sl

r S OVER SHEET . NEW and REVISED COURSES

Comminsion on Undergraduate Studies snd Policies/ Commisaion on Araduate Stadies and Policiea; Lniveraity Cere Corriculum Cemmittee
Effective August 1993

SEE I - VI for Basic Course Proposal Guidsliness APPROVED
\SEE APPENDIX FOR NOTES, EXPLANATIONS AND ADDNTONAL GUIDBLINES» cGe Y
*PRINT CLEARLY, TYPE or COMPLETE ELECTRONICALLY. -JC i 8 _{D

CGSP 4-z1-lo

PROPOSAL DATE: 11/11/00 DEPARTMENT: ECE

COURSE DEBIGNATOR AND NUMBER! ECE 5510 (C8 5510}

TITLE OF COURSE: Multiprocessor Programmaing

TRANSCRIPT (ADP) TITLE {MAX-30 Chargcters): Multiprocessor Progremming

INSTRUCTOR and/or CONTACT
DEPARTMENTAL CONTACT: B. Ravindran MAILCODE: 0111
CONTACT PHONE; 1-377%) CONTACT E-MAIL: binoyiEvt edit

[33 CHECK IF GRADUATE CREDIT I8 REQUESTED {15 coples required for CGSP)

CHEOK DNLY ONE OF THE FOLLOWING BOXES

[#] NEW COURSE [] REVISED COURSE [Revision>20% Revision<20%]

[[] NEW COURSE & INCLUSION IN THE CORE fArea_____] [} oTHER:
Include Attachment, if Needed
[] REVISED COURSE FOR INCLUSION IN THI> GORE OR CORE AREA CHANGE

+Couraes ronted divestly to the University Core Commiltes MUST be endorsed by the appropriate Department Head or Dean.
+The Chpir of the Undveraity Cora Committee shall inform the appropriate spilege curriculum committee of all courses under review by the core cemmmitisa.

oA Attach Statement from Dean or Departmental Representative as to whether Teaching this Course
will Requirs or Generate the Need for Additional Departmental Resources.

+B Attach Appropriate Letters of Support from Affected Departments and/or Colleges.

« Effective Bemaeaster: Fall 2010

«I} Change in Title From:

To:
+F Change in Lecture and/or Lab Hours From! To:
+F Change in Credit Hours From: Tot
= Percentape of Revision from Current Syllabus: Revision Summary:

+H Course Number{s} nnd Title{s) to be Deleted from the Catalogue with APPROVAL of course:

APPROVAL SIGNATURES 2

ot 4'2@;@% é%:»‘;r\ ﬂhﬂﬁﬁfm Date: U«i/&i/ 2

cos vt o (o™ B Caci o ame 212540
Cniieza-Dmn< y;i;gi‘:;:a . U iu Date: 42//)?13/ [b

virginia The Brodley Depurtment of Hlectrical and

Compoter Engineering

Tech

VIRGINIA POLYTECHNIC INSTITUTE

LR NVirginia 24061

ore Hadb Blacksbury.

AND STATE UNIVERSITY {5400} 2336646 Faxs Sdr 231 3%
Feb, 8, 2010
150 CoE Curriculum Committee
P .)
FROM: Dr. I. De La Ree, ECE Assistant Department Head {_ 42;,-;?{:7‘}5,&2@2 ﬁ%)x

SUBIECT: New Course Proposal for ECE 5510

Attached is the new course proposal for ECE 5510 Multiprocessor Programming. This is
a new course proposal. The department has permission from the Registrar to use this
number ending with (email attached).

With the approval of this new course, no additional resources will be required for the
ECE Department.

If you have any questions regarding this course proposal, please contact me.

Attachment:
Course proposal, ECE 5510 Multiprocessor Programming

A Land-Gran: Diniversity - Puning Knowled,

t fey Weak
An Faual Oppermenity ¢ Affirmative Aciton [astind

HHOR

Af

U lrglnia Department of Computer Science

] Tech | b

.

¥ VIRGINEA POLYTECHNIC INSTITUTE Mail Code 0106, Blacksburg, Virginia 24061
AND STATE UNIVERSITY {5403 231-6262 Fax: (540} 2314240
ribbensfiviedu

February 16, 2010

TO: Course Approval! Committees WM
FROM: Calvin Ribbens C»‘L

Associate Department Head
RE: ECE/CS 5510

The Computer Science Department supports the Flectrical and Computer Engineering
Department’s proposal for ECE 5510, which will be cross-listed as CS 5510, We understand that
ECE should he considered the home department for this coursed, and that if ECE ceases to teach
the course, a new course proposal will need to be submitted before the course can be offered
again.

4 Lei-Grant Umiversity - Putting Knowledge (o Work
An Equal Qpportunity/Afirmaiive Action Institution

ECE 5510 (CS 5510)
Multiprocessor Programming

Catalog Description

Principles and practice of muoltiprocessor programming. Illustration of multiprocessor
programming principles through the classical mutnal exclusion problem, correctness properties
of concurrency (e.g., linearizability), shared memory properties (e.g., register constructions), and
synchronization primitives for implementing concurrent data structures (e.g., consensus
protocols). IHlustration of multiprocessor programming practice through programming patterns
such as spin locks, monitor locks, the work-stealing paradigm, and barriers. Discussion of
concurrent data structures (e.g., concurrent linked lists, queues, stacks, hash maps, skiplists)
through synchronization patterns ranging from coarse-grained locking to fine-grained locking to
lock-free structures, atomic synchronization primitives, elimination, and transactional memory.
Pre: Graduate standing and 4534 or 4550 (3H, 3C).

