Selecting the right cluster heads will significantly reduce energy usage and lengthen the
network’s lifespan.

Previous research has employed neural networks for large-scale network clustering, deci-
sion trees for cluster head selection, self-organizing maps for data aggregation, online data
compression using learning vector quantization, data aggregation using principal component
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Fig. 14 Clustered architecture of data aggregation showing working nodes, dead nodes and cluster heads.
Adapted from Ma and Duan (2022)

analysis, the k-means algorithm for collaborative data processing, decentralized learning for
data latency and role-free clustering.

5.3 Event detection and query processing

It is assumed that in every large-scale sensor network, the functional requirements for event
detection and query processing are present. This emphasizes the need for minimally human-
involved event detection and scheduling. For efficientmethods for query processing and event
detection, machine learning fundamentally provides ways to restrict the scope of queries
and assess the authenticity of events. The following benefits are believed to arise from the
adoption.

• Learning algorithms make it possible to create effective event detection systems with a
minimum amount of storage and processing power. Additionally, they can evaluate the
correctness of such occurrences using straightforward classifiers.
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• Machine learning enables the development of effective query processing techniques for
WSNs to identify the search regions whenever a query is received without overwhelming
the network.

The most basic methods depend on setting a rigid threshold value for the phenomena
being monitored and alerting the system manager when it is exceeded. However, the event
and query processing units in the majority of current WSN applications are frequently com-
plex and call for more than a predetermined threshold value. Utilizing machine learning to
create sophisticated event detection and query processing solutions is one of such growing
technology. Event recognition using Bayesian algorithms, detection of forest fire using neural
networks, k-nearest neighbors for query processing, decision trees for detection of distributed
events during disaster, principal component analysis for query optimization, etc. are just a
few examples of machine learning-based query processing and event detection solutions for
wireless sensor networks.

5.4 Localization and objects targeting

Localization is the process of determining the geographic coordinates of the nodes and com-
ponents of a network. Position awareness of sensor nodes is an essential feature because the
majority of sensor network functions are frequently dependent on location. Deployment of
Global Positioning System (GPS) hardware on each node is typically not feasible econom-
ically in a large scale network. After deployment, sensor nodes may experience changes in
their placement with reasons such as due to movement. The advantages of using machine
learning techniques to the process of localizing sensor nodes can be summed up as follows:

• Employing a small number of anchor points to transform nodes’ relative coordinates into
absolute ones. This will make it unnecessary to use range measurement equipment to get
distance estimates.

• Machine learning can be used in monitoring and object targeting systems to group the
surveillance environment into a smaller group of clusters where a unique location indicator
is represented by each cluster.

Node localization using Bayesian network, location-aware activity recognition, neural
networks localization, support vectormachines localization, localization using support vector
regression, localization based on decision tree, Gaussian processes of sensor placements, and
spatial Gaussian process regression, self-organizing map localization, and reinforcement
learning for path determination are some examples of machine learning applications for
WSN localization that have been reported in literature (Wang et al., 2019b).

5.5 Medium access control

A variety of sensors work together inWSNs to convey data quickly. Because of this, creating
MAC protocols for WSNs presents unique difficulties in terms of latency, energy usage,
and other factors. Furthermore, in order to save energy, the duty cycle of the node (i.e.,
the percentage of time that a sensor node is active) must be managed. The Medium access
control (MAC) protocols must be changed as a result to support the sensor nodes’ efficient
data transmission and reception (Rugwiro et al., 2019). Machine learning techniques have
recently been applied to improve the performance of MAC protocols in WSNs, including:

• Adaptively calculating a node’s duty cycle using machine learning and the network’s
transmission history. In particular, the nodes that can foresee when the transmissions of
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the other nodes will end can swing to sleep mode for sometimes and wake up at the end of
the transmission time of the other nodes. When constructing MAC protocols for WSNs,
many aspects, such as consumption of energy and latency, are more crucial than fairness.

• Integrating the ideas of MAC protocols with machine learning to achieve safe data trans-
port. These MAC layer security systems can iteratively learn random attack patterns and
are independent of the planned application.

The Bayesian statistical model for MAC, the Neural Network-based MAC, reinforcement
learning for management of duty cycle, and the adaptiveMAC layer are examples of machine
learning-basedMAC developed protocols. Althoughmachine learning approaches have been
applied in numerous WSN applications, however many problems that bother on coverage
optimization remains a challenge and require more research. The benchmarked performance
metrics of machine learning techniques in solving the identified challenges in WSNs are
given in Table 4.

