@inproceedings{meister-etal-2024-towards,
title = "Towards a Similarity-adjusted Surprisal Theory",
author = "Meister, Clara and
Giulianelli, Mario and
Pimentel, Tiago",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.921",
doi = "10.18653/v1/2024.emnlp-main.921",
pages = "16485--16498",
abstract = "Surprisal theory posits that the cognitive effort required to comprehend a word is determined by its contextual predictability, quantified assurprisal. Traditionally, surprisal theory treats words as distinct entities, overlooking any potential similarity between them. Giulianelli et al. (2023) address this limitation by introducing information value, a measure of predictability designed to account for similarities between communicative units. Our work leverages Ricotta and Szeidl{'}s (2006) diversity index to extend surprisal into a metric that we term similarity-adjusted surprisal, exposing a mathematical relationship between surprisal and information value. Similarity-adjusted surprisal aligns with information value when considering graded similarities and reduces to standard surprisal when words are treated as distinct. Experimental results with reading time data indicate that similarity-adjusted surprisal adds predictive power beyond standard surprisal for certain datasets, suggesting it serves as a complementary measure of comprehension effort.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meister-etal-2024-towards">
<titleInfo>
<title>Towards a Similarity-adjusted Surprisal Theory</title>
</titleInfo>
<name type="personal">
<namePart type="given">Clara</namePart>
<namePart type="family">Meister</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Giulianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiago</namePart>
<namePart type="family">Pimentel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Surprisal theory posits that the cognitive effort required to comprehend a word is determined by its contextual predictability, quantified assurprisal. Traditionally, surprisal theory treats words as distinct entities, overlooking any potential similarity between them. Giulianelli et al. (2023) address this limitation by introducing information value, a measure of predictability designed to account for similarities between communicative units. Our work leverages Ricotta and Szeidl’s (2006) diversity index to extend surprisal into a metric that we term similarity-adjusted surprisal, exposing a mathematical relationship between surprisal and information value. Similarity-adjusted surprisal aligns with information value when considering graded similarities and reduces to standard surprisal when words are treated as distinct. Experimental results with reading time data indicate that similarity-adjusted surprisal adds predictive power beyond standard surprisal for certain datasets, suggesting it serves as a complementary measure of comprehension effort.</abstract>
<identifier type="citekey">meister-etal-2024-towards</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.921</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.921</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>16485</start>
<end>16498</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards a Similarity-adjusted Surprisal Theory
%A Meister, Clara
%A Giulianelli, Mario
%A Pimentel, Tiago
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F meister-etal-2024-towards
%X Surprisal theory posits that the cognitive effort required to comprehend a word is determined by its contextual predictability, quantified assurprisal. Traditionally, surprisal theory treats words as distinct entities, overlooking any potential similarity between them. Giulianelli et al. (2023) address this limitation by introducing information value, a measure of predictability designed to account for similarities between communicative units. Our work leverages Ricotta and Szeidl’s (2006) diversity index to extend surprisal into a metric that we term similarity-adjusted surprisal, exposing a mathematical relationship between surprisal and information value. Similarity-adjusted surprisal aligns with information value when considering graded similarities and reduces to standard surprisal when words are treated as distinct. Experimental results with reading time data indicate that similarity-adjusted surprisal adds predictive power beyond standard surprisal for certain datasets, suggesting it serves as a complementary measure of comprehension effort.
%R 10.18653/v1/2024.emnlp-main.921
%U https://aclanthology.org/2024.emnlp-main.921
%U https://doi.org/10.18653/v1/2024.emnlp-main.921
%P 16485-16498
Markdown (Informal)
[Towards a Similarity-adjusted Surprisal Theory](https://aclanthology.org/2024.emnlp-main.921) (Meister et al., EMNLP 2024)
ACL
- Clara Meister, Mario Giulianelli, and Tiago Pimentel. 2024. Towards a Similarity-adjusted Surprisal Theory. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 16485–16498, Miami, Florida, USA. Association for Computational Linguistics.