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Abstract. We investigate the computational complexity of some prob-
lems related to preimages and ancestors of states of reaction systems. In
particular, we prove that finding a minimum-cardinality preimage or an-
cestor, computing their size, or counting them are all intractable problems,
with complexity ranging from FPNP[logn] to FPSPACE(poly).
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1 Introduction

Recently many new computational models have been introduced. Most of them
are inspired by natural phenomena. This is also the case of Reaction Systems
(RS), proposed by Ehrenfeucht and Rozenberg in [2], which are a metaphor for
basic chemical reactions. Informally, a reaction system is made of a (finite) set of
entities (molecules) and a (finite) set of admissible reactions. Each reaction is a
triple of sets: reactants, inhibitors and products (clearly the set of reactants and
the one of inhibitors are disjoint). Given a set of reactants T , a reaction (R, I, P )
is applied if R ⊆ T and if there are no inhibitors (i.e. T ∩ I is empty); the result
is the replacement of T by the set of products P . Given a set of reactants T , all
admissible reactions are applied in parallel. The final set of products is the union
of all single sets of products of each reaction which is admissible for T .

Studying RS is interesting for a number of reasons, not only as a clean
computational model allowing precise formal analysis but also as a reference w.r.t.
other computing systems. For example, in [5], the authors showed an embedding
of RS into Boolean automata networks (BAN), a well-known model used in a
number of application domains. Remark that for BAN the precise complexity
of only for a bunch of problems about the dynamical behaviour is known. Via

? This work has been supported by Fondo d’Ateneo (FA) 2013 of Università degli Studi
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the embedding of RS into BAN, all the complexity results about RS are indeed
lower bounds for the corresponding ones for BAN.

In this paper, we continue the exploration of the computational complexity
of properties of RS. The focus is on preimages and ancestors of minimal size.
In more practical terms, this could be useful when minimising the number of
chemical entities necessary to obtain a target compound. Indeed, given a current
state T , the minimal pre-image (resp., n-th-ancestor) problem or MPP (resp.,
MAP) consists in finding the minimal set (w.r.t. cardinality) of reactants which
produces T in one step (resp., n steps). Variants of MPP and MAP consider
counting the pre-images (#MPP); counting the ancestors (#MAP); or computing
the size of the minimal pre-image (SMPP) or of the minimal ancestor (SMAP).
We prove that (see Section 2 for the precise definition of the complexity classes):

– MPP ∈ FPNP and it is FPNP
‖ -hard under metric reductions;

– #MPP is in #PNP[logn] and it is #P-hard under parsimonious reductions;
– SMPP is FPNP[logn]-complete under metric reductions;
– MAP and #MAP are complete for FPSPACE(poly) under metric reductions;
– SMAP is FPSPACE(log)-complete under metric reductions.

These results are important for further understanding the computational capabil-
ities of RS but they also provide clean new items to the (relatively) short list of
examples of problems in high functional complexity classes. Finally, remark that
the problem of pre-image existence has been proved to be in NP by Salomaa [10].
However, here the complexity is higher because of the minimality requirement.

2 Basic Notions

We briefly recall the basic notions about RS [3]. In this paper we require the
sets of reactants and inhibitors of a reaction to be nonempty, as is sometimes
enforced in the literature; our results also hold when empty sets are allowed.

Definition 1. Consider a finite set S, whose elements are called entities. A
reaction a over S is a triple (Ra, Ia, Pa) of nonempty subsets of S. The set Ra

is the set of reactants, Ia the set of inhibitors, and Pa is the set of products.
The set of all reactions over S is denoted by rac(S).

Definition 2. A Reaction System (RS) is a pair A = (S,A) where S is a finite
set, called the background set, and A ⊆ rac(S).

