@inproceedings{ben-abacha-etal-2023-overview,
title = "Overview of the {MEDIQA}-Chat 2023 Shared Tasks on the Summarization {\&} Generation of Doctor-Patient Conversations",
author = "Ben Abacha, Asma and
Yim, Wen-wai and
Adams, Griffin and
Snider, Neal and
Yetisgen, Meliha",
editor = "Naumann, Tristan and
Ben Abacha, Asma and
Bethard, Steven and
Roberts, Kirk and
Rumshisky, Anna",
booktitle = "Proceedings of the 5th Clinical Natural Language Processing Workshop",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.clinicalnlp-1.52",
doi = "10.18653/v1/2023.clinicalnlp-1.52",
pages = "503--513",
abstract = "Automatic generation of clinical notes from doctor-patient conversations can play a key role in reducing daily doctors{'} workload and improving their interactions with the patients. MEDIQA-Chat 2023 aims to advance and promote research on effective solutions through shared tasks on the automatic summarization of doctor-patient conversations and on the generation of synthetic dialogues from clinical notes for data augmentation. Seventeen teams participated in the challenge and experimented with a broad range of approaches and models. In this paper, we describe the three MEDIQA-Chat 2023 tasks, the datasets, and the participants{'} results and methods. We hope that these shared tasks will lead to additional research efforts and insights on the automatic generation and evaluation of clinical notes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ben-abacha-etal-2023-overview">
<titleInfo>
<title>Overview of the MEDIQA-Chat 2023 Shared Tasks on the Summarization & Generation of Doctor-Patient Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Asma</namePart>
<namePart type="family">Ben Abacha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-wai</namePart>
<namePart type="family">Yim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Griffin</namePart>
<namePart type="family">Adams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neal</namePart>
<namePart type="family">Snider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meliha</namePart>
<namePart type="family">Yetisgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Clinical Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asma</namePart>
<namePart type="family">Ben Abacha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic generation of clinical notes from doctor-patient conversations can play a key role in reducing daily doctors’ workload and improving their interactions with the patients. MEDIQA-Chat 2023 aims to advance and promote research on effective solutions through shared tasks on the automatic summarization of doctor-patient conversations and on the generation of synthetic dialogues from clinical notes for data augmentation. Seventeen teams participated in the challenge and experimented with a broad range of approaches and models. In this paper, we describe the three MEDIQA-Chat 2023 tasks, the datasets, and the participants’ results and methods. We hope that these shared tasks will lead to additional research efforts and insights on the automatic generation and evaluation of clinical notes.</abstract>
<identifier type="citekey">ben-abacha-etal-2023-overview</identifier>
<identifier type="doi">10.18653/v1/2023.clinicalnlp-1.52</identifier>
<location>
<url>https://aclanthology.org/2023.clinicalnlp-1.52</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>503</start>
<end>513</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Overview of the MEDIQA-Chat 2023 Shared Tasks on the Summarization & Generation of Doctor-Patient Conversations
%A Ben Abacha, Asma
%A Yim, Wen-wai
%A Adams, Griffin
%A Snider, Neal
%A Yetisgen, Meliha
%Y Naumann, Tristan
%Y Ben Abacha, Asma
%Y Bethard, Steven
%Y Roberts, Kirk
%Y Rumshisky, Anna
%S Proceedings of the 5th Clinical Natural Language Processing Workshop
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F ben-abacha-etal-2023-overview
%X Automatic generation of clinical notes from doctor-patient conversations can play a key role in reducing daily doctors’ workload and improving their interactions with the patients. MEDIQA-Chat 2023 aims to advance and promote research on effective solutions through shared tasks on the automatic summarization of doctor-patient conversations and on the generation of synthetic dialogues from clinical notes for data augmentation. Seventeen teams participated in the challenge and experimented with a broad range of approaches and models. In this paper, we describe the three MEDIQA-Chat 2023 tasks, the datasets, and the participants’ results and methods. We hope that these shared tasks will lead to additional research efforts and insights on the automatic generation and evaluation of clinical notes.
%R 10.18653/v1/2023.clinicalnlp-1.52
%U https://aclanthology.org/2023.clinicalnlp-1.52
%U https://doi.org/10.18653/v1/2023.clinicalnlp-1.52
%P 503-513
Markdown (Informal)
[Overview of the MEDIQA-Chat 2023 Shared Tasks on the Summarization & Generation of Doctor-Patient Conversations](https://aclanthology.org/2023.clinicalnlp-1.52) (Ben Abacha et al., ClinicalNLP 2023)
ACL