
The Model Checking Integrated Planning System (MIPS)

Stefan Edelkamp and Malte Helmert

With the Model Checking Integrated Planning System
MIPS, model checking has eventually approached classical
AI planning. It was the first planning system based on for-
mal verification techniques that turned out to be competitive
with the various Graphplan- or SAT-based approaches on a
broad spectrum of domains.

MIPS uses binary decision diagrams (BDDs, introduced
by Bryant (1986)) to compactly store and operate on sets
of states. More precisely, it applies reduced ordered binary
decision diagrams, which we will refer to simply as BDDs
for the rest of this article.

Its main strength compared to other, similar approaches
lies in its precompiling phase, which infers a concise state
representation by exhibiting knowledge that is implicit inthe
description of the planning domain (Edelkamp and Helmert
1999). This representation is then used to carry out an accu-
rate reachability analysis without necessarily encountering
exponential explosion of the representation.

The original version of MIPS, presented at ECP99, was
capable of handling the STRIPS subset of PDDL. It was
later extended to handle some important features of ADL,
namely domain constants, types, negative preconditions and
universally quantified conditional effects.

Other extensions include two additional search engines
based on heuristics, one incorporating a single-state hill-
climbing technique very similar to Hoffmann’s FF, the other
one making use of BDD techniques, thus combining heuris-
tic search with symbolic representations. However, as
the former does not contribute many new ideas, its merits
mainly lying in the combination of Hoffmann’s heuristic es-
timate with the preprocessing techniques of MIPS, we won’t
dwell on it.

Neither will we say much about the symbolic heuristic
search techniques included in MIPS, namely the BDDA*
and Pure BDDA* algorithms, as those were disabled in the
AIPS 2000 planning competition in favor of the original
MIPS planning algorithm, partly because it turned out to
perform better on some domains, partly because it always
yields optimal (sequential) plans, which we consider an im-
portant property of the planner that counterbalances some
of its weaknesses in performance compared to other cur-
rent planning systems such as FF. Readers interested in those

Copyright c© 2001, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A

B B

0 0 0 1

0 1

0 1 0 1

A

B

0 1

1

0

0 1

Figure 1: Two equivalent BDDs, a non-reduced and a re-
duced one. The “1” sink can only be reached by following
the edges labeled “1” fromA andB, thus the represented
boolean functionψ(A,B) evaluates to true if and only ifA
andB are true.

parts of the MIPS planning system are referred to Edelkamp
and Helmert (2000).

So in the following sections we will cover the core of
MIPS, illustrating its basic techniques with a very simple
example.

BDDs: Why and For What?
MIPS is based on satisfiability checking. This is indeed not a
new idea. However, MIPS was the first SAT-based planning
system to make use of binary decision diagrams to avoid
(or at least lessen) the costs associated with the exponential
blowup of the Boolean formulae involved as problem sizes
get bigger. Since the early days of MIPS, other planning
systems based on BDDs have emerged, most notably Four-
man’s PROPPLAN and Störr’s BDDPLAN. We believe that
the key advantage of MIPS compared to those systems lies
in its preprocessing algorithms.

So it looks like BDDs are currently considered an inter-
esting topic in AI Planning. Why is that? There is no doubt
about the usefulness of this data structure. Nowadays, BDDs
are a fundamental tool in various research areas, such as
model checking and the synthesis and verification of hard-
ware circuits. In AI Planning, they are mainly useful be-
cause of their ability to efficiently represent huge sets of
states commonly encountered in state-space search.

Without going into too much detail, a BDD is a data struc-



ture for efficiently representing Boolean functions, mapping
bit strings of a fixed length to either “true” or “false”. A
BDD is a directed acyclic graph with a single root node
and two sinks, labeled “1” and “0”, respectively. For eval-
uating the represented function for a given input, a path is
traced from the root node to one of the sinks, quite similar
to the way decision trees are used. What distinguishes BDDs
from decision trees is the use of certain reductions, detecting
unnecessary variable tests and isomorphisms in subgraphs,
leading to a unique representation that is polynomial in the
length of the bit strings for many interesting functions. Fig-
ure 1 provides an example.

Among the operations supported by current BDD pack-
ages are all usual Boolean connectors such as “and” and
“or”, as well as constant time satisfiability and equality
checking. MIPS uses the ”Buddy” package by Jørn Lind-
Nielsen, which we considered particularly useful for our
purposes because of its ability to form groups of several
Boolean variables to easily encode finite domain integers.

