Best-First Width Search for

Lifted Classical Planning

Augusto B. Corréa! Jendrik Seipp?

LUniversity of Basel, Switzerland
2Linkdping University, Sweden
augusto.blaascorrea@unibas.ch, jendrik.seipp@liu.se

This Talk

in this talk:
o efficient implementation of lifted best-first width search
@ new ways to combine width search with other heuristics

@ state-of-the-art lifted planner

Lifted Planning

we consider lifted classical planning:
@ planning only with the PDDL description
e predicate symbols, objects, action schemas, initial state, goal

heuristic search:
@ actions are lifted

@ states are ground

we do not know all possible ground atoms

Best-First Width Search

best-first width search (BFWS):
@ based on novelty of a state
o size of the smallest set of atoms not seen before

@ smaller set =— “more novel”
@ prioritize “more novel states”

@ in practice: check only sets up to size k

see: Lipovetzky and Geffner (2012)

In Practice

ground implementation: (k = 1)

L [p() [p(y) | a(®) [aly) |- |

p(x).p(y).a(x) p(x).a(x).a(y)

In Practice

ground implementation: (k = 1)

[p(x) [ply) | a(x) | aly) | -~ |

p().p(¥).a(x) p(.40.a(y)

novel!

In Practice

ground implementation: (k = 1)

[p(x) [ply) | a(x) | aly) | -~ |

p().p(¥).a(x) p(.a0).a(y)

novel!

In Practice

ground implementation: (k = 1)

L 1) [pky) [a() [ay) [- |

p().p(¥).a(x) p(.a0).a(y)

novel! novel!

In Practice

ground implementation: (k = 1)

L e [k) [a¥) [a) | - |

p(x),p(y).a(x) p(x).a(x).a(y)

novel! novel! not novell

w-value will be higher than previous states!

Lifted Implementation

does not work directly on lifted planners:
@ needs set of possible ground atoms

@ tasks are too large to precompute it

Lifted Implementation

Lifted Implementation

Lifted Implementation

Lifted Implementation

Lifted Implementation

Lifted Implementation

Lifted Implementation

basic idea:
@ one table of reached tuples per predicate symbol

@ on-demand indexation

More Sophisticated Novelty Measures

partition functions:
@ use functions fi, ..., f, to partition search-space

@ compute novelty based on states in the same partition

usually use #r and #g as partition functions
@ Fr: number of relevant atoms that are true in s

@ #g: number of goal atoms that are true in s

how do we define relevant atoms?

Relevant Atoms

we use two approaches to define relevant atoms:
@ Rp: r=10

@ Rx: r = useful atoms from a relaxed plan from initial state

notation:
@ BFWS(Ry): use #Ry and #g as partition functions
e same for BFWS(Rx)

see Frances et al. (2017) for other definitions of relevant atoms

how does a lifted implementation compare to a ground one?

@ using k = 2, and two different sets of domains

how does a lifted implementation compare to a ground one?

@ using k = 2, and two different sets of domains
FS-blind Lifted BFWS(Ry)

IPC (1001) 714 725
blocksworld (40) 0 6
childsnack (144) 73 60
genome-edit-dist. (312) 312 307
logistics (40) 0 10
organic-synthesis (56) 0 48
pipesworld-tankage (50) 18 43
rovers (40) 2 0
visitall-multidim. (120) 37 108
visitall-5-dim (60) - 48

HTG Total (862) 442 630

Baselines Lifted BFWS

LAMA Dual-BFWS L-hFF | Ry Rx
IPC (1001) 917 953 821 | 725 741
blocksworld (40) 12 4 9 6 5
childsnack (144) 116 109 72| 60 67
genome-edit-dist. (312) 312 312 311 | 307 312
logistics (40) 36 4 40 | 10 31
organic-synthesis (56) 21 20 48 | 48 49
pipesworld-tankage (50) 18 18 27 | 43 47
rovers (40) 16 13 40 0 1
visitall-multidim. (120) 60 36 98 | 108 111
visitall-5-dim (60) 12 6 42 | 48 48