Given a state T ⊆ S, a reaction a is said to be enabled in T when Ra ⊆ T
and Ia ∩ T = ∅. The result function resa : 2S → 2S of a, where 2S denotes the
power set of S, is defined as resa(T ) = Pa if a is enabled in T , and resa(T ) = ∅
otherwise. The definition of resa naturally extends to sets of reactions: given T ⊆ S
and A ⊆ rac(S), define resA(T ) =

⋃
a∈A resa(T ). The result function resA of a

RS A = (S,A) is resA, i.e., it is the result function on the whole set of reactions.
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Definition 3. Let A = (S,A) be a RS. For any T ⊆ S, an element U ⊆ S is an
ancestor of T if restA(U) = T for some t ∈ N. If t = 1, U is called preimage of T .
An ancestor (resp., preimage) U of T is minimal if |U | ≤ |V | for all ancestors
(resp., preimages) V of T .

A state always admits at least itself as ancestor but might not have a preimage.

We describe the complexity of preimage and ancestor problems for RS with
complexity classes of functions problems (see [8, 7] for further details). Let Σ be an
alphabet. The class FP (resp., FPNP) consists of all binary relations R over Σ?

having a “choice function” f ⊆ R with dom f = domR that can be computed in
polynomial time by a deterministic Turing machine (TM) without access to oracles
(resp., with access to an oracle for an NP decision problem). Additional require-
ments on the oracle queries define the subclasses FPNP[logn] and FPNP

‖ of FPNP,

where the number of allowed oracle queries is O(log n) and the queries are per-
formed in parallel (i.e., every current query string does not depend on the results
of previous queries), respectively. We have FP ⊆ FPNP[logn] ⊆ FPNP

‖ ⊆ FPNP.
The class #P consists of all functions f : Σ? → N with a polynomial-time
nondeterministic TM having exactly f(x) accepting computations on every
input x. If in addition O(log n) queries to an NP oracle are allowed, the
class #PNP[logn] is defined. Clearly, FP ⊆ #P ⊆ #PNP[logn]. In this pa-
per we will also refer to FPSPACE, i.e., the collection of binary relations
having a choice function computable in polynomial space, and its two sub-
classes FPSPACE(poly) and FPSPACE(log), in which the output is limited to
polynomial length and logarithmic length, respectively, rather than exponential
length. Remark that FPSPACE(poly) is just \PSPACE, i.e., the class of func-
tions f : Σ? → N such that there exists a polynomial-space nondeterministic TM
performing only a polynomial number of nondeterministic choices and having
exactly f(x) accepting computations on every input x.

Hardness for these classes is defined in terms of two kinds of reductions. The
first one is the many-one reduction, also called parsimonious when dealing with
counting problems: a function f is many-one reducible to g if there exists a
function h ∈ FP such that f(x) = g(h(x)) for every input x. A generalisation
is the metric reduction [6]: a function f is metric reducible to g if there exist
functions h1, h2 ∈ FP such that f(x) = h2(x, g(h1(x))) for every input x. These
notions of reduction can be generalised to reductions between binary relations.

Since we do not deal with sublinear space complexity, without loss of generality,
throughout this paper we assume that all TM computing functions use a unique
tape, both for input and work. We also assume that they move their tape head
to the leftmost cell before entering a final state.

3 Preimage Problems

First of all, inspired by the algorithm described in [9], we show a tight relation
between the MPP and the problem of finding a minimal unary travelling salesman
tour (TSP) [8], where the edge weights are encoded in unary and, hence, bounded
by a polynomial in the number of vertices.
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Lemma 4. Finding a minimal unary TSP tour is metric reducible to MPP.