Various machine learning algorithms have been applied to address many functional issues
in wireless sensor networks. Analysis of studies carried out in Table 3 shows that supervised
machine learning algorithms are applied in solving routing, localization, event detection and
query processing functional problems in WSNs. Unsupervised machine learning algorithms
aremostly applied to solvemedium access control and data aggregation problems. Ensemble-
based and reinforcementmachine learning algorithms are also applied acrossmany functional
problems that are associated with wireless sensor networks. It can be concluded from the
table that machine learning techniques offer rich potentials in the deployment and utilization
of wireless sensor networks.

Our research has revealed that machine learning algorithms possess significant potential
for effectively addressing the functional challenges encountered inWireless SensorNetworks
(WSNs). In the forthcoming section, we delve exclusively into the pivotal role of machine
learning in tackling the intricate issue of coverage within WSNs.

6 Notable studies on coverage problem usingmachine learning
techniques

Machine learning algorithms can be categorized into three main types: supervised learning,
unsupervised learning, and reinforcement learning. Supervised learning algorithms rely on
labeled datasets to classify data into different categories. Examples of supervised learning
techniques include multiple regression, linear regression, logistic regression, Naive Bayes,
classification using random forests, and support vector machines.

On the other hand, unsupervised learning techniques, such as K-means and hierarchical
clustering, do not require labeled data. They focus on finding patterns and structures in unla-
beled datasets. Unsupervised learning shares some similarities with reinforcement learning,
as both approaches workwith unlabeled data and incorporate the concept of rewards and pun-
ishments. Reinforcement learning is commonly used in gaming scenarios, where an agent
explores its environment independently to acquire information.

Supervisedmachine learning algorithms have proven useful in solving various problems in
wireless sensor networks. They can be employed for tasks like localization, defect detection
and identification, coverage and connectivity optimization, routing strategies, and anomaly
detection. Anomaly detection, for instance, utilizes machine learning to identify and flag
faulty or defective nodes. Unsupervised learning techniques are primarily used to address
clustering and dimensionality reduction challenges in wireless sensor networks.
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Fig. 15 Machine learning algorithms overview. Source: Rashidi et al. (2019)

Reinforcement learning, specifically using Q-learning, has shown promise in solving dif-
ferent problems in WSNs, including routing, coverage optimization, and quality-of-service
(QoS) parameter management. By applying reinforcement learning principles, agents can
learn and adapt their behavior based on received rewards, enabling them to make optimal
decisions in dynamic environments.

Figure 15 provides an overview of the hierarchy ofmachine learning algorithms, including
supervised learning, unsupervised learning, and reinforcement learning. Within supervised
learning, there are further classifications such as classification and regression, which deal
with discrete/qualitative and continuous/quantitative targets, respectively.

Machine learning has become an essential tool for data inference and decision-making in
optimizing wireless sensor networks, contributing to extending their lifetime. This section
reviews the applications of machine learning in wireless sensor networks. Coverage and
connectivity challenges are critical in assessing the performance of a wireless sensor network
within a given area. By controlling the coverage of the network, energy consumption of
the master node can be improved, resulting in an extended lifecycle and reduced energy
consumption (Ma et al., 2022; Madagouda & Sumathi, 2021).

While machine learning-based research in wireless sensor networks has addressed issues
like energy efficiency, data transmission, and coverage optimization, challenges remain in
machine learning-based edge computing, particularly in energy reduction. Tossa et al. (2022)
proposed a genetic algorithm-basedmethod tomaximize coverage and connectivity inWSNs.
However, their scheme lacks the ability to detect connectivity disruption during routing
sessions.Xu et al. (2018) formulated amulti-objective coverage control optimization problem
for wireless sensor networks, considering coverage rate, energy consumption, and energy
consumption equilibrium. However, they did not incorporate learning techniques to enhance
the performance of their algorithms.

To address uncertainties in detecting ranges, measuring parameters, and overlapping cov-
erage among sensors, the artificial bee colony (ABC) algorithm has been proposed. Inspired
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by the behavior of honey bees, the ABC algorithm is a swarm-based intelligent approach.
Extending network lifetime while maintaining full coverage of the area of interest is a crucial
trade-off in deployment strategies (Boualem et al., 2018; Sun et al., 2018a).

Another prominent challenge in wireless sensor networks is deploying a minimal number
of nodes to ensure connectivity and coverage in specific areas. In this regard, Sun et al.
(2014) proposed an improved coverage control approach for WSNs. They used Ant Colony
Optimization (ACO) to design the routing path and employed other techniques to create a
relationship mapping model between sensor nodes and target nodes. The ant determines the
state transition probability during the traversal search process based on the amount of data
and heuristic information associated with each path.

