@inproceedings{zhang-etal-2024-modeling,
title = "Modeling Layout Reading Order as Ordering Relations for Visually-rich Document Understanding",
author = "Zhang, Chong and
Tu, Yi and
Zhao, Yixi and
Yuan, Chenshu and
Chen, Huan and
Zhang, Yue and
Chai, Mingxu and
Guo, Ya and
Zhu, Huijia and
Zhang, Qi and
Gui, Tao",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.540",
pages = "9658--9678",
abstract = "Modeling and leveraging layout reading order in visually-rich documents (VrDs) is critical in document intelligence as it captures the rich structure semantics within documents.Previous works typically formulated layout reading order as a permutation of layout elements, i.e. a sequence containing all the layout elements.However, we argue that this formulation does not adequately convey the complete reading order information in the layout, which may potentially lead to performance decline in downstream tasks.To address this issue, we propose to model the layout reading order as ordering relations over the set of layout elements, which have sufficient expressive capability for the complete reading order information. To enable empirical evaluation on methods towards the improved form of reading order prediction (ROP), we establish a comprehensive benchmark dataset including the reading order annotation as relations over layout elements, together with a relation-extraction-based method that outperforms previous models. Moreover, we propose a reading-order-relation-enhancing pipeline to improve model performance on any arbitrary VrD task by introducing additional reading order relation inputs.We conduct comprehensive experiments to demonstrate that the pipeline generally benefits downstream VrD tasks:(1) with utilizing the reading order relation information, the enhanced downstream models achieve SOTA results on both two task settings of the targeted dataset; (2) with utilizing the pseudo reading order information generated by the proposed ROP model, the performance of the enhanced models has improved across all three models and eight cross-domain VrD-IE/QA task settings without targeted optimization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2024-modeling">
<titleInfo>
<title>Modeling Layout Reading Order as Ordering Relations for Visually-rich Document Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixi</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenshu</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingxu</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ya</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huijia</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Gui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Modeling and leveraging layout reading order in visually-rich documents (VrDs) is critical in document intelligence as it captures the rich structure semantics within documents.Previous works typically formulated layout reading order as a permutation of layout elements, i.e. a sequence containing all the layout elements.However, we argue that this formulation does not adequately convey the complete reading order information in the layout, which may potentially lead to performance decline in downstream tasks.To address this issue, we propose to model the layout reading order as ordering relations over the set of layout elements, which have sufficient expressive capability for the complete reading order information. To enable empirical evaluation on methods towards the improved form of reading order prediction (ROP), we establish a comprehensive benchmark dataset including the reading order annotation as relations over layout elements, together with a relation-extraction-based method that outperforms previous models. Moreover, we propose a reading-order-relation-enhancing pipeline to improve model performance on any arbitrary VrD task by introducing additional reading order relation inputs.We conduct comprehensive experiments to demonstrate that the pipeline generally benefits downstream VrD tasks:(1) with utilizing the reading order relation information, the enhanced downstream models achieve SOTA results on both two task settings of the targeted dataset; (2) with utilizing the pseudo reading order information generated by the proposed ROP model, the performance of the enhanced models has improved across all three models and eight cross-domain VrD-IE/QA task settings without targeted optimization.</abstract>
<identifier type="citekey">zhang-etal-2024-modeling</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.540</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>9658</start>
<end>9678</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Layout Reading Order as Ordering Relations for Visually-rich Document Understanding
%A Zhang, Chong
%A Tu, Yi
%A Zhao, Yixi
%A Yuan, Chenshu
%A Chen, Huan
%A Zhang, Yue
%A Chai, Mingxu
%A Guo, Ya
%A Zhu, Huijia
%A Zhang, Qi
%A Gui, Tao
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F zhang-etal-2024-modeling
%X Modeling and leveraging layout reading order in visually-rich documents (VrDs) is critical in document intelligence as it captures the rich structure semantics within documents.Previous works typically formulated layout reading order as a permutation of layout elements, i.e. a sequence containing all the layout elements.However, we argue that this formulation does not adequately convey the complete reading order information in the layout, which may potentially lead to performance decline in downstream tasks.To address this issue, we propose to model the layout reading order as ordering relations over the set of layout elements, which have sufficient expressive capability for the complete reading order information. To enable empirical evaluation on methods towards the improved form of reading order prediction (ROP), we establish a comprehensive benchmark dataset including the reading order annotation as relations over layout elements, together with a relation-extraction-based method that outperforms previous models. Moreover, we propose a reading-order-relation-enhancing pipeline to improve model performance on any arbitrary VrD task by introducing additional reading order relation inputs.We conduct comprehensive experiments to demonstrate that the pipeline generally benefits downstream VrD tasks:(1) with utilizing the reading order relation information, the enhanced downstream models achieve SOTA results on both two task settings of the targeted dataset; (2) with utilizing the pseudo reading order information generated by the proposed ROP model, the performance of the enhanced models has improved across all three models and eight cross-domain VrD-IE/QA task settings without targeted optimization.
%U https://aclanthology.org/2024.emnlp-main.540
%P 9658-9678
Markdown (Informal)
[Modeling Layout Reading Order as Ordering Relations for Visually-rich Document Understanding](https://aclanthology.org/2024.emnlp-main.540) (Zhang et al., EMNLP 2024)
ACL
- Chong Zhang, Yi Tu, Yixi Zhao, Chenshu Yuan, Huan Chen, Yue Zhang, Mingxu Chai, Ya Guo, Huijia Zhu, Qi Zhang, and Tao Gui. 2024. Modeling Layout Reading Order as Ordering Relations for Visually-rich Document Understanding. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 9658–9678, Miami, Florida, USA. Association for Computational Linguistics.