# COMPUTER SCIENCE 5724 MODELS AND THEORIES OF HUMAN-COMPUTER INTERACTION (ADP TITLE: MODELS OF HCI)

#### I. CATALOG DESCRIPTION:

# 5724 MODELS AND THEORIES OF HUMAN-COMPUTER INTERACTION

Survey of models and theories of users and their use of computer equipment; conditions of application for various approaches. Task analysis, task modeling, representations and notations.

Pre: Graduate Standing. (3H,3C). I.

#### II. LEARNING OBJECTIVES:

Having successfully completed this course, the student will be able to:

- 1. describe user tasks and situations using a variety of task-analytic approaches,
- 2. critically analyze experiments and other empirical studies of usability from a variety of theoretical perspectives,
- 3. be able to organize and write a literature review for research papers in human-computer interaction and related areas.

#### III. JUSTIFICATION:

In the last decade, human-computer interaction (HCI) has emerged as a core field of research, development, and application. A course such as this, focusing on the theoretical foundation of research in the field, should benefit students developing HCI-related thesis and dissertation projects in computer science, systems engineering, educational technology and other areas. This course will provide a survey of the major theoretical approaches to describing human-computer interaction.

#### IV. PREREQUISITES AND COREQUISITES:

Graduate standing is required in order to insure that students have the educational maturity and the discipline-specific background necessary for this course.

#### V. TEXTS AND SPECIAL TEACHING AIDS:

Carroll, J.M. DESIGNING INTERACTION: PSYCHOLOGY AT THE HUMAN-COMPUTER INTERFACE. New York: Cambridge University Press, 1991. ix, 333.

Monk, A.F. & N. Gilbert. PERSPECTIVES ON HCI: DIVERSE APPROACHES. London: Academic Press, 1995. xi, 298.

#### VI. SYLLABUS:

Percent of Course

1. The problem of how usability can guide the system development lifecycle: What can be measured? What can be modeled? How can it be used?

|    | Task analysis versus dialog modeling versus descriptive science, |      |
|----|------------------------------------------------------------------|------|
| 2  | overview of an interdisciplinary approach                        | 100/ |
| 2. |                                                                  | 10%  |
| 3. | 8 T                                                              | 15%  |
|    | treatment of errors, German action psychology)                   |      |
| 4. | Cognitive modeling (overview, GOMS, NGOMSL)                      | 10%  |
| 5. | Syntactic models (treatment of goals and motives)                | 10%  |
|    | Reisner's BNF, Moran's Command Language Grammar,                 |      |
|    | Payne's Task-Action Grammar                                      |      |
| 6. | Formal methods, knowledge engineering, software engineering      | 15%  |
|    | e.g. Harrison, Dix, Hartson, Diaper's TAKD (Task Analysis for    |      |
|    | Knowledge Description)                                           |      |
| 7. | Emerging conceptions of data and models                          |      |
|    | a. activity theory                                               | 5%   |
|    | b. ethnography                                                   | 5%   |
|    | c. organizational analysis                                       | 5%   |
|    | d. models of collaboration                                       | 5%   |
|    | e. technology affordance                                         | 5%   |
|    | f. artifact analysis                                             | 5%   |
|    |                                                                  | 100% |

## VII. OLD (CURRENT) SYLLABUS:

NA

## VIII. CORE CURRICULUM GUIDELINES:

NA