Assume that there will always be a transition between any two points p.

p �
{

[ri j (t)]α [ηi j (t)β ]

(
∑

S⊂ allowed [τi j (t)]α [ηi j (t)β ])
sεallowed

0S /∈ allowed
(16)

where α is the informative heuristic factor that identifies the track’s relative importance and
highlights the part that the acquired information played in the ant’s progress. The bigger it is,
the more likely it is that other ants will follow it, and the more effectively the ants cooperate.
β is the anticipated heuristic factor, which demonstrates the level of attention paid by an ant to
heuristic information during path selection and illustrates the relative relevance of visibility.
When the likelihood of a state change is close to 1, the value rises, turning the algorithm into
a greedy one. τi j (t)andηi j (t) represent the pheromone residual function and the heuristic
function, respectively.

Guooor&Sharma (2021) proposed a node distributionmethod to tackle the coverage issue
in wireless sensor networks. They employed Glowworm Swarm Optimization to achieve the
desired network coverage. The routing in the network was based on essential force clustering,
considering average power, minimum proximity distance, and sensor position to determine
the route selection.However, the study did not consider the dynamics of glowwormmovement
and the evolution of decision-making in the decision space.

Kwon et al. (2020) emphasized intelligent IoT connectivity using deep reinforcement
learning. Their strategy involved relay nodes making decisions based on limited information
about the network as a whole. Lee and Shin (2017) presented a method for identifying signal
points within overlapped sensor areas and installing sensors for tracingmoving objects as part
of an optimal sensor deployment strategy in WSNs. They utilized a support vector machine
for signal categorization and the apriori technique for trilateration.

Liang et al. (2021) investigated a target coverage problemwith sensors of limited mobility
in Mobile Wireless Sensor Networks (MWSNs). The monitoring area was divided into sub-
areas, each responsible for detecting/covering a different subset of targets. Liu et al. (2016)
proposed an itinerary planning system for multiple mobile agents in wireless sensor networks
that was faster and simpler compared to existing methods. Their model involved building a
spanning tree of WSN nodes.

Liu and He (2014) presented an innovative deployment strategy based on ant colonies as
a cost-effective solution to the grid-based coverage problem with guaranteed connectivity.
The method employed a greedy migration mechanism that rapidly captured the coverage
area and significantly reduced deployment costs. Ma and Duan (2022) introduced a hybrid
butterfly optimization approach for improving node coverage in wireless sensor networks.
They combined the grey wolf optimizer for node coverage and utilized the virtual force-
directed particle swarm optimization algorithm and evidence theory.
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Anoverview of variousmachine learningmethods, including fuzzy logic, Artificial Neural
Networks (ANN), evolutionary algorithms, swarm intelligence, and reinforcement learning,
was provided in Kulkarni et al. (2011). The study conducted a comprehensive analysis of
computational intelligence in WSNs and summarized the contributions of multiple scholars
in this field. It also explained the hybridization of computational intelligence techniques
to address various issues in WSNs. Bhatti (2018) utilized SVM regression and multiple
regression models for localization in wireless sensor networks, considering localization as
both a classification and regression problem. The author listed several disadvantages of
applying machine learning in wireless sensor networks, among which includes, regression
versus classification, size of training data set, and multivariate vs. univariate modeling. A
brief descriptions of these advantages are highlighted below:

• Regression vs. Classification: In wireless sensor networks, the Support Vector Machine
(SVM) is commonly used for node localization. However, since SVM is a classification
technique, it requires mapping the localization problem into a classification problem. One
popular approach is to divide the deployment area into cells (rectangular or square) and
classify each node based on its membership in those cells.

• Size of Training Data Set: Machine learning algorithms require large training datasets to
create an appropriate model and avoid underfitting or overfitting. A well-trained model
captures the relevant features efficiently and can generalize well to unseen test data.

• Multivariate vs. Univariate Modeling: Localization in wireless sensor networks often
involves estimating Cartesian coordinates (two or three dimensions). While most algo-
rithms use multiple independent variables (predictors), they typically predict only one
dependent variable. To address this, a simple solution is to train two separate machines to
estimate each coordinate independently, allowing for multivariate modeling..

In the field ofwireless networking,machine learning (ML) techniques are commonly used.
Logistic regression models, for example, are utilized to assess the probability of network or
process failures, which involves regression analysis. However,ML algorithms also comewith
their limitations and challenges. One such challenge is the need for hand-selected features
to train the network, which can impact the model’s performance. Overfitting is another issue
that arises when there is a lack of available data. Additionally, utilizing more training data
can lead to higher computing costs. To address these challenges, deep learning methods have
been developed (Rameshkumar et al., 2023).

