@inproceedings{luo-etal-2020-make,
title = "Make Templates Smarter: A Template Based {D}ata2{T}ext System Powered by Text Stitch Model",
author = "Luo, Bingfeng and
Bai, Zuo and
Lai, Kunfeng and
Shen, Jianping",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.94",
doi = "10.18653/v1/2020.findings-emnlp.94",
pages = "1057--1062",
abstract = "Neural network (NN) based data2text models achieve state-of-the-art (SOTA) performance in most metrics, but they sometimes drop or modify the information in the input, and it is hard to control the generation contents. Moreover, it requires paired training data that are usually expensive to collect. Template-based methods have good fidelity and controllability but require heavy human involvement. We propose a novel template-based data2text system powered by a text stitch model. It ensures fidelity and controllability by using templates to produce the main contents. In addition, it reduces human involvement in template design by using a text stitch model to automatically stitch adjacent template units, which is a step that usually requires careful template design and limits template reusability. The text stitch model can be trained in self-supervised fashion, which only requires free texts. The experiments on a benchmark dataset show that our system outperforms SOTA NN-based systems in fidelity and surpasses template-based systems in diversity and human involvement.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2020-make">
<titleInfo>
<title>Make Templates Smarter: A Template Based Data2Text System Powered by Text Stitch Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bingfeng</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zuo</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kunfeng</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianping</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural network (NN) based data2text models achieve state-of-the-art (SOTA) performance in most metrics, but they sometimes drop or modify the information in the input, and it is hard to control the generation contents. Moreover, it requires paired training data that are usually expensive to collect. Template-based methods have good fidelity and controllability but require heavy human involvement. We propose a novel template-based data2text system powered by a text stitch model. It ensures fidelity and controllability by using templates to produce the main contents. In addition, it reduces human involvement in template design by using a text stitch model to automatically stitch adjacent template units, which is a step that usually requires careful template design and limits template reusability. The text stitch model can be trained in self-supervised fashion, which only requires free texts. The experiments on a benchmark dataset show that our system outperforms SOTA NN-based systems in fidelity and surpasses template-based systems in diversity and human involvement.</abstract>
<identifier type="citekey">luo-etal-2020-make</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.94</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.94</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1057</start>
<end>1062</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Make Templates Smarter: A Template Based Data2Text System Powered by Text Stitch Model
%A Luo, Bingfeng
%A Bai, Zuo
%A Lai, Kunfeng
%A Shen, Jianping
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F luo-etal-2020-make
%X Neural network (NN) based data2text models achieve state-of-the-art (SOTA) performance in most metrics, but they sometimes drop or modify the information in the input, and it is hard to control the generation contents. Moreover, it requires paired training data that are usually expensive to collect. Template-based methods have good fidelity and controllability but require heavy human involvement. We propose a novel template-based data2text system powered by a text stitch model. It ensures fidelity and controllability by using templates to produce the main contents. In addition, it reduces human involvement in template design by using a text stitch model to automatically stitch adjacent template units, which is a step that usually requires careful template design and limits template reusability. The text stitch model can be trained in self-supervised fashion, which only requires free texts. The experiments on a benchmark dataset show that our system outperforms SOTA NN-based systems in fidelity and surpasses template-based systems in diversity and human involvement.
%R 10.18653/v1/2020.findings-emnlp.94
%U https://aclanthology.org/2020.findings-emnlp.94
%U https://doi.org/10.18653/v1/2020.findings-emnlp.94
%P 1057-1062
Markdown (Informal)
[Make Templates Smarter: A Template Based Data2Text System Powered by Text Stitch Model](https://aclanthology.org/2020.findings-emnlp.94) (Luo et al., Findings 2020)
ACL