@inproceedings{guo-lu-2018-better,
title = "Better Transition-Based {AMR} Parsing with a Refined Search Space",
author = "Guo, Zhijiang and
Lu, Wei",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1198",
doi = "10.18653/v1/D18-1198",
pages = "1712--1722",
abstract = "This paper introduces a simple yet effective transition-based system for Abstract Meaning Representation (AMR) parsing. We argue that a well-defined search space involved in a transition system is crucial for building an effective parser. We propose to conduct the search in a refined search space based on a new compact AMR graph and an improved oracle. Our end-to-end parser achieves the state-of-the-art performance on various datasets with minimal additional information.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-lu-2018-better">
<titleInfo>
<title>Better Transition-Based AMR Parsing with a Refined Search Space</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhijiang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a simple yet effective transition-based system for Abstract Meaning Representation (AMR) parsing. We argue that a well-defined search space involved in a transition system is crucial for building an effective parser. We propose to conduct the search in a refined search space based on a new compact AMR graph and an improved oracle. Our end-to-end parser achieves the state-of-the-art performance on various datasets with minimal additional information.</abstract>
<identifier type="citekey">guo-lu-2018-better</identifier>
<identifier type="doi">10.18653/v1/D18-1198</identifier>
<location>
<url>https://aclanthology.org/D18-1198</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>1712</start>
<end>1722</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Better Transition-Based AMR Parsing with a Refined Search Space
%A Guo, Zhijiang
%A Lu, Wei
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F guo-lu-2018-better
%X This paper introduces a simple yet effective transition-based system for Abstract Meaning Representation (AMR) parsing. We argue that a well-defined search space involved in a transition system is crucial for building an effective parser. We propose to conduct the search in a refined search space based on a new compact AMR graph and an improved oracle. Our end-to-end parser achieves the state-of-the-art performance on various datasets with minimal additional information.
%R 10.18653/v1/D18-1198
%U https://aclanthology.org/D18-1198
%U https://doi.org/10.18653/v1/D18-1198
%P 1712-1722
Markdown (Informal)
[Better Transition-Based AMR Parsing with a Refined Search Space](https://aclanthology.org/D18-1198) (Guo & Lu, EMNLP 2018)
ACL