Qin and Chen (2018) proposed a differential evolution algorithm for area coverage in
wireless sensor networks (WSNs). This technique aims to extend the lifespan of WSNs
while ensuring effective coverage of the desired area. The continuous area coverage problem
is transformed into a discrete point coverage problem, enabling the optimization process to
be implemented.

Osamy et al. (2022) conducted an analysis of existing research trends in deployment,
coverage, and localization problems in WSNs, with a focus on the application of artificial
intelligence (AI) techniques to enhance network lifetime. The study reveals that in terms
of coverage, 13% of the reported studies applied Evolutionary Computation, 29% utilized
swarm intelligence, 10% employed Reinforcement Learning, 19% utilized nature-inspired
algorithms, 6% applied Fuzzy Logic, and 19% utilized hybrid algorithms. These findings
indicate that swarm intelligence is frequently applied to address the challenges inWSNs. Fur-
thermore, it is noted that there is a growing research interest in incorporating computational
intelligence techniques into various WSN applications to address coverage and connectivity
maintenance, as highlighted in Sharma and Chauhan (2020).
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7 Deep learning applications

Deep Learning, which is another subfield of AI, operates differently from traditional ML
approaches. Unlike ML, DL doesn’t treat all features equally. Instead, DL identifies the
features that have a significant impact on the outcome and creates a combination of those
features for the learning process. This characteristic of DL requires a substantial amount of
data. DL models typically have hidden layers, or multiple layers, which contribute to their
effectiveness. Unlike ML, where features are manually selected and provided to the model,
DL automates both the feature selection and extraction process. DL achieves this by utilizing
blocks and hidden layers, allowing themodel to learn and determine the optimal combinations
of features for the specific dataset being analyzed. This automated feature learning capability
makes DL a preferred approach compared to traditional ML methods (Mao et al., 2018;
Zhang et al., 2019).

By using numerous hidden layers or intermediate layers as shown in Fig. 16 between
the input and the output layers, the DL approach eliminates the complex input data pre-
processing.

In Fig. 16, I represents inputs to the network while O represents the output of the network
while w represents varying weights from the input layer through the hidden layer. The inputs
are features of the raw data that the system is processing.

In DL, the learning system directly receives raw, unprocessed data. The DL system then
automatically extracts the required representations from the data for tasks such as classifi-
cation or detection. Each layer in the DL model starts with the raw data and progressively
extracts different features, amplifying the ones that are more crucial for decision-making
while suppressing the less important ones. The layers are interconnectedwith varyingweights

Fig. 16 Schematics of DEEP LEARNING
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assigned to the connections. In the context of current research in wireless sensor networks,
there is a strong focus on improving area coverage, as it is recognized as a critical factor
that significantly influences network performance. Table 5 shows different machine learning
algorithms that have been applied to address various challenges in WSNs.

Different machine learning techniques adopted different metrics in their applications to
improve the services that are rendered on the network and authors choose different techniques
to address different problems on the network. The survey reveals that deep learning and
evolutionary algorithms are gaing increasing attention among scholars in solving notable
problems that are associated with the design and deployment of wireless sensor networks. In
its entirety, machine learning has find good place of application in the domain of WSNs.

In Binh et al. (2018), the Chaotic Flower Pollination Algorithm (CFPA) and the Improved
Cuckoo Search (ICS) were introduced as nature-inspired algorithms to enhance area cov-
erage in wireless sensor networks (WSNs). Researchers have been utilizing bio-inspired
metaheuristic swarm intelligence techniques to improve the performance of WSNs, address-
ing issues such as expanding coverage, extending network lifespan, implementing routing
protocols, and distributing sensor nodes. Metaheuristic algorithms have proven to be par-
ticularly effective in solving optimization problems in WSNs. Chowdhury and De (2021)
explored the similarities between the behavior of glowworms and mobile sensor nodes and
implemented the Glowworm Swarm Optimization (GSO) technique to expand coverage and
increase network lifespan.

In Das et al. (2015), Das et al. presented the Termite Colony Optimization (TCO) algo-
rithm, which was modified to achieve a balance between maximizing coverage area and
minimizing the number of sensors used. TCO is a population-based metaheuristic method
inspired by termite intelligence, offering improved efficiency and effectiveness compared to
previous population-based algorithms in WSNs. Das et al. (2019) proposed a backup node
system for ad hoc network coverage, aiming to improve energy efficiency by minimizing
communication through the use of a triangulation approach. Backup nodes are strategi-
cally selected to provide backup coverage to existing nodes. Du et al. (2022) introduced
a multi-level structure and competition mechanism in WSNs to enhance data exploration
while balancing energy utilization. Dezfuli and Barati (2019) recognized energy consump-
tion, network lifetime, and coverage as key challenges inWSNs. They proposed a grid-based
approach using the evolutionary firefly algorithm to maximize network coverage. Deif and
Gadallah (2017) emphasized the importance of creating dependableWSNs thatmaintain both
coverage and connectivity to the sink(s) throughout their intended mission. A multi-agent
based energy and fault-aware protocol was developed for challenging and remote areas in
Dwivedi and Kumar (2020).