Proof. Suppose we are given any set of vertices V , with |V | = n, and any unary-
encoded weight function w : V 2 → N. We build a RS A = (S,A) admitting a
state whose preimages encode the weighted simple cycles over V . The background
set is given by S = E ∪W ∪ {♥,♠}, where

E = {(u, v)t : u, v ∈ V and 0 ≤ t < n}
W = {♦(u,v),i : u, v ∈ V and 1 ≤ i ≤ w(u, v)}

while the reactions in A, with u, v, u1, u2, v1, v2 ranging over V and t, t1, t2 ranging
over {0, . . . , n− 1}, are

({(u1, v1)t, (u2, v2)t,♥}, {♠}, {♠}) if (u1, v1) 6= (u2, v2) (1)

({(u, v1)t1 , (u, v2)t2 ,♥}, {♠}, {♠}) if v1 6= v2 or t1 6= t2 (2)

({(u1, v)t1 , (u2, v)t2 ,♥}, {♠}, {♠}) if u1 6= u2 or t1 6= t2 (3)

({(u1, v1)t, (u2, v2)(t+1) mod n,♥}, {♠}, {♠}) if v1 6= u2 (4)

({♥}, {(u, v)t : u, v ∈ V } ∪ {♠}, {♠}) (5)

({(u, v)t,♥}, {♦(u,v),i,♠}, {♠}) for 1 ≤ i ≤ w(u, v) (6)

({♦(u,v),i,♥}, {(u, v)t : 0 ≤ t < n} ∪ {♠}, {♠}) for 1 ≤ i ≤ w(u, v) (7)

({♥}, {♠}, {♥}) (8)

The meaning of an element (u, v)t in a state of A is that edge (u, v) is the t-th
edge (for 0 ≤ t < n) of a simple cycle over V , i.e., of a candidate solution for the
TSP. The edge weights of the cycle must also appear, in unary notation: if (u, v)t
is part of a state and w(u, v) = k, then also ♦(u,v),1, . . . ,♦(u,v),k must be part of
the state. Hence, a length-n simple cycle c = (v0, . . . , vn−1) over V is encoded as
a state T (c) = E(c) ∪W (c) ∪ {♥}, where

E(c) = {(v0, v1)0, (v1, v2)1, . . . , (vn−2, vn−1)n−2, (vn−1, v0)n−1}

is the set of edges traversed by the cycle, indexed in order of traversal, and

W (c) = {♦(vt,v(t+1) mod n),i : 0 ≤ t < n, 1 ≤ i ≤ w(vt, v(t+1) mod n)}

contains the elements encoding the weights of the edges in E(c).
Moreover, consider a state T ⊆ S. If ♥ /∈ T , then necessarily resA(T ) = ∅,

since all reactions have ♥ as a reactant. Similarly, ♠ ∈ T implies resA(T ) = ∅,
since ♠ inhibits all reactions. Now suppose ♥ ∈ T and ♠ /∈ T . Reactions (1)–(5)
produce ♠ from T when any of the following conditions (implying that T ∩ E
does not encode a simple cycle over V ) occur:

(1) the state T contains two distinct elements denoting edges occurring as the t-th
edge of the candidate cycle;

(2) one of the vertices of the candidate cycle has outdegree greater than 1;
(3) one of the vertices of the candidate cycle has indegree greater than 1;
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(4) two consecutive edges do not share an endpoint;
(5) no edge is the t-th edge of the candidate cycle, for some 0 ≤ t < n.

Any set T ∩E where none of the above apply encodes a valid simple cycle over V .
Reaction (6) produces ♠ if an edge (u, v)t occurs, but some element ♦(u,v),i,

encoding a unit of the weight of the edge, is missing. Conversely, reaction (7)
produces ♠ if a unit of the weight of a missing edge occurs. These reactions are
all simultaneously disabled exactly when T ∩W contains the weights of the edges
in T ∩ E. Finally, reaction (8) preserves the ♥. The result function of A is thus

resA(T ) =


{♥} if T encodes a weighted simple cycle over V

{♥,♠} if ♥ ∈ T , ♠ /∈ T , but T fails to encode

a weighted simple cycle over V

∅ if ♥ /∈ T or ♠ ∈ T

Hence, the preimages of {♥} are exactly the weighted simple cycles over V .

