
A Comparison of
Abstraction Heuristics for Rubik’s Cube

Clemens Büchner, Patrick Ferber, Jendrik Seipp, Malte Helmert

June 16, 2022



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

1



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

1



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

1



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

1



Contributions

• model of Rubik’s Cube for general problem solvers

• generate Cartesian abstractions with conditional effects

• evaluate modern abstraction heuristics on Rubik’s Cube

2



Rubik’s Cube Model

20 variables, one per corner and edge

• domains= positions× orientations

18 operators, three per face

• no preconditions

• conditional effect for each cubie at
each position in each orientation

≈ 4.3 · 1019 reachable states

3



Rubik’s Cube Model

20 variables, one per corner and edge

• domains= positions× orientations

18 operators, three per face

• no preconditions

• conditional effect for each cubie at
each position in each orientation

≈ 4.3 · 1019 reachable states

3



Rubik’s Cube Model

20 variables, one per corner and edge

• domains= positions× orientations

18 operators, three per face

• no preconditions

• conditional effect for each cubie at
each position in each orientation

≈ 4.3 · 1019 reachable states

3



Rubik’s Cube Model

20 variables, one per corner and edge

• domains= positions× orientations

18 operators, three per face

• no preconditions

• conditional effect for each cubie at
each position in each orientation

≈ 4.3 · 1019 reachable states

3



Rubik’s Cube Model

20 variables, one per corner and edge

• domains= positions× orientations

18 operators, three per face

• no preconditions

• conditional effect for each cubie at
each position in each orientation

≈ 4.3 · 1019 reachable states

3



Rubik’s Cube Model

20 variables, one per corner and edge

• domains= positions× orientations

18 operators, three per face

• no preconditions

• conditional effect for each cubie at
each position in each orientation

≈ 4.3 · 1019 reachable states

3



Solving Rubik’s Cube Optimally

state of the art: pattern database heuristics (Korf 1997)

• split variables to obtain two simpler problems

• compute all goal distances in simplified problems

• use maximum as admissible heuristic in IDA∗ search

4



Overview of Abstraction Heuristics

projections→ PDBs
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2018)

merge-and-shrink abstractions
(Sievers and Helmert 2021)

a b

x

y

z

a b

5



Overview of Abstraction Heuristics

projections→ PDBs
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2018)

merge-and-shrink abstractions
(Sievers and Helmert 2021)

a b

x

y

z

a b

5



Overview of Abstraction Heuristics

projections→ PDBs
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2018)

merge-and-shrink abstractions
(Sievers and Helmert 2021)

a b

x

y

z

a b

5



Overview of Abstraction Heuristics

projections→ PDBs
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2018)

merge-and-shrink abstractions
(Sievers and Helmert 2021)

a b

x

y

z

a b

5



Overview of Abstraction Heuristics

projections→ PDBs
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2018)

merge-and-shrink abstractions
(Sievers and Helmert 2021)

a b

x

y

z

a b

5



Overview of Abstraction Heuristics

projections→ PDBs
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2018)

merge-and-shrink abstractions
(Sievers and Helmert 2021)

a b

x

y

z

a b

5



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

a b

x

y

z

6



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

a b

x

y

z

6



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

a b

x

y

z

6



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

a b

x

y

z

6



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

a b

x

y

z

6



Cartesian CEGAR and Factored Effect Tasks

Problem

Regression through operators with general conditional effects is
not Cartesian.

Special case Rubik’s Cube: new position and orientation of cubie
depends only on old position and orientation of itself.

7



Cartesian CEGAR and Factored Effect Tasks

Problem

Regression through operators with general conditional effects is
not Cartesian.

Special case Rubik’s Cube: new position and orientation of cubie
depends only on old position and orientation of itself.

F

7



Cartesian CEGAR and Factored Effect Tasks

Problem

Regression through operators with general conditional effects is
not Cartesian.

Special case Rubik’s Cube: new position and orientation of cubie
depends only on old position and orientation of itself.

F

7



Cartesian CEGAR and Factored Effect Tasks

Problem

Regression through operators with general conditional effects is
not Cartesian.

Special case Rubik’s Cube: new position and orientation of cubie
depends only on old position and orientation of itself.

Definition (Factored Effect Tasks)

A factored effect operator specifies in each effect condition exactly
the variable changed by the effect.
A factored effect task has exclusively factored effect operators.

Theorem

Regression through factored effect operators is Cartesian.

7



Experiments

200 Rubik’s Cube problems
of increasing difficulty

coverage

PDBs 123
CEGAR 113
M&S 90

101 103 105

101

103

105

0 uns.
0

uns.

PDBs

Expansions before the last f-layer

CEGAR
M&S

8



Summary

• new Rubik’s Cube benchmarks for planning in SAS+

• Cartesian CEGAR adapted for factored effect tasks

• CEGAR yields perfect heuristic up to certain difficulty

• yet, fewer tasks solved by more general abstractions

Future work:

• consider more permutation domains for analysis

• extend with domain abstractions

9



Summary

• new Rubik’s Cube benchmarks for planning in SAS+

• Cartesian CEGAR adapted for factored effect tasks

• CEGAR yields perfect heuristic up to certain difficulty

• yet, fewer tasks solved by more general abstractions

Future work:

• consider more permutation domains for analysis

• extend with domain abstractions

9


