@inproceedings{zhang-etal-2005-multi,
title = "A Multi-aligner for {J}apanese-{C}hinese Parallel Corpora",
author = "Zhang, Yujie and
Liu, Qun and
Ma, Qing and
Isahara, Hitoshi",
booktitle = "Proceedings of Machine Translation Summit X: Papers",
month = sep # " 13-15",
year = "2005",
address = "Phuket, Thailand",
url = "https://aclanthology.org/2005.mtsummit-papers.18/",
pages = "133--140",
abstract = "Automatic word alignment is an important technology for extracting translation knowledge from parallel corpora. However, automatic techniques cannot resolve this problem completely because of variances in translations. We therefore need to investigate the performance potential of automatic word alignment and then decide how to suitably apply it. In this paper we first propose a lexical knowledge-based approach to word alignment on a Japanese-Chinese corpus. Then we evaluate the performance of the proposed approach on the corpus. At the same time we also apply a statistics-based approach, the well-known toolkit GIZA++, to the same test data. Through comparison of the performances of the two approaches, we propose a multi-aligner, exploiting the lexical knowledge-based aligner and the statistics-based aligner at the same time. Quantitative results confirmed the effectiveness of the multi-aligner."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2005-multi">
<titleInfo>
<title>A Multi-aligner for Japanese-Chinese Parallel Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yujie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qing</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2005-sep 13-15</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit X: Papers</title>
</titleInfo>
<originInfo>
<place>
<placeTerm type="text">Phuket, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic word alignment is an important technology for extracting translation knowledge from parallel corpora. However, automatic techniques cannot resolve this problem completely because of variances in translations. We therefore need to investigate the performance potential of automatic word alignment and then decide how to suitably apply it. In this paper we first propose a lexical knowledge-based approach to word alignment on a Japanese-Chinese corpus. Then we evaluate the performance of the proposed approach on the corpus. At the same time we also apply a statistics-based approach, the well-known toolkit GIZA++, to the same test data. Through comparison of the performances of the two approaches, we propose a multi-aligner, exploiting the lexical knowledge-based aligner and the statistics-based aligner at the same time. Quantitative results confirmed the effectiveness of the multi-aligner.</abstract>
<identifier type="citekey">zhang-etal-2005-multi</identifier>
<location>
<url>https://aclanthology.org/2005.mtsummit-papers.18/</url>
</location>
<part>
<date>2005-sep 13-15</date>
<extent unit="page">
<start>133</start>
<end>140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multi-aligner for Japanese-Chinese Parallel Corpora
%A Zhang, Yujie
%A Liu, Qun
%A Ma, Qing
%A Isahara, Hitoshi
%S Proceedings of Machine Translation Summit X: Papers
%D 2005
%8 sep 13 15
%C Phuket, Thailand
%F zhang-etal-2005-multi
%X Automatic word alignment is an important technology for extracting translation knowledge from parallel corpora. However, automatic techniques cannot resolve this problem completely because of variances in translations. We therefore need to investigate the performance potential of automatic word alignment and then decide how to suitably apply it. In this paper we first propose a lexical knowledge-based approach to word alignment on a Japanese-Chinese corpus. Then we evaluate the performance of the proposed approach on the corpus. At the same time we also apply a statistics-based approach, the well-known toolkit GIZA++, to the same test data. Through comparison of the performances of the two approaches, we propose a multi-aligner, exploiting the lexical knowledge-based aligner and the statistics-based aligner at the same time. Quantitative results confirmed the effectiveness of the multi-aligner.
%U https://aclanthology.org/2005.mtsummit-papers.18/
%P 133-140
Markdown (Informal)
[A Multi-aligner for Japanese-Chinese Parallel Corpora](https://aclanthology.org/2005.mtsummit-papers.18/) (Zhang et al., MTSummit 2005)
ACL