Since each preimage T of {♥} has size |T | = n+ 1 +
∑n−1

t=0 w(vt, v(t+1) mod n), a
preimage T of {♥} of minimum size corresponds to a shortest tour over V , which
can be extracted from T in polynomial time just by listing the elements in T ∩E,
ordered by their subscript. Since the mapping (V,w) 7→ A described by the above
construction can be computed in polynomial time, the thesis follows. ut

Lemma 5. For RS MPP is metric reducible to the problem of finding, among
the possible output strings of a polynomial-time nondeterministic TM, a string
having the minimum number of 1s.

Proof. Given any instance (A = (S,A), T ) of the RS minimal preimage problem,
let M be the nondeterministic TM which behaves as follows. M guesses a
state U ⊆ S and checks whether resA(U) = T ; if this is the case, then M
outputs U as a binary string in {0, 1}|S|; M outputs 1|S|+1, otherwise. Clearly, M
works in time p(n) for some polynomial p, and its outputs are all the preimages
of T (together with an easily distinguishable dummy output if no preimage
exists); in particular, the outputs of M that are minimal with respect to the
number of 1s correspond to the smallest preimages of T . ut

The following is proved similarly to the equivalence of binary TSP and finding
the maximum binary output of a polynomial-time nondeterministic TM [8].

Lemma 6. Finding a string with minimal number of 1s among those output by a
nondeterministic polynomial-time TM is metric reducible to the unary TSP. ut

We can now provide lower and upper bounds to the complexity of MPP.

Theorem 7. MPP for RS is equivalent to the unary TSP under metric reduc-
tions. Hence, MPP ∈ FPNP and it is FPNP

‖ -hard under metric reductions.

Proof. The equivalence is a consequence of Lemmata 4, 5, and 6. Moreover, TSP
belongs to FPNP which is closed under metric reductions [8]. The travelling
salesman with 0/1 weights is hard for FPNP

‖ (see [1]) and can be reduced to the
minimal RS preimage problem. ut
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The complexity of finding the size of minimal preimages is given by:

Corollary 8. SMPP is FPNP[logn]-complete under metric reductions.

Proof. The size of the minimal preimage can be found by binary search, using
an oracle answering the question “Is there a preimage of size at most k?”, which
belongs to NP. Hence, the problem is in FPNP[logn]. The hardness of the problem
follows from the fact that the size of a minimal preimage is just the length of the
shortest unary travelling salesman tour increased by n+ 1 in the reduction of
Lemma 4, and that the unary TSP is FPNP[logn]-complete [8]. ut

Finally, we can also prove lower and upper bounds to the complexity of finding
the number of minimal preimages or #MPP in short.

Theorem 9. #MPP is in #PNP[logn] and it is #P-hard under parsimonious
reductions.

Proof. The following algorithm shows the membership in #PNP[logn]: given
(A, T ), compute the size k of the smallest preimage of T by binary search
using log n queries to the oracle (as in the proof of Corollary 8); then, guess a
state U ⊆ S with |U | = k, and accept if and only if resA(U) = T . The number of
accepting computations corresponds to the number of minimal preimages of T .

In order to prove the #P-hardness of the problem, we perform a reduction
from #SAT (a variant of [5, Theorem 4]). Let ϕ = ϕ1 ∧ · · · ∧ ϕm be a Boolean
formula in conjunctive normal form over the variables V = {x1, . . . , xn}. Let
A = (S,A) be a RS with S = V ∪ V ∪ C ∪ {♠}, where V = {x̄1, . . . , x̄n} and
C = {ϕ1, . . . , ϕm}, and A consisting of the following reactions:

({xi}, {♠}, {ϕj}) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, if xi occurs in ϕj (9)

({x̄i}, {♠}, {ϕj}) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, if x̄i occurs in ϕj (10)

({s}, {xi, x̄i,♠}, {♠}) for 1 ≤ i ≤ n, s /∈ {xi, x̄i,♠} (11)

({xi, x̄i}, {♠}, {♠}) for 1 ≤ i ≤ n. (12)

A state T ⊆ S encodes a valid assignment for ϕ if, for each 1 ≤ i ≤ n, it contains
either xi or x̄i (denoting the truth value of variable xi), but not both, and no
further element. The reactions of type (9) (resp., (10)) produce the set of elements
representing the clauses satisfied when xi is assigned a true (resp., false) value.
Hence, the formula ϕ has as many satisfying truth assignments as the number of
states T ⊆ S encoding valid assignment such that resA(T ) = C, the whole set of
clauses. Any such T contains exactly n elements.