HTG Total (s62) 603 522 687 | 630 671

Baselines Lifted BFWS

LAMA Dual-BFWS L-hFF | Ry Rx
IPC (1001) 917 953 821 | 725 741
blocksworld (40) 12 4 9 6 5
childsnack (144) 116 109 72 | 60 67
genome-edit-dist. (312) 312 312 311 | 307 312
logistics (40) 36 4 40 | 10 31
organic-synthesis (56) 21 20 48 | 48 49
pipesworld-tankage (50) 18 18 27 | 43 47
rovers (40) 16 13 40 0 1
visitall-multidim. (120) 60 36 98 | 108 111
visitall-5-dim (60) 12 6 42 | 48 48

HTG Total (s62) 603 522 687 | 630 671

L-hFF vs. BFWS(Ry)

L-AFF and BFWS(Rx) perform well in different domains
o L-h"F exploits domain-structure (e.g., useful atoms)

o BFWS(Rx) explores state-space very quickly

Runtime in seconds

unsolved T <
X x % .
103 F Sy 0K 3
F R
2 i);;{‘/‘)’3 x/>°/§< 5 xxx
102 E R 8% T 1
— E X ’ix/x
Q>:< 101; xx ><><>g€ %&xx/ i
- E XX % oo X <
[%2) XK X% % 3
= 100 ot e]
m ow El
x bl
x E
\/\/\HHH\/\/HHHH AT R Rt

1072101 10° 10 102 103 UnS:
L—hFF

Combining L-A"F and BFWS(Rx)

alternation between open-lists:
@ evaluate nodes using multiple functions
@ use one open-list for each function
@ choose one open-list at a time for expansion

@ balance exploration and exploitation

our alternation algorithms:

o [Rx, h?%] and [Rx, hFF]
@ caveat: better performance with kK =1

see Roger and Helmert (2010)

Baselines Lifted BFWS

LAMA Dual-BFWS L-hFF | Ry Rx [Rx,h%] [Rx,h]
IPC (1001) 917 953 821 | 725 741 838 857
blocksworld (40) 12 4 9 6 5 21 19
childsnack (144) 116 109 72| 60 67 100 101
genome-edit-dist. (312) 312 312 311 | 307 312 309 309
logistics (40) 36 4 40| 10 31 40 40
organic-synthesis (56) 21 20 48 | 48 49 50 50
pipesworld-tankage (50) 18 18 27 | 43 47 48 47
rovers (40) 16 13 40 0 1 40 40
visitall-multidim. (120) 60 36 98 | 108 111 101 101
visitall-5-dim (60) 12 6 42 | 48 48 42 41

HTG Total (862) 603 522 687 ‘ 630 671 751 748

Baselines Lifted BFWS

LAMA Dual-BFWS L-hFF | Ry Rx [Rx,h%] [Rx,h]
IPC (1001) 917 953 821 \ 725 741 838 857
blocksworld (40) 12 4 9 6 5 21 19
childsnack (144) 116 109 72| 60 67 100 101
genome-edit-dist. (312) 312 312 311 | 307 312 309 309
logistics (40) 36 4 40 | 10 31 40 40
organic-synthesis (56) 21 20 48 | 48 49 50 50
pipesworld-tankage (50) 18 18 27 | 43 47 48 47
rovers (40) 16 13 40 0 1 40 40
visitall-multidim. (120) 60 36 98 | 108 111 101 101
visitall-5-dim (60) 12 6 42 | 48 48 42 41

HTG Total (862) 603 522 687 ‘ 630 671 751 748

Conclusions

o BFWS works well in the lifted setting
@ nice fit with with delete-relaxation heuristics

@ state-of-the-art lifted planner

The End

Thank You for Your Attention!

