Lifted Successor Generation using

(] [) [] []
Query Optimization Techniques
Augusto B. Corréa, Florian Pommerening,
Malte Helmert, and Guillem Francés

University of Basel, Switzerland

Universitat Pompeu Fabra, Spain

Lifted Successor Generation using

(] [) [] []
Query Optimization Techniques
Augusto B. Corréa, Florian Pommerening,
Malte Helmert, and Guillem Francés

University of Basel, Switzerland

Universitat Pompeu Fabra, Spain

Lifted Successor Generation using

(] [) [] []
Query Optimization Techniques
Augusto B. Corréa, Florian Pommerening,
Malte Helmert, and Guillem Francés

University of Basel, Switzerland

Universitat Pompeu Fabra, Spain

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x)
(clear ?y))

:effect (and (not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(:objects blocki, block2, ..., blockiee)

@ICAPS 2020

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x)
(clear ?y))

:effect (and (not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(:objects blocki, block2, ..., blockiee)

@ICAPS 2020

(stack block1 block2)
(stack blocka block3s)

(stack block1i blocki1ee)

(stack blockiee block99)

@ICAPS 2020

Almost 10.000 ground actions is still fine.

But grounding is not always fine.

Organic Synthesis domain, instance #11:

almost 71.000.000.000.000 ground actions.

Guess the optimal plan length.

Grounding is usually fine.

But sometimes it requires 35 trillion times more

effort than we need.

What can we do about it?

Lifted Planning: Ground States + Action Schemas

@ICAPS 2020

Lifted Planning: Ground States + Action Schemas

@ICAPS 2020

(:predicates (at ?x ?y) (path ?x ?y))

(:init (at obj1 11)
(at obj2 11)
(at obj3 13)
(at objs 12)
(path 11 12)
(path 11 13)
(path 12 13)
(path 13 14))

@ICAPS 2020

at
obji
obj2
obj3
objs4

12
la
13
12

path

12
la
12
13

12
13
13
¥

@ICAPS 2020

Lifted Planning: Ground States + Action Schemas

@ICAPS 2020

Lifted Planning: Ground States + Action Schemas

@ICAPS 2020

(:precondition

(and (at ?Xx ?Y)
(path 2y ?w)
(path 2w 22)))

@ICAPS 2020

(:precondition

(and (at ?x ?Y)
(path 2y ?w)
(path 2w 22)))

at(XY) > path(Y,W) > path(W,2)

These are conjunctive queries.

at

obji
obj2
obj3
objs

12
la
13
12

path

11
11
12
13

path

la
la
12
13

12
13
13
LA

@ICAPS 2020

at(X,y) = path(Y,W) > path(W,z)

X Y W YA
obji1 11 12 13
obji1 12 13 14
obj2 11 12 13
obj2 11 13 14
objs 12 13 14

@ICAPS 2020

Conjunctive queries are NP-hard.

But there’s a significant island of tractability.

@ at(X,v)
@ at(s, F)
@ move-dir(Y, F, D)

® move-dir(F, T, D) -

move-dir(FT,D)

move-dir(Y,F,D) at(S,F)

at(x,y)

@ICAPS 2020

Conjunctive queries with join-trees have
acyclic hypergraphs.

They are solvable in output-polynomial time.

Almost 87% of the action schemas in IPC have
preconditions with acyclic hypergraphs.

If we focus on hard-to-ground domains,
then it is only 21%.

Great part of this is due to inequality constraints.

Processing inequalities:
80% in hard-to-ground domains.

Is this good in practice?

@ICAPS 2020

Time (s)

unsolved
103
9]
2
c 10
o]
o
-
= 1
o 10
10°

*

Fast Downward

* ¢
*
. ® 1 | ce
o] x GED Split
% | o 0rg.Synt. MIT
1 |oorgsynt. Alkene
. g ¢ Org.Synt. Orig.
‘ﬁ%m% e % N * Pipesworld Tank.
(¢] 101 102 103 ns.

@ICAPS 2020

Time (s)

unsolved
103
o
2
£ 10
]
a
-
= 1
o 10
10°
107"

E Q =
E *
E s]
B * LI
E . E + GED
& . * § x GED Split
B L | o 0rg.Synt. MIT
B “ x E 0 0rg.Synt. Alkene
[¥ X >§< X] .
N i ¢ Org.Synt. Orig.
~ SERPOERD < %4+ >{] 1 i .
Lol ol 4 \\\Mﬁ'%\ﬁ\ﬁ 9 *Plpesworld Tank
107" 10° 10" 102 103 ns.
L-RPG

@ICAPS 2020

Conclusions

- Lifted planning can help in hard-to-ground domains.
- Most planning action schemas have acyclic preconditions.

- Much faster than previous state-of-the-art lifted planners.

@ICAPS 2020