If a state T has n elements or less, but it is not a valid assignment to ϕ, then
there is at least one literal xi or x̄i missing in T : thus, either T = ∅, or reaction (11)
is enabled and ♠ ∈ resA(T ); in both cases resA(T ) 6= C. If T has strictly more
than n elements, then either it is an inconsistent assignment, containing both xi
and x̄i for some i, and in that case ♠ ∈ resA(T ) 6= C by reaction (12), or it has
a subset T ′ = T ∩ (V ∪ V ) with |T ′| = n such that resA(T ′) = resA(T ).

Thus, the number of minimal preimages of T in A is exactly the number of
assignments satisfying ϕ, as required. ut
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4 Ancestor Problems

We now turn our attention to the ancestor problems, which will show a (suppos-
edly) higher complexity. First of all, we need a few technical results, providing
us with a FPSPACE(poly)-complete function suitable for reductions.

Lemma 10. The “universal” function U(M, 1m, x), defined as M(x) if the
TM M halts in space m, and undefined otherwise, is FPSPACE(poly)-complete
under many-one reductions.

Proof. We have U ∈ FPSPACE(poly), since there exist universal TMs having
only a polynomial space overhead [8]. Let R ∈ FPSPACE(poly), and let M be a
polynomial-space TM for R. Then, there exists a polynomial p bounding both the
working space and the output length of M . The mapping f(x) = (M, 1p(|x|), x)
can be computed in polynomial time, and R(x, U(f(x))) holds for all x ∈ domR.
This proves the FPSPACE(poly)-hardness of U . ut

Lemma 11. Let the binary relation R((M, 1m, y), x) hold if and only if the
deterministic TM M , on input x, halts with output y on its tape, |y| ≤ m,
and M does not exceed space m during the computation. Then, the relation R
is FPSPACE(poly)-complete under many-one reductions.

Proof. The relation R is in FPSPACE(poly): a polynomial-space deterministic
TM can try all strings x of length at most m, one by one, and simulate M on
input x (within space m) until the output y is produced or the strings have
been exhausted. We now reduce the function U from Lemma 10 to R. Given an
instance (M, 1m, x) of U , consider the instance (M ′, 1k, 1) of R, where

– M ′ is the TM which on any input y, first simulates M on input x within
space k; if M(x) = y, then M ′ outputs 1; otherwise, M ′ outputs 0.

– k = p(m), where p is the polynomial space overhead needed by M ′ in order
to simulate M .

We have U(M, 1m, x) = y if and only if M ′ outputs 1 in space k on input y, that
is, if and only if R((M ′, 1k, 1), y). Since the mapping (M, 1m, x) 7→ (M ′, 1k, 1) can
be computed in polynomial time, the relation R is FPSPACE(poly)-hard. ut

By exploiting the ability of RS to simulate polynomial-space TMs [4], we
obtain the following result.

Theorem 12. MAP is complete for FPSPACE(poly) under metric reductions.

Proof. The problem is in FPSPACE(poly), since a polynomial-space TM can
enumerate all states of a RS in order of size, and check whether they lead to the
target state (the reachability problem for RS is known to be in PSPACE [4]).

In order to prove the FPSPACE(poly)-hardness of the problem, we describe
a variant of the simulation of polynomial-space TMs by means of RS from [4],
where a distinguished state T , encoding the final configuration of the TM, has
as minimal ancestors all states encoding the inputs of the TM leading to that
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configuration. Given a TM M and a space bound m, let Q and Γ be the set of
states and the tape alphabet of M , including a symbol t for “blank” cells. We
define a RS A having background set

S = {qi : q ∈ Q,−1 ≤ i ≤ m} ∪ {ai : a ∈ Γ, 0 ≤ i < m} ∪ {♠}.

