COMPUTER SCIENCE 5704
SOFTWARE ENGINEERING
(ADP TITLE: SOFTWARE ENGINEERING)

CATALOG DESCRIPTION:
5704 SOFTWARE ENGINEERING

Study of the principles and tools applicable to the methodical construction and
controlled evolution of complex software systems. All phases of the life cycle
are presented; particular attention focuses on the design, testing, and
maintenance phases. Introduction to software project management. Attention to
measurement models of the software process and product which allow
quantitative assessment of cost, reliability, and complexity of software systems.

(BH.3C).

LEARNING OBJECTIVES:

Having successfully completed this course, the student will be able to apply
contemporary techniques and tools to the design and testing of large-scale
software systems and assume the role of a productive member on a multi-person
development team. The student will also be able to apply contemporary models
to predict development costs, measure and predict reliability, and measure
software complexity.

JUSTIFICATION:

The development and maintenance of software systems is, and will continue to
be, an important single item in our national economy and defense establishment
as well as a key component in our international trade. Leadership in high
technology areas is closely associated with sustained increases in our ability to
overcome the current limitations on the production of high quality software
systems with predictable and reasonable costs. The term “software
engineering” was coined in 1979 to generally describe the concepts, techniques
and tools relating to this goal. Many graduate students aim at careers in
industry where they work as software developers and, later in their careers, as
managers of software projects. It is critical for such students to develop a sound
understanding of how to use contemporary methods that are part of the software
engineering process. Students in other sub-areas of applied computer science
will also benefit from this course because progress in these other sub-areas in
many cases involves the construction of software systems.

Software engineering has evolved into a mature subdiscipline within computer
science, with a solid foundation of principles and tools for all phases of the
software life cycle. Many of these principles for design and analysis of software
systems are introduced in 5704. Thus, the prerequisite 5034 has been removed.
The required texts have been updated along with the inclusion of requirements
analysis in the syllabus.

IV.

VI

PREREQUISITES AND COREQUISITES:

Materials covered in this course presume a fundamental background in
undergraduate-level computer science and programming. The catalog statement
on prerequisites associated with course level is thus appropriate.

TEXTS AND SPECIAL TEACHING AIDS:

Required text to be chosen from:

Blum, Bruce I. SOFTWARE ENGINEERING: A HOLISTIC VIEW. New
York, NY: Oxford, 1992. xiii, 588.

Brooks, Fred. MYTHICAL MAN MONTH. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1982. xi, 195.

Pressman, Roger S. SOFTWARE ENGINEERING: A PRACTIONER’S
APPROACH, 4" Ed. New York, NY: McGraw-Hill, 1997. xxvii, 852.

SYLLABUS:
Percent of Course
1. Life cycle models 5%
2. Requirements Analysis 5%
3. Software design methods 30%

a. control-based design

b. data oriented design

c. other methods (information hiding, dialogue oriented)
d. object oriented design

4. Testing 30%
a. testing theory
b. measures of degree of testing
c. test case development techniques
d. testing tools

5. Configuration Management 5%

6. Role of models and measures in software engineering 20%
complexity models

code level models/measures

structure level models/measures

case studies

cost and reliability

O S =

7. Project Management 5%
a. data collection/monitoring
b. project organization and feedback

100%

VIL

OLD (CURRENT) SYLLABUS:
Percent of Course
1. Life cycle models 5%

2. Software design methods 35%
control-based design

data oriented design

other methods (information hiding, dialogue oriented)

object oriented design

oo

3. Testing 30%
a. testing theory
b. measures of degree of testing
c. test case development techniques
d. testing tools

4. Configuration Management 5%

5. Role of models and measures in software engineering 20%
complexity models

code level models/measures

structure level models/measures

case studies

cost and reliability

a0 o

6. Project Management 5%
a. data collection/monitoring
b. project organization and feedback

100%

CORE CURRICULUM GUIDELINES:
NA