Course Number: 5510 (CS 5510)
ADPTitle: Multiprocessor Programming
Learning Objectives

Having successfully completed this course, the student will be able to:
» Explain fundamental principles of multiprocessor programming including:

© cOoncuIrency correctness properties such as consistency, linearizability, progress,
fairness, and deadlock-freedom;

o properties of shared memory such as register constructions and atomic snapshots;
and

o synchronization primitives for implementing concurrent data structures, ranging
from simple ones (e.g., atomic registers, consensus protocols, FIFO queues) to
powerful universal constructions (e.g., universality of consensus).

¢ Write multiprocessor programs using:

© programming patterns including spin locks and contention, monitor locks and
waiting, work-stealing and parallelism, and barriers;

o concurrent data structures including concurrent linked lists, concurrent queues,
concurrent stacks, concurrent hash maps, and concurrent skiplists;

o synchronization patterns including coarse-grained locking, fine-grained locking,
optimistic locking, lazy synchronization, non-blocking synchronization, atomic
synchronization primitives, elimination, parallel search; and

o transactional memory abstractions including software transactional memory.

¢ Demonstrate properties of multiprocessor programs including their correctness, fairness.
consistency, linearizability, progress, and deadlock-freedom.

Justification

The computer industry is undergoing a paradigm shift, as chip manufacturers are increasingly
investing in, and manufacturing a new generation of multi-processor chips called multicores, as
it is becoming increasingly difficult to enhance clock speeds by packing more transistors in the
same chip without increasing power consumption and overheating. Consequently, application
software performance can no longer be improved by simply relying on increased clock speeds of
single processors: software must explicitly be written to exploit the hardware parallelism of
multiprocessors. Programming mulii-processors is fundamentally different from programming
single-processors, due to the need to understand how concurrent computations on separate
processors coordinate with one another, in contrast with understanding how concurrent
computations on the same processor coordinate with one another. This is a complex and intricate
problem, and requires new abstractions, algorithms, and programming tools, which are precisely
the focus of the course.

Currently, the Computer Engineering curriculum does not cover this topic. Thus, students are not
exposed to the fundamentally and radically changing (multiprocessor) computer programming
landscape, and lack the knowledge and skills needed to effectively program emerging
(multiprocessor) computers. The course directly addresses this deficiency by focusing on
abstractions, algorithms, and tools needed to program multiprocessor computers, and thereby
exposing Computer Engineering students to the foundations and practice of multiprocessor
programming and strengthening the Computer Engineering curriculum.

The course focuses on reasoning about concurrent multiprocessor programs, writing
multiprocessor programs, establishing their correctness, and analyzing their performance. These
activities are different and more complex than that for concurrent single-processor programs,
because of the vast number of ways that the steps of concurrent threads can be interleaved on
multiprocessors, increasing the difficulty of reasoning about their correctness (e.g., safety,
liveness). Furthermore, the complex memory hierarchy and memory management operations that
are invisible to sequential programming (as they hide behind simple programming abstractions)
break down for multiprocessor programming from a performance standpoint — features of the
underlying memory system must often be exploited to achieve adequate performance.

This requires applying extensive and in-depth knowledge that builds on undergraduate learning
of foundational computer architecture principles and sequential programming principles. In
addition, graduate students in this course will have the ability to demonstrate knowledge of
advanced abstractions, algorithms, and programming tools necessary for programming
multiprocessor computers. Furthermore, students, also will be required to evaluate and critigue
graduate level, advanced research articles on the principles and practice of multiprocessor
programming.

Prerequisites and Co-requisites
Graduate standing and 4534 or 4550.
Texts and Special Teaching Aids

Required Texts:

Herlihy, M.. & Shavit, N. (2008). The Art of Multiprocessor Programming,

paperback, 528 pages, Morgan Kauffman.

Syllabus
Topic Percentage

Introduction to shared objects and synchronization, and the mutual 4
exclusion problem
Correctness properties of concurrent programs (consistency, 10
linearizability, progress, fairness, deadlock-freedom)
Foundations of shared memory (register constructions, atomic snapshots) 10
Synchronization operations for concurrent data structures (atomic 15
registers, consensus protocols, FIFO queues, universality of consensus)
Programming patterns: Spin locks and contention, monitor locks and 10
waiting, work-stealing and parallelism, barriers
Concurrent data structures (concurrent linked lists, concurrent queues, 20
concurrent stacks, concurrent hash maps, concurrent skiplists)
Synchronization patterns: coarse-grained locking, fine-grained locking, 15
optimistic locking, lazy synchronization, non-blocking synchronization
Atomic synchronization primitives, elimination, parallel search 10
Transactional memory 5

100%