We encode the configurations of M as states of A as follows: if M is in state q,
the tape contains the string w = w0 · · ·wm−1, and the tape head is located on
the i-th cell, then the corresponding state of A is {qi, w0,0, . . . , wm−1,m−1}, with
an element qi representing TM state q and head position i, and m elements
corresponding to the symbols on the tape indexed by their position.

A transition δ(q, a) = (r, b, d) of M is implemented by the following reactions

({qi, ai}, {♠}, {ri+d, bi}) for 0 ≤ i < m

which update state, head position, and symbol under the tape head. The remaining
symbols on the tape (which have an index different from the tape head position)
are instead preserved by the following reactions:

({ai}, {qi : q ∈ Q} ∪ {♠}, {ai}) for a ∈ Γ , 0 ≤ i < m

If an element encoding TM state and position is not part of the current RS state,
the element representing the initial state s ∈ Q of M , with tape head on the first
cell, is produced by the following reactions

({ai}, {qj : q ∈ Q, 0 ≤ j < m} ∪ {♠}, {s0}) for a ∈ Γ , 0 ≤ i < m (13)

and the simulation of M by A begins in the next time step with the same tape
contents. If M exceeds its space bound, by moving the tape head to the left of
position 0 or to the right of position m, the following reactions become enabled

({q−1}, {♠}, {♠}) for q ∈ Q
({qm}, {♠}, {♠}) for q ∈ Q

and produce the universal inhibitor ♠, which halts the simulation in the next
time step. The universal inhibitor is also produced by the following reactions
when the state of A is not a valid encoding of a configuration of M , namely,
when multiple state elements appear:

({qi, rj}, {♠}, {♠}) for q, r ∈ Q, q 6= r, 0 ≤ i < m, 0 ≤ j < m

or when multiple symbols are located on the same tape cell:

({ai, bi}, {♠}, {♠}) for a, b ∈ Γ , a 6= b, 0 ≤ i < m

or when a tape cell does not contain any symbol (recall that a blank cell contains
a specified symbol from Γ ):

({s}, {ai : a ∈ Γ} ∪ {♠}, {♠}) for s /∈ {ai : a ∈ Γ} ∪ {♠}, 0 ≤ i < m (14)
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The result function of A can thus be described as follows:

resA(T ) =



T ′ if T encodes a configuration of M

and T ′ its next configuration

T ∪ {s0} if T encodes a tape of M

T ′ ∪ {♠} for some T ′ ⊆ S, if ♠ /∈ T but T does

not encode a configuration of M

∅ if ♠ ∈ T or T = ∅

Notice that all states of A encoding configurations of M have m+ 1 elements,
and that either resA(T ) = ∅ or ♠ ∈ resA(T ) if |T | < m.

Given an instance (M, 1m, y) of relation R from Lemma 11, we can ask for a
minimal state X of A leading to Y , where Y encodes the configuration of M in
its final state, with the string y on the tape.

If there exists a string x such that M(x) = y and the space bound m is
never exceeded by M during its computation, then there exists a state X ⊆ S
encoding a tape for M containing the input x (padded to length m with blanks)
and such that restA(X) = Y for some t ≥ 0. We have |X| = m, and X is minimal
with respect to size among all states leading to Y , since all smaller states lead
to ∅ in at most two steps. Furthermore, from X we can easily recover a string x
with M(x) = y. Conversely, any state X ⊆ S with |X| = m and restA(X) = Y
necessarily encodes a string x such that M(x) = y within space m.

If M(x) 6= y for all strings x (or all such computations exceed the space
bound m), then all states T such that restA(T ) = Y , and in particular the
minimal ones, contain m+ 1 elements. By observing this fact, we can infer that
no input of M produces the output y in space m.

