
COMPUTER SCIENCE 5314
PROGRAMMING LANGUAGES

(ADP TITLE: PROGRAMMING LANGUAGES)

I. CATALOG DESCRIPTION

 5314 PROGRAMMING LANGUAGES

In depth investigation of the principles of programming systems, not
necessarily restricted to programming languages, from the point of view of
both the user and implementer. Algorithms of implementation, syntax and
semantic specification systems, block structures and scope, data abstraction
and aggregates, exception handling, concurrency, and
applicative/functional/data-flow languages.

 Pre: 3304. (3H, 3C).

II. LEARNING OBJECTIVES

Having successfully completed this course, the student will be able to
· analyze the advantages and disadvantages presented by a given programming
 language with respect to a particular application;
· read and write language syntax definitions in Backus-Naur Form (BNF);
· extend or modify a BNF description to include new language features;
· explain the implementation concepts behind types, variables, and
 subprograms;
· discuss the strengths and weaknesses of the major programming language
 paradigms;
· write simple programs in a functional or logic programming language
· critically evaluate programming language research;
· prepare and present a summary and critical evaluation of a published
 programming language research paper.

III. JUSTIFICATION

Programming Languages provide tools for expressing computations that are
machine readable. This course is fundamental to a graduate level education in
Computer Science because 1) it provides a basic understanding of how one
designs a system to express computations from a general perspective as well
as techniques for formulating non-conventional computations, and 2) provides
an in depth study of language constructs found in the “classical” programming
languages. This course complements a course related to the design and
implementation of translators (CS 5304).

The prerequisite has been changed from 4105, which no longer exists, to 3304
since 3304 provides background in formal languages and grammars that are
used to describe language constructs in 5314. The required texts have been
updated to reflect current research practices and methods in computer science.
Accordingly, the syllabus has been updated to include (i) new areas among

traditional CS 5314 subtopics, and (ii) new and emerging paradigms in
programming languages.

IV. PREREQUISITES AND COREQUISITES

This course is intended for first year graduate students who have completed an
undergraduate program in Computer Science. It is assumed that the
participants have an extensive working knowledge of at least two high level
programming languages, an assembly language, and several paradigms. CS
3304 is a prerequisite because it provides background in formal languages and
grammars, which are used to describe language constructs in 5314.
Moreover, the hierarchy introduced in formal languages provide a
measurement used for expressing the power of a given language.

V. TEXTS AND SPECIAL TEACHING AIDS

 Required text to be chosen from:

Sebasta, Robert W. CONCEPTS OF PROGRAMMING LANGUAGES, 4TH
ED. Reading, Massachusetts: Addison Wesley, 1999. xv, 670.

Louden, K. PROGRAMMING LANGUAGES: PRINCIPLES AND
PRACTICE. Boston, Massachusetts: PWS Publishing Co, 1993. vii, 641.

Current articles selected from ACM SIGPLAN Notices will also be used.

VI. SYLLABUS

 Percent of Course

1. The evolution of programming languages 5

2. Review of syntax and semantic specification systems 10

3. Basic language elements 15
 name - value systems, expressions, statements, data
 types, aggregates, structures, blocks, scoping, and paradigms

4. Building blocks and Abstraction 15
 procedures, functions, modules, data abstraction and
 abstract data types, information hiding, inheritance, classes

5. Input/Output handling 5

6. Advanced Language Elements-Parallelism 20
 exception handling, concurrency, tasking,
 interprocess communication

7. Functional and Applicative Languages 15

8. Logic Programming Languages 15

 100

VII. OLD (CURRENT) SYLLABUS

 Percent of Course

1. The evolution of programming languages 5

2. Review of syntax and semantic specification systems 10

3. Basic language elements 15
 variables, expressions, statements, types, aggregates,
 structures, blocks, scoping, and paradigms

4. Building blocks-Abstraction 15
 procedures, functions, modules, data abstraction and
 abstract data types, inheritance, classes

5. Input/Output handling 5

6. Advanced Language Elements-parallelism 20
 exception handling, concurrency, tasking,
 interprocess communication

7. Special techniques and languages 30
 pattern matching (SNOBOL)
 functional and applicative languages (FP and LISP, resp.)
 data flow languages (Lucid)
 object oriented languages (Smalltalk)

 100

VIII. CORE CURRICULUM GUIDELINES

 NA