Fan et al. (2021) combined evolutionary computing and machine learning techniques,
such as particle swarm optimization and neural networks, to achieve reliable data collec-
tion in WSNs. Lei et al. (2019) proposed a model for network coverage optimization and
presented a technique based on the weed algorithm. However, the method’s effectiveness
in maintaining population diversity depends on the use of differential evolution. Guo et al.
(2019) employed reinforcement learning-based routing to improve the lifetime ofWSNs, but
the study focused on flat routing suitable for small networks. Tripathi et al. (2021) provided
a review of literature on WSN coverage and connectivity problems, identifying challenges
in constructing geometries that preserve coverage and connection, as well as probabilistic-
based techniques. Future research needs to bridge the gap between practical application
requirements and existing work.
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Hammouti et al. (2018) and Njoya et al. (2017) adopted a data-driven approach to build
models that predict coverage likelihood inwireless networks, revealing limitations in stochas-
tic geometry-based analytical expressions for coverage, which are applicable only to simple
network scenarios. Nguyen et al. (2021) identified limited coverage as a key challenge in
WSNs and proposed two algorithms, Particle Swarm Optimization (PSO) and Democratic
Particle Swarm Optimization (DPSO), to address this issue. The challenge of falling into
local optima remains a drawback, and traditional evolutionary computation methods may
not fully solve this problem. Hong and Zhong (2014) presented a coverage optimization
technique based on an enhanced artificial fish swarm algorithm, aiming to increase cov-
erage rate, extend network service life, reduce running time, and improve sensor network
optimization while considering wireless sensor features.

Jameii et al. (2016) proposed a coverage and topology management approach for hetero-
geneous WSNs using an adaptive multi-objective optimization framework based on learning
automata (LA) and non-dominated sorting. The method aimed to maximize the number of
active sensor nodes, achieve a high coverage rate in the monitoring area, and maintain a
balanced energy usage while ensuring network connectivity. It should be noted that incorpo-
rating learning automata with genetic algorithms in this model may lead to increased energy
consumption. On the other hand,Wang et al. (2022) introduced a dynamic optimization tech-
nique for routing in WSNs utilizing deep learning. However, it is important to note that their
study did not specifically address coverage optimization.

In Table 6, a comprehensive overview of bio-inspired algorithms employed in the field
of WSNs is presented. The review provides insights into the significant contributions and
limitations associated with each of the listed algorithms. However, it should be noted that not
all bio-inspired algorithms have potential applications in WSNs. The selection of algorithms
for specific problems in wireless sensor networks depends on the relevant parameters that
align with the problem domain and the specific algorithm under consideration. Literature
research indicates that only three algorithms, namely particle swarm optimization, genetic
algorithm, and ant colony optimization, are applicable across all problem domains in WSNs.
Consequently, it is crucial to further investigate and explore the potential of various modifica-
tions and variants of these algorithms to determine their suitability for optimization purposes
in the wireless sensor network field.

Various machine learning techniques and bio-inspired algorithms have been employed
to address critical challenges in WSNs, as depicted in Table 7. Optimization algorithms
can be broadly categorized as deterministic and stochastic methods for local search and
global search, respectively. Deterministic algorithms aim to reach the global minimum based
on theoretical assumptions and analytical properties, or at least achieve a local minimum.
On the other hand, stochastic algorithms operate on the principle of probability. Stochastic
algorithms typically offer faster responses compared to deterministic methods, making them
more suitable for handling black box functions and unstable conditions. Stochastic algorithms
are further classified into heuristic and meta-heuristic algorithms. Heuristic methods are
problem-dependent, which can lead to being trapped in local optima and struggle to find
global optima. In contrast, meta-heuristic methods are problem-independent algorithms that
are non-greedy and non-adaptive in nature, enabling them to search for global optima. These
meta-heuristic algorithms are often referred to as bio-inspired algorithms since they draw
inspiration from biological systems.