Since the mapping (M, 1m, y) 7→ (A, Y ) described by the above construction
can be computed in polynomial time, and the answer for R can be extracted
from the answer to the minimal RS ancestor search problem in polynomial time,
the latter problem is FPSPACE(poly)-hard under metric reductions. ut

We now deal with the problem of finding the size of a minimal ancestor.

Lemma 13. Let f(M, 1m) = min{|x| : the TM M accepts x in space m}, unde-
fined if no such x exists. Then f is FPSPACE(log)-complete under many-one
reductions.

Proof. Given g ∈ FPSPACE(log), let G be a deterministic TM computing g in
space p(n) for some polynomial p, and let x ∈ Σ?. Let M be a deterministic
TM that, on input y, first simulates G(x), then accepts if and only if |y| ≥ G(x).
Hence, we have g(x) = f(M, 1q(|x|)), where q is a polynomial bound on the space
needed by M to simulate G. This proves the hardness of f . The function can be
computed in FPSPACE(log) by simulating M on all strings of length at most m
until one is accepted in space m, then outputting its length. ut

Theorem 14. SMAP is FPSPACE(log)-complete under metric reductions.
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Proof. The problem is in FPSPACE(log), since a polynomial-space TM can find
an ancestor U of a state of a RS as in the proof of Theorem 12, outputting the
size of U rather than U itself. In order to show the hardness of the problem, we
reduce the function f from Lemma 13 to it. Given (M, 1m), let A be the RS
of Theorem 12, simulating M in space 1m, and let A′ be A modified as follows.
First of all, we add ♥ to S, and we also add it as a reactant to all reactions.
Then, the reactions of type (13) are replaced by

({♥}, {ai : a ∈ Γ} ∪ {qj : q ∈ Q,−1 ≤ j ≤ m} ∪ {♠}, {ti}) for 0 ≤ i < m
(15)

({♥}, {qj : q ∈ Q,−1 ≤ j ≤ m} ∪ {♠}, {s0}) (16)

The reactions of type (15) complete the tape of the TM by producing a blank
symbol in position i if no symbol ai and no state qj occur. Reaction (16) produces
the initial state of M in position 0 when no other state element occurs.

The reactions of type (14) are replaced by

({qj}, {ai : a ∈ Γ} ∪ {♠}, {♠}) for q ∈ Q, 0 ≤ i < m, −1 ≤ j ≤ m (17)

which give an error (producing ♠) when a tape symbol is missing, but only if a
state element is already present. Finally, we add the reaction ({♥}, {♠}, {♥}),
which preserves the ♥ element.

The behaviour of A′ differs from A in the following ways. The input string
x = x0 · · ·xn−1 of M is provided as a state X = {x0,0, . . . , xn−1,n−1,♥}. In the
first step of A′, the tape is completed by adding blanks and the initial state
of M (reactions (15)–(16)); this produces the state X∪{tn, . . . ,tm−1, s0}, which
encodes the initial configuration of M . The simulation of M then proceeds as
for A (with the additional element ♥ always present).

The ancestors of state T describing an accepting configuration of M (empty
tape, accepting state, head in position 0) and of minimal size encode the initial
input x of M together with ♥, if M accepts at least one string in space m (hence,
such ancestors have size at most m + 1); if no string is accepted, the minimal
ancestors of T all have size at least m+ 2, by the same reasoning as in the proof
of Theorem 12. Hence, f(M, 1m) + 1 is the size of a minimal ancestor of T , if
the latter is at most m+ 1, and f(M, 1m) is undefined otherwise: this defines a
metric reduction of f to this problem. ut

Remark 15. The problem of Theorem 14 is actually complete under metric reduc-
tions that only increase linearly the length of the output; the class FPSPACE(log)
is closed under such reductions, but not under general metric reductions.

Finally, we show that counting the number of minimal ancestors has the same
complexity as finding one of them.

