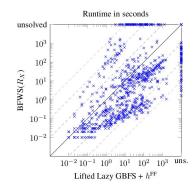
# Best-First Width Search for Lifted Classical Planning

Augusto B. Corrêa and Jendrik Seipp University of Basel, Switzerland Linköping University, Sweden

### LIFTED PLANNING

Planning without grounding. In other words, using only action schemas and not knowing all atoms in advance.

#### WIDTH-BASED SEARCH


Expand states that have novel tuples never seen before.

## WHAT WE DO

- Implement a lifted width search planner
- Show how to compute novelty measures efficiently
- Introduce new ways to balance exploration/exploitation using novelty and delete-relaxation heuristics

#### RESULTS

- New state of the art in lifted planning
- Superior to the grounded implementation for the
- simplest version of width-based search
- Reduce the gap to state-of-the-art ground planners in
- "normal" IPC instances



# Lifted width-based search

solves **more tasks** than any other

lifted planner in the literature.

|                |                                     | IPC (1001) | HTG (862) |
|----------------|-------------------------------------|------------|-----------|
| Baselines      | FS-blind                            | 714        | 442       |
|                | LAMA                                | 917        | 603       |
|                | Dual-BFWS                           | 953        | 522       |
|                | Lifted Lazy GBFS + $h^{\text{add}}$ | 762        | 663       |
|                | Lifted Lazy GBFS + $h^{FF}$         | 821        | 687       |
| Lifted<br>BFWS | $R_0$                               | 725        | 630       |
|                | $R_X$                               | 741        | 671       |
|                | $[R_X, h^{\operatorname{add}}]$     | 838        | 751       |

# FAQ

# Why does width-based search work for lifted planning?

Lifted planning benchmarks are very large and heuristic computation can be expensive. Width-based search can be computed quickly while still being informed.

### Can't you use a grounded width-based planner?

You could, but they fail because they either cannot ground the task or the data-structures they use to keep track of novel tuples is too expensive. In our paper, we also show how to do this more efficiently. In fact, our experiments show that a simple lifted width-based planner outperforms its grounded counterpart.

### Do you introduce any new algorithm?

Yes. We show how to use novelty-based measures together with delete-relaxation heuristics using alternation between open-lists. Although this is more expensive to do in the lifted setting, it pays off in practice, and increases the coverage of our planner.

# Who will win the FIFA World Cup 2022?

We have no clue.

# Where can I find the PDF of this paper, the source code, and other related resources?

You can scan the QR-code below and download the PDF directly. Or, you can just copy-and-paste the links below in your browser.



aper:

tinyurl.com/correa-seipp-icaps2022

Code, benchmarks, experiment data zenodo org/record/6373935