In summary, coverage is a crucial quality parameter used inWSNs to evaluate the duration
forwhich anode can effectivelymonitor a specific area. There are threemain types of coverage
issues in sensor networks: area coverage, target/point coverage, and barrier coverage. Area
coverage focuses on monitoring all points within the observation area, target/point coverage
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Table 7 Summary of studies on machine learning and bio-inspired algorithms in wireless sensor networks
design

Authors Machine learning
technique used

Bio-inspired technique
used

Major focus

Sun et al. (2018b) Regression ✕ Network Connectivity

Chang et al. (2016) Regression ✕ Network Connectivity

Kim et al. (2015) SVM ✕ Network Connectivity

Feng et al. (2019b) SVM & Decision Tree ✕ Network Connectivity

Elghazel et al. (2015) Random Forest ✕ Network Coverage

Yang et al. (2016) Bayesian ✕ Network Coverage

Huang et al. (2019) K-means & C-means ✕ Network Connectivity

Ancillotti et al. (2017) K-means & C-means ✕ Network Connectivity

Chen et al. (2016) Reinforcement ✕ Network Coverage &
Connectivity

Xu et al. (2018) Reinforcement ✕ Network Coverage &
Connectivity

Chowdhury and De
(2021)

✕ Voronoi-Glowworm
Swarm Optimization

Network Coverage

Das et al. (2015) ✕ Termite colony
optimization

Network Coverage

Wang et al. (2020b) ✕ ✕ Network Coverage

Guo et al. (2019) Reinforcement
learning-based

Network lifetime
enhancement

Kapoor and Sharma
(2021)

✕ Glowworm swarm
optimization

Routing protocol

Liu and He (2014) ✕ Ant colony optimization
with greedy algorithm

Node deployment

Ma and Duan (2022) ✕ butterfly optimization
algorithm

Coverage Optimization

Narayan and Daniel
(2022)

✕ Coverage Optimization

Khoshrangbaf et al.
(2022)

✕ Ant Colony Optimization
Algorithm

Coverage Optimization

Qin and Chen (2018) ✕ Differential Evolution Coverage Optimization

Yue et al. (2016) ✕ Artificial Bee Colony Data Collection

Abidin et al. (2015) ✕ Termite Colony
Optimization

Coverage Optimization

involves monitoring a specific set of points, and barrier coverage emphasizes monitoring
intruder movement within a designated area of interest. When a sensor node’s detection
range covers a location within the area of interest, it is considered to be providing coverage
for that location. The level of coverage varies depending on the proximity of the sensor node
to the target site. Table 4 highlights that machine learning and bio-inspired techniques have
predominantly been utilized to address connectivity issues with the objective of extending
the network’s lifespan. However, further research is required to explore the application of
machine learning and bio-inspired techniques for area coverage in wireless and ad hoc sensor
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networks. Evolutionary algorithms may lack intellectual advancement, thus deep learning
with its more sophisticated learning structure holds promise in this context.

8 Open research problems inWSNs

The research challenges in wireless sensor networks (WSNs) are extensive and diverse.
Many of the proposed protocols and solutions for addressing connectivity and area coverage
problems in WSNs are tailored for homogeneous sensor nodes. However, the consideration
of heterogeneity is crucial in the design of WSNs. It is an open research area that requires
further exploration to develop algorithms that can effectively operate on heterogeneous nodes
without compromising efficiency.

Another significant challenge lies in the development ofmeta-heuristic algorithms that can
be applied to various optimization problems. As the complexities of problems evolve, there
is a need for new optimization techniques to find solutions. This can be achieved through
the proposal of novel algorithms or enhancements to existing algorithms. It may also involve
combining different optimization approaches, such as classical algorithms, meta-heuristics,
or machine learning algorithms, to tackle the evolving challenges effectively. This area of
research holds promise for addressing the dynamic and diverse optimization requirements in
WSNs.

In the existing literature (Matos et al., 2022), there are numerous research issues inwireless
sensor networks (WSNs) that still require further in-depth studies. Some of these research
areas include energy efficiency, coverage optimization, clustering techniques, network life-
time, reliability, throughput, latency, network security, load balancing, and the application
of machine learning algorithms, among others. An open research area is the utilization of
machine learning algorithms to determine the minimum number of sensor nodes required for
monitoring a given region of interest.

Routing as one of the NP-hard problems in WSN can be solved using optimization meth-
ods. Bio-inspired algorithms can be utilized to find reliable and efficient routing paths in
WSN with the potential to reduce energy usage and thereby increase the network’s lifespan.
In a large scale WSN, the network is designed to allow sensors nodes to transmit sensory
data to a sink node that is farther away in multi-hop routing scheme. This strategy is not
reliable because of energy constraints and the limited transmission range. It is therefore
important to design optimal mechanisms in transmitting the collected data to the sink node.
The deployment of WSNs to attain global coverage is a critical consideration for large scale
sensor networks. To overcome this challenge, WSNs should be designed to allow sensors
to efficiently coordinate their local interactions for the achievement of global goals such as
throughput, efficiency, scalability and coverage. The limited transmission range of sensors
especially in cases where the network is deployed in large area of interest does not present
deterministic polynomial algorithm as a viable solution. This motivated the development of
metaheuristic bio-inspired algorithms for routing inWSNs. Swarm Intelligence, evolutionary
algorithms and other nature-inspired phenomenon in which self-organization and collective
intelligence can emerge are increasingly applied in the domain of sensor networks in order
to optimize the network performance.

