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(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x)
(clear ?y))

:effect (and (not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(:objects blocki, block2, ..., blockiee)
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(stack block1 block2)
(stack blocka block3s)

(stack block1i blocki1ee)

(stack blockiee block99)
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Almost 10.000 ground actions is still fine.



But grounding is not always fine.



Organic Synthesis domain, instance #11:

almost 71.000.000.000.000 ground actions.

Guess the optimal plan length.






Grounding is usually fine.

But sometimes it requires 35 trillion times more

effort than we need.

What can we do about it?



Lifted Planning: Ground States + Action Schemas
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(:predicates (at ?x ?y) (path ?x ?y))

(:init (at obj1 11)
(at obj2 11)
(at obj3 13)
(at objs 12)
(path 11 12)
(path 11 13)
(path 12 13)
(path 13 14))
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(:precondition

(and (at ?Xx ?Y)
(path 2y ?w)
(path 2w 22)))
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(:precondition

(and (at ?x ?Y)
(path 2y ?w)
(path 2w 22)))

at(XY) > path(Y,W) > path(W,2)

These are conjunctive queries.
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at(X,y) = path(Y,W) > path(W,z)

X Y W YA
obji1 11 12 13
obji1 12 13 14
obj2 11 12 13
obj2 11 13 14
objs 12 13 14
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Conjunctive queries are NP-hard.

But there’s a significant island of tractability.



@ at(X,v)
@ at(s, F)
@ move-dir(Y, F, D)

® move-dir(F, T, D) -

move-dir(FT,D)

move-dir(Y,F,D) at(S,F)

at(x,y)
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Conjunctive queries with join-trees have
acyclic hypergraphs.

They are solvable in output-polynomial time.



Almost 87% of the action schemas in IPC have
preconditions with acyclic hypergraphs.

If we focus on hard-to-ground domains,
then it is only 21%.



Great part of this is due to inequality constraints.

Processing inequalities:
80% in hard-to-ground domains.



Is this good in practice?
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Conclusions

- Lifted planning can help in hard-to-ground domains.
- Most planning action schemas have acyclic preconditions.

- Much faster than previous state-of-the-art lifted planners.
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