Efficient Machine Translation with Model Pruning and Quantization

Maximiliana Behnke, Nikolay Bogoychev, Alham Fikri Aji, Kenneth Heafield, Graeme Nail, Qianqian Zhu, Svetlana Tchistiakova, Jelmer van der Linde, Pinzhen Chen, Sidharth Kashyap, Roman Grundkiewicz


Abstract
We participated in all tracks of the WMT 2021 efficient machine translation task: single-core CPU, multi-core CPU, and GPU hardware with throughput and latency conditions. Our submissions combine several efficiency strategies: knowledge distillation, a simpler simple recurrent unit (SSRU) decoder with one or two layers, lexical shortlists, smaller numerical formats, and pruning. For the CPU track, we used quantized 8-bit models. For the GPU track, we experimented with FP16 and 8-bit integers in tensorcores. Some of our submissions optimize for size via 4-bit log quantization and omitting a lexical shortlist. We have extended pruning to more parts of the network, emphasizing component- and block-level pruning that actually improves speed unlike coefficient-wise pruning.
Anthology ID:
2021.wmt-1.74
Volume:
Proceedings of the Sixth Conference on Machine Translation
Month:
November
Year:
2021
Address:
Online
Editors:
Loic Barrault, Ondrej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussa, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Tom Kocmi, Andre Martins, Makoto Morishita, Christof Monz
Venue:
WMT
SIG:
SIGMT
Publisher:
Association for Computational Linguistics
Note:
Pages:
775–780
Language:
URL:
https://aclanthology.org/2021.wmt-1.74
DOI:
Bibkey:
Cite (ACL):
Maximiliana Behnke, Nikolay Bogoychev, Alham Fikri Aji, Kenneth Heafield, Graeme Nail, Qianqian Zhu, Svetlana Tchistiakova, Jelmer van der Linde, Pinzhen Chen, Sidharth Kashyap, and Roman Grundkiewicz. 2021. Efficient Machine Translation with Model Pruning and Quantization. In Proceedings of the Sixth Conference on Machine Translation, pages 775–780, Online. Association for Computational Linguistics.
Cite (Informal):
Efficient Machine Translation with Model Pruning and Quantization (Behnke et al., WMT 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.wmt-1.74.pdf