Clustering is the most widely used technique for efficiently managing network energy
consumption and scalability in order to increase network lifespan. This technique allows
grouping sensors into clusters and making a node to serve as a Cluster Head (CH) in each
cluster. Each CH performs the task of collecting data from the cluster members, process
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and transfer the processed data to the sink node. When using nature-inspired algorithms to
address clustering issues in WSNs, the nature-inspired optimization algorithm can use each
node’s trust factor to determine which node should serve as the cluster leader. Organizing
sensor nodes into clusters can eliminate transmission of redundant data which leads to effi-
cient utilization of energy and ultimately enhances the scalability and overall performance
of the network. Conventional clustering methods, however, might not always offer the best
solution in terms of network efficiency and energy usage. Therefore, developing optimiza-
tion algorithms that optimize the clustering process that minimizes energy consumption and
maximizes network performance is key. The second method for reducing redundant content
detection is data aggregation, which is also regarded as an energy-efficient solution in WSN.
When sensors monitor a region, they collect local data and send it to a processing center call
sink node either unprocessed or partially processed. The sink node decides to decrease the
sensing of overlap or common data in order to prolong the network lifespan based on the
collected data.

Data aggregation harvests the most important content of information received from two
or more nodes in the network in order to avoid the possibilities of same data sensed and
transmitted from different nodes. This contributes to network performance optimization and
PSO with its variants offer potentials of efficiency in WSNs data aggregation. Data aggrega-
tion minimizes communication overhead by reducing redundant data. One observation from
the literature is the lack of reporting data aggregation strategies in coverage optimization
algorithms when there is overlapping coverage within the sensing region by sensor nodes.
In subsequent studies, it is essential to address this issue and incorporate data aggregation
strategies to filter redundant data in the overlapping regions of the network. Furthermore,
there is a need to investigate the level of signal interference and establish the relationship
between the communication range and packet collision.

Accurate detection and collection of events within the network domain is important in
achieving the purpose of deploying the network. With the goal of accurate event detection
and data gathering in mind, anomaly or malicious data are bound to emanate from the
sensing region of the network. This occurrence offers great threat to the smooth operations
of the network. Nature-inspired algorithms with its variants can be developed to address this
challenge to enhance convergence rate and execution time against existing techniques.

The data gathered by the sensor nodes would be useless until the location from where the
data have been collected from is determined. Localization of sensor nodes in WSNs plays a
vital role in many applications. Finding the coordinates of all target nodes using anchor nodes
is the primary goal of the localization problem. The Global Positioning System (GPS) can be
utilized to locate sensor nodes, which can serve as a substitute for the localization problem.
However, as WSNs are made up of numerous sensor nodes, installing a GPS device on each
node would increase the cost and complexity of the overall network as well as the amount
of power needed.. In recent times, researchers are investigating nature-inspired algorithms
such as particle swarm optimization, bat optimization, salp swarm optimization and firefly
algorithms in solving optimization problems in WSNs. These optimization algorithms are
based on behaviour and searching ability of various natural systems to determine the food
source. These algorithms are suitable for solving localization problems because of frequency
tuning, automatic zooming, and parameters control features that they possess.

A MAC protocol for data communication is essential among nodes within a WSN, as
it is tasked with determining a reliable path for data transmission throughout the network.
Many data communication protocols have been devised tomaximize energy efficiency, evenly
distribute the energy load across all nodes, and minimize power consumption in the network.
The lifespan of the network can be improved by designing bio-inspired MAC protocols to
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provide reliable paths for data collection in WSNs since they are based on the collective
behavior of social individual communities.

It is also noted in the literature that achieving the global optimal value becomes challenging
with certainmachine learning algorithms, such as PSO andK-means, as they tend to converge
to regional optimal values, impacting coverage performance. The issue of convergence into
local optimal solutions has not been adequately addressed by the widespread application of
metaheuristic algorithms (Ikotun et al., 2023). Therefore, it is necessary to explore different
variants of particle swarm optimization and investigate their effectiveness in area coverage
optimization in WSNs, aiming to improve the solution quality of PSO. Additionally, bio-
inspired algorithms are emerging as suitable methods for solving critical problems in WSNs
and warrant further investigation. Overall, these research gaps highlight the need for further
studies to delve deeper into these areas and develop innovative approaches to address the
challenges in WSNs effectively.

