@inproceedings{mihaela-etal-2021-unibuckernel,
title = "{U}nibuc{K}ernel: Geolocating {S}wiss {G}erman Jodels Using Ensemble Learning",
author = "Mihaela, Gaman and
Cojocariu, Sebastian and
Ionescu, Radu Tudor",
editor = {Zampieri, Marcos and
Nakov, Preslav and
Ljube{\v{s}}i{\'c}, Nikola and
Tiedemann, J{\"o}rg and
Scherrer, Yves and
Jauhiainen, Tommi},
booktitle = "Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.vardial-1.10/",
pages = "84--95",
abstract = "In this work, we describe our approach addressing the Social Media Variety Geolocation task featured in the 2021 VarDial Evaluation Campaign. We focus on the second subtask, which is based on a data set formed of approximately 30 thousand Swiss German Jodels. The dialect identification task is about accurately predicting the latitude and longitude of test samples. We frame the task as a double regression problem, employing an XGBoost meta-learner with the combined power of a variety of machine learning approaches to predict both latitude and longitude. The models included in our ensemble range from simple regression techniques, such as Support Vector Regression, to deep neural models, such as a hybrid neural network and a neural transformer. To minimize the prediction error, we approach the problem from a few different perspectives and consider various types of features, from low-level character n-grams to high-level BERT embeddings. The XGBoost ensemble resulted from combining the power of the aforementioned methods achieves a median distance of 23.6 km on the test data, which places us on the third place in the ranking, at a difference of 6.05 km and 2.9 km from the submissions on the first and second places, respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mihaela-etal-2021-unibuckernel">
<titleInfo>
<title>UnibucKernel: Geolocating Swiss German Jodels Using Ensemble Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gaman</namePart>
<namePart type="family">Mihaela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Cojocariu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radu</namePart>
<namePart type="given">Tudor</namePart>
<namePart type="family">Ionescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yves</namePart>
<namePart type="family">Scherrer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommi</namePart>
<namePart type="family">Jauhiainen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Kiyv, Ukraine</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we describe our approach addressing the Social Media Variety Geolocation task featured in the 2021 VarDial Evaluation Campaign. We focus on the second subtask, which is based on a data set formed of approximately 30 thousand Swiss German Jodels. The dialect identification task is about accurately predicting the latitude and longitude of test samples. We frame the task as a double regression problem, employing an XGBoost meta-learner with the combined power of a variety of machine learning approaches to predict both latitude and longitude. The models included in our ensemble range from simple regression techniques, such as Support Vector Regression, to deep neural models, such as a hybrid neural network and a neural transformer. To minimize the prediction error, we approach the problem from a few different perspectives and consider various types of features, from low-level character n-grams to high-level BERT embeddings. The XGBoost ensemble resulted from combining the power of the aforementioned methods achieves a median distance of 23.6 km on the test data, which places us on the third place in the ranking, at a difference of 6.05 km and 2.9 km from the submissions on the first and second places, respectively.</abstract>
<identifier type="citekey">mihaela-etal-2021-unibuckernel</identifier>
<location>
<url>https://aclanthology.org/2021.vardial-1.10/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>84</start>
<end>95</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UnibucKernel: Geolocating Swiss German Jodels Using Ensemble Learning
%A Mihaela, Gaman
%A Cojocariu, Sebastian
%A Ionescu, Radu Tudor
%Y Zampieri, Marcos
%Y Nakov, Preslav
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Scherrer, Yves
%Y Jauhiainen, Tommi
%S Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects
%D 2021
%8 April
%I Association for Computational Linguistics
%C Kiyv, Ukraine
%F mihaela-etal-2021-unibuckernel
%X In this work, we describe our approach addressing the Social Media Variety Geolocation task featured in the 2021 VarDial Evaluation Campaign. We focus on the second subtask, which is based on a data set formed of approximately 30 thousand Swiss German Jodels. The dialect identification task is about accurately predicting the latitude and longitude of test samples. We frame the task as a double regression problem, employing an XGBoost meta-learner with the combined power of a variety of machine learning approaches to predict both latitude and longitude. The models included in our ensemble range from simple regression techniques, such as Support Vector Regression, to deep neural models, such as a hybrid neural network and a neural transformer. To minimize the prediction error, we approach the problem from a few different perspectives and consider various types of features, from low-level character n-grams to high-level BERT embeddings. The XGBoost ensemble resulted from combining the power of the aforementioned methods achieves a median distance of 23.6 km on the test data, which places us on the third place in the ranking, at a difference of 6.05 km and 2.9 km from the submissions on the first and second places, respectively.
%U https://aclanthology.org/2021.vardial-1.10/
%P 84-95
Markdown (Informal)
[UnibucKernel: Geolocating Swiss German Jodels Using Ensemble Learning](https://aclanthology.org/2021.vardial-1.10/) (Mihaela et al., VarDial 2021)
ACL