In MIPS, BDDs are used for two purposes: Representing
sets of states and representing state transitions.

BDDs for Representing Sets of States
Given a fixed-length binary code for the state space of a
planning problem, BDDs can be used to represent the char-
acteristic function of a set of states (which evaluates to true
for a given bit string, i.e. state, if and only if it is a mem-
ber of that set). The characteristic function can be identified
with the set itself.

Unfortunately, there are many different possibilities to
come up with an encoding of states in a planning problem,
and the more obvious ones seem to waste a lot of space
which often leads to bad performance of BDD algorithms. It
seems worthwhile to spend some effort on finding a ”good”
encoding, so this is where the preprocessing of MIPS enters
the stage.

Let us consider a very simple example of a planning
problem where a truck is supposed to deliver a package
from Los Angeles to San Francisco. The initial situa-
tion in PDDL notation is given by (PACKAGE package),
(TRUCK truck), (LOCATION los-angeles), (LOCATION
san-francisco), (AT package los-angeles), and (AT truck los-
angeles). Goal states have to satisfy the condition (AT
package san-francisco). The domain provides three action
schemata named LOAD to load a truck with a certain pack-
age at a certain location, the inverse operation UNLOAD,
and DRIVE to move a truck from one location to another.

The first preprocessing step of MIPS will detect that only
the AT (denoting the presence of a given truck or package at
a certain location) and IN predicates (denoting that a pack-
age is loaded in a certain truck) are fluents and thus need to
be encoded. The labeling predicates PACKAGE, TRUCK,
LOCATION are not affected by any operator and thus do
not need to be specified in a state encoding.

In a next step, some mutual exclusion constraints are dis-
covered. In our case, we will detect that a given object will
always be at or in at most one other object, so propositions
such as (AT package los-angeles) and (IN package truck) are
mutually exclusive.

A

B

C

1 0

0

0

0

1

1

1

B

C

0 1

0

1

0 1

Figure 2: BDDs for the characteristic functions of the initial
state,init(A,B,C) = ¬A ∧ ¬B ∧ ¬C, and of goal states,
goal(A,B,C) = ¬B ∧ C.

This result is complemented by what we call fact space
exploration: Ignoring negative (delete) effects of operators,
we exhaustively enumerate all propositions that can be sat-
isfied by any legal sequence of actions applied to the initial
state, thus ruling out illegal propositions such as (IN los-
angeles package), (AT package package) or (IN truck san-
francisco).

Now all the information that is needed to devise an ef-
ficient state encoding schema for this particular problem is
at the planner’s hands. MIPS discovers that three Boolean
variablesA, B, andC are needed. The first one is required
for encoding the current city of the truck, whereA is set if
(AT truck san-francisco) holds true, andA is cleared other-
wise, i.e. if (AT truck los-angeles) holds true. The other two
variablesB andC encode the status of the package: both
are cleared if it is at Los Angeles,C but notB is set if it is at
San Francisco, andB but notC is set if it is inside the truck.

We can now rephrase initial state and goal test as Boolean
formulae, which can in turn be represented as BDDs:¬A ∧

¬B∧¬C denotes the initial situation, and the goal is reached
in every state where¬B ∧ C holds true. The corresponding
BDDs are illustrated in Figure 2.

BDDs for Representing State Transitions
What have we achieved so far? We were able to reformulate
the initial and final situations as BDDs. As an end in itself,
this does not help too much. We are interested in a sequence
of actions (ortransitions) that transforms an initial state into
one that satisfies the goal condition.

Transitions are formalized as relations, i.e. as sets of tu-
ples of predecessor and successor states, or alternativelyas
the characteristic function of such sets, Boolean formulae
using variablesA, B, C for the old situation andA′, B′, C′

for the new situation. For example, the action (DRIVE truck
los-angeles san-francisco), which is applicable if and only if
the truck currently is in Los Angeles, and has as its effect
a change of location of the truck, not altering the status of
the package, can be formalized using the Boolean formula
¬A ∧A′

∧ (B ↔ B′) ∧ (C ↔ C′).



A

A
′

0

B

1

C

B
′

0

0

B
′

1

1

1

C
′

0

0

C
′

1

1

A

A
′

A
′

B B

B
′

B
′

B
′

B
′

C C

C
′

C
′

1

0 1

0

1 1

0

1 0 0 1

0

1

0 1

0

0 1

0
1

Figure 3: The left BDD represents the single action (DRIVE
truck los-angeles san-francisco), the right one the disjunc-
tions of all possible actions and thus the complete transition
relation. The “0” sink and edges leading to it have been
omitted for aesthetic reasons.