The optimization of coverage for mobile sensor nodes is still an ongoing research area due
to the dynamic nature of the network topology. As the nodes move, encounter obstacles, or
change their positions, the coverage needs to be continuously optimized. In this regard, there
is a need to develop new algorithms that enable the sensors to adapt and remain functional
even when they encounter obstacles in the region of interest. These algorithms should take
into account the changing environment and optimize the deployment of sensor nodes to
ensure optimal coverage.

To avoid arbitrary deployment of nodes and achieve efficient coverage, it is recommended
to design algorithms that can predict the maximum number of sensor nodes that can be
deployed within a region of interest. By accurately estimating the required number of nodes,
the deployment can be optimized, and redundant or insufficient coverage can be avoided. This
prediction algorithm should consider factors such as the size of the region, the density of
events to be monitored, and the capabilities of the sensor nodes. By addressing the challenges
of coverage optimization for mobile sensor nodes and developing predictive algorithms,
the efficiency and effectiveness of wireless sensor networks can be significantly improved.
Further research is needed in this area to explore novel approaches and algorithms that can
adapt to the dynamic nature of mobile sensor networks and optimize coverage in real-time
scenarios.

It is important to add that in attempts to solve area coverage maximization problem in
WSNs, classical algorithms should be designed to estimate the amount of time that is needed
to specify the optimal sensor nodes’ placement within the network domain which in turn
guarantees quality of service features in WSNS (Das et al., 2015). Bio-inspired algorithms
are problem-independent. They can be utilized as a black box since they are non-greedy
and non-adaptive. These methods frequently allow temporary deterioration of the solution
to reach the global optima. These algorithms are scalable, adaptive, and robust and they are
very similar to their corresponding natural systems. Multi-objective optimization is the most
suitable method that can guarantee quality of service in WSNs due to a large number of
factors.

9 Conclusion and future work

A review of the State of the Art of the WSN critical issues is presented, as well as bio-
inspired algorithms andmachine learning applications to optimize the performance ofWSNs.
Bibliometric analysis of research works carried out in the domain is also presented. Coverage
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issues and sensing models associated withWSNs were discussed. Optimization issues across
different domains of WSNs applications at the intersection of bio-inspired and machine
learning algorithms such as energy, routing, localization, events detection andmedium access
control protocols were reviewed.

Area coverage is a crucial problem in wireless sensor networks (WSNs) and is considered
fundamental in this domain. The design of the network must effectively measure events
within the target region. Different WSN area coverage models have specific requirements,
restrictions, and goals. By maximizing the area coverage of WSNs, the cost and energy
consumption of sensors can be reduced, enabling more efficient data gathering. The objective
of area coverage optimization strategies is to find the optimal sensor locations that maximize
the coverage area for each sensor across a given domain. Based on our survey, we observed
that researchers in this field have primarily focused on addressing routing and clustering
challenges. Swarm intelligence methods have been widely applied, while other artificial
intelligence (AI) techniques are less commonly used, possibly due to their compatibility
with the nature of the problem or their specific characteristics. An important open research
area is the exploration of cross-layer approaches that leverage machine learning methods to
achieve area coverage in WSNs.

WSNs are deployed either in 2-D or 3D environments. The practical applications scenarios
of WSNs require that the sensor nodes are deployed in three-dimensional region of interest.
However, our study did not consider the dimensionality of WSNs (Tripathi et al., 2018).
Mobile sinks move continuously over the network in a more or less random fashion. The
effects of mobile sensors as well as mobile sink on the resiliency of the network was not
considered in the study. In the solution approaches of WSNs networks, the network is either
deployed as a centralized or distributed system. The survey carried out in this study did not not
consider the network to either be a centralized or distributed system. The outlined limitations
associated with the study are open grounds for improvement in subsequent studies in the
domain of WSNs.

During our extensive review, we identified several gaps, including low search precision,
slow convergence, and susceptibility to local optima during data gathering and transmis-
sion within the region of interest. Further studies are necessary to address these gaps in
the domain of wireless sensor networks. In addition to the techniques explored in existing
literature, deep learning techniques hold promise for improving coverage and enhancing
network performance. Furthermore, hybridizing the reported heuristic algorithms with other
nature-inspired algorithms can be explored to test for potential improvements and estab-
lish meaningful comparisons with alternative methods. Future study can formulate a general
mathematical coverage optimization model that is energy-efficient in wireless sensor net-
works.
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