Best-First Width Search for Lifted Classical Planning

Augusto B. Corrêa¹ Jendrik Seipp²

 $^1\mbox{University}$ of Basel, Switzerland $^2\mbox{Link\"{o}ping}$ University, Sweden augusto.blaascorrea@unibas.ch, jendrik.seipp@liu.se

This Talk

in this talk:

- efficient implementation of lifted best-first width search
- new ways to combine width search with other heuristics
- state-of-the-art lifted planner

Lifted Planning

we consider lifted classical planning:

- planning only with the PDDL description
 - predicate symbols, objects, action schemas, initial state, goal

heuristic search:

- actions are lifted
- states are ground

we do not know all possible ground atoms

Best-First Width Search

best-first width search (BFWS):

- based on novelty of a state
 - size of the smallest set of atoms not seen before
- smaller set ⇒ "more novel"
- prioritize "more novel states"
- in practice: check only sets up to size k

see: Lipovetzky and Geffner (2012)

ground implementation: (k = 1)

	p(x)	p(y)	q(x)	q(y)	

ground implementation: (k = 1)

$$\cdots$$
 $p(x)$ $p(y)$ $q(x)$ $q(y)$ \cdots

p(x),p(y),q(x)novel!

p(x),q(x),q(y)

q(x),q(y)

ground implementation: (k = 1)

ground implementation: (k = 1)

$$\cdots$$
 $p(x)$ $p(y)$ $q(x)$ $q(y)$ \cdots

ground implementation: (k = 1)

$$p(x) \mid p(y) \mid q(x) \mid q(y) \mid \cdots$$

w-value will be higher than previous states!

does not work directly on lifted planners:

- needs set of possible ground atoms
- tasks are too large to precompute it

basic idea:

- one table of reached tuples per predicate symbol
- on-demand indexation

More Sophisticated Novelty Measures

partition functions:

- use functions f_1, \ldots, f_n to partition search-space
- compute novelty based on states in the same partition

usually use #r and #g as partition functions

- #r: number of relevant atoms that are true in s
- #g: number of goal atoms that are true in s

how do we define relevant atoms?

Relevant Atoms

we use two approaches to define relevant atoms:

- R_0 : $r = \emptyset$
- R_X : r = useful atoms from a relaxed plan from initial state

notation:

- BFWS(R_0): use $\#R_0$ and #g as partition functions
- same for BFWS(R_X)

see Francès et al. (2017) for other definitions of relevant atoms

Experiments

how does a lifted implementation compare to a ground one?

• using k = 2, and two different sets of domains

Experiments

how does a lifted implementation compare to a ground one?

• using k = 2, and two different sets of domains

	FS-blind	Lifted BFWS(R_0)
IPC (1001)	714	725
blocksworld (40)	0	6
childsnack (144)	73	60
genome-edit-dist. (312)	312	307
logistics (40)	0	10
organic-synthesis (56)	0	48
pipesworld-tankage (50)	18	43
rovers (40)	2	0
visitall-multidim. (120)	37	108
visitall-5-dim (60)	_	48
HTG Total (862)	442	630

${\sf Experiments}$

	Baselines			Lifted BFWS	
	LAMA	Dual-BFWS	L-h ^{FF}	R_0	R_X
IPC (1001)	917	953	821	725	741
blocksworld (40)	12	4	9	6	5
childsnack (144)	116	109	72	60	67
genome-edit-dist. (312)	312	312	311	307	312
logistics (40)	36	4	40	10	31
organic-synthesis (56)	21	20	48	48	49
pipesworld-tankage (50)	18	18	27	43	47
rovers (40)	16	13	40	0	1
visitall-multidim. (120)	60	36	98	108	111
visitall-5-dim (60)	12	6	42	48	48
HTG Total (862)	603	522	687	630	671

Experiments

	Baselines			Lifted BFWS	
	LAMA	Dual-BFWS	L-h ^{FF}	R_0	R_X
IPC (1001)	917	953	821	725	741
blocksworld (40)	12	4	9	6	5
childsnack (144)	116	109	72	60	67
genome-edit-dist. (312)	312	312	311	307	312
logistics (40)	36	4	40	10	31
organic-synthesis (56)	21	20	48	48	49
pipesworld-tankage (50)	18	18	27	43	47
rovers (40)	16	13	40	0	1
visitall-multidim. (120)	60	36	98	108	111
visitall-5-dim (60)	12	6	42	48	48
HTG Total (862)	603	522	687	630	671

$L-h^{FF}$ vs. BFWS (R_X)

L- h^{FF} and BFWS(R_X) perform well in different domains

- L-h^{FF} exploits domain-structure (e.g., useful atoms)
- BFWS(R_X) explores state-space very quickly

Combining L- h^{FF} and BFWS(R_X)

alternation between open-lists:

- evaluate nodes using multiple functions
- use one open-list for each function
- choose one open-list at a time for expansion
- balance exploration and exploitation

our alternation algorithms:

- $[R_X, h^{\text{add}}]$ and $[R_X, h^{\text{FF}}]$
- caveat: better performance with k = 1

see Röger and Helmert (2010)

${\sf Experiments}$

		Baselines		Lifted BFWS			
	LAMA	Dual-BFWS	L-h ^{FF}	R ₀	R_X	$[R_X, h^{add}]$	$[R_X, h^{FF}]$
IPC (1001)	917	953	821	725	741	838	857
blocksworld (40)	12	4	9	6	5	21	19
childsnack (144)	116	109	72	60	67	100	101
genome-edit-dist. (312)	312	312	311	307	312	309	309
logistics (40)	36	4	40	10	31	40	40
organic-synthesis (56)	21	20	48	48	49	50	50
pipesworld-tankage (50)	18	18	27	43	47	48	47
rovers (40)	16	13	40	0	1	40	40
visitall-multidim. (120)	60	36	98	108	111	101	101
visitall-5-dim (60)	12	6	42	48	48	42	41
HTG Total (862)	603	522	687	630	671	751	748

${\sf Experiments}$

		Baselines		Lifted BFWS			
	LAMA	Dual-BFWS	L-h ^{FF}	R_0	R_X	$[R_X, h^{add}]$	$[R_X, h^{FF}]$
IPC (1001)	917	953	821	725	741	838	857
blocksworld (40)	12	4	9	6	5	21	19
childsnack (144)	116	109	72	60	67	100	101
genome-edit-dist. (312)	312	312	311	307	312	309	309
logistics (40)	36	4	40	10	31	40	40
organic-synthesis (56)	21	20	48	48	49	50	50
pipesworld-tankage (50)	18	18	27	43	47	48	47
rovers (40)	16	13	40	0	1	40	40
visitall-multidim. (120)	60	36	98	108	111	101	101
visitall-5-dim (60)	12	6	42	48	48	42	41
HTG Total (862)	603	522	687	630	671	751	748

Conclusions

- BFWS works well in the lifted setting
- nice fit with with delete-relaxation heuristics
- state-of-the-art lifted planner

Thank You for Your Attention!