By conjoining this formula with any formula describing
a set of states using variablesA, B andC introduced be-
fore and querying the BDD engine for the possible instan-
tiations of (A′, B′, C′), we can calculate all states that can
be reached by driving the truck to San Francisco in some
state from the input set. This, put shortly, is the relational
product operator that is used at the core of MIPS to calcu-
late a set of successor states from a set of predecessor states
and a transition relation. Of course, we have more than one
action at our disposal (otherwise planning would not be all
that interesting), so rather than using the transition formula
denoted above, we will build one such formula for each fea-
sible action (adding a no-op action for technical reasons) and
calculate the disjunction of those, illustrated in Figure 3.

Doing this in our example, starting from the set contain-
ing only the initial state, we get a set of three states (the
initial state, one state where the truck has moved and one
where the package was picked up), represented by a BDD
with three internal nodes. Repeating this process, this time
starting from the state set just calculated, we get a set of four
states represented by a BDD with a single internal node, and
a third iteration finally yields a state where the goal has been
reached (Figure 4). This can be tested by building the con-
junction of the current state set and goal state BDDs and
testing for satisfiability.

By keeping the intermediary BDDs, a legal sequence of

A

B

C

1

0

0

0

A

B

C

1

1

0

0

0

C

1

0

A

B

C

1

1

0

1

0

0

Figure 4: BDDs representing the set of reachable states after
zero, one, two, and three iterations of the exploration algo-
rithm. Note that the size (number of internal nodes) of a
BDD does not necessarily grow with the number of states
represented. Again, edges leading to the “0” sink have been
omitted.

states linking the initial state to a goal state can then easily be
extracted, which in turn can be used to find a corresponding
sequence of actions.

Evaluation of the MIPS Algorithm
It is not hard to see that, given enough computational and
memory resources, MIPS will find a correct plan if one ex-
ists. As it performs a breadth-first search in the state space,
the first solution found will consist of a minimal number of
steps. If no solution exists, this will also be detected - the
breadth first search will eventually reach a fixpoint, which
can easily be detected by comparing the successor BDD to
the predecessor BDD after calculating the relational product.
Thus, the algorithm is complete and optimal.

However, it is not blindingly fast, so various efforts were
made to speed it up, mostly well-known standard techniques
in symbolic search such as forward set simplification. A big-
ger gain in efficiency was achieved by using bidirectional
search, which can be incorporated into the algorithm in a
straight-forward fashion. One problem that arises in this
context is that in some planning domains, backward itera-
tions are far more expensive than forward iterations, and it
is not trivial to decide when to perform which. We tried three
different metrics to decide on the direction of the next explo-
ration step: BDD size, number of states encoded, and time
spent on the last exploration step in that direction. In our
experiments, the last metric turned out to be most effective.

Outlook
As for the basic exploration algorithm, big improvements
leading to a dramatically better performance are not to be
expected for the near future, with the possible exception of
transition function splitting, which still needs to be incorpo-
rated into the system.

From the algorithmic repertoire of MIPS, the heuristic
symbolic search engine, which up to now has produced



promising results but is still lacking in some domains, is
getting most attention at the moment (Edelkamp 2001). It
might also be worthwhile to investigate the issue of optimal
parallel plans, building on the work done by Haslum and
Geffner for HSP (Haslum and Geffner 2000).

Another research aim is the development of precomputed,
informative and admissible estimates for explicit and sym-
bolic search based on heuristic pattern databases.

The single most important area of interest, however, is
certainly the extension of MIPS to more general flavours
of planning such as conformant or strong cyclic planning
where the strengths of symbolic methods are much more
apparent than in the classical scenario (Cimatti and Roveri
1999; Daniele, Traverso, and Vardi 1999).

Acknowledgment
We thank F. Reffel for his cooperation concerning this re-
search.

S. Edelkamp’s work is supported by DFG in a project en-
titled ”Heuristic Search and its Application to Protocol Val-
idation”.

References
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation.IEEE Transactions on Computers
35(8):677–691.

Cimatti, A., and Roveri, M. 1999. Conformant planning
via model checking. In Biundo, S., and Fox, M., eds.,Re-
cent Advances in AI Planning. 5th European Conference on
Planning (ECP’99), volume 1809 ofLecture Notes in Arti-