Lemma 16. Given a TM M , a unary integer 1m, and a string y, computing
the number of strings x of length at most m such that M(x) = y in space m
is FPSPACE(poly)-complete under many-one reductions.
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Proof. Recalling that FPSPACE(poly) = \PSPACE, the following nondetermin-
istic polynomial-space TM has the required number of accepting computations:
on input (M, 1m, y), it guesses a string x of length at most m (this requires
polynomially many guesses); then it simulates M on x, accepting if M outputs y
without exceeding space m, and rejecting otherwise.

Given f ∈ \PSPACE, let N be a nondeterminstic, polynomial-space TM
with f(x) accepting computations on input x; let p(n) be both a space bound
for N and bound on the number of nondeterministic choices it makes. Consider
the following polynomial-space TM M : on input z ∈ {0, 1}?, it simulates a
computation of N on input x, but replaces the nondeterministic choices of N
with deterministic lookups to successive bits of z. If N exceeds space m = p(|x|), or
halts without having made exactly |z| nondeterministic choices, or the simulated
computation of N rejects, then M writes 0 as output; otherwise, M outputs 1.

Hence, M outputs 1 once for each accepting computation of N , that is, for
exactly f(x) input strings. Since the mapping x 7→ (M, 1p(|x|), 1) can be computed
in polynomial time, the FPSPACE(poly)-hardness of the problem follows. ut

Theorem 17. #MAP is FPSPACE(poly)-complete under metric reductions.

Proof. The problem is in FPSPACE(poly), since a polynomial-space TM can
compute the size of a minimal ancestor of a state T of a RS, then enumerate all
states of the same size and count how many of them lead to T .

Let (M, 1m, y) be an instance of the problem of Lemma 16, and let A be the
RS simulating M as in the proof of Theorem 12. Let Y = {f0, z0,0, . . . , zm−1,m−1}
be the state of A encoding the final configuration of M with output y, where
z = y0 · · · yk−1tm−k is y padded to length m with blanks and f ∈ Q is the final
state of M . In order to distinguish the presence or absence of at least a string x
such that M(x) = y, we add a large number of ancestors of Y having size m+ 1,
ensuring that are minimal only if no such string exists. Let A′ be A augmented
with the following reactions:

({ai,♠}, {qj : q ∈ Q,−1 ≤ j ≤ m}, {zi,i, f0}) for a ∈ Γ , 0 ≤ i < m. (18)

When ♠ is present, and all qj are missing, these reactions map each element
representing a symbol in tape cell i, to the symbol zi in tape cell i, together with
the final state f of M in position 0. In particular, when at least one symbol per
position i is present, the whole target state Y is produced. Hence, these reactions
introduce exactly |Γ |m new ancestors of Y of size m+ 1. The state Y then has
at least |Γ |m + 1 ancestors of size m+ 1, including Y itself. From the proof of
Theorem 12 we may infer that the maximum number of ancestors of Y of size m
is |Γ |m. The number of strings x of length at most m such that M(x) = y in
space m is then equivalent to the number of minimal ancestors of Y for A′, if and
only if this number is at most |Γ |m. If the number is larger than |Γ |m, then the
minimal ancestors have size m+ 1, indicating that no such string x exists. This
defines a metric reduction, proving the FPSPACE(poly)-hardness of #MAP. ut
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5 Conclusions

We investigated the problem of finding the minimal preimage of a state of a RS
and proved that this problem is equivalent, under metric reductions, to finding a
minimal TSP tour when the weights are expressed in unary. We also studied the
complexity of finding a minimal ancestor of a given state and showed that it is
as hard as simulating a polynomial-space TM (with polynomial-length output).
Furthermore, we have investigated the complexity of other problems related
to preimages (resp., ancestors): finding the size and the number of minimal
preimages (resp., ancestors). All these problems were proved to be intractable.

In the future we plan to continue the exploration of problems related to
preimages and ancestors of RS. In the more general model [3], RSs behave as
interactive processes, where new entities are introduced at every time step by
means of a context sequence. Under which conditions does the presence of a
context sequence increase the complexity of the problems we considered? We are
also interested in questions related to the approximability of the aforementioned
problems and the complexity of finding a minimal ancestor that is not “too far”
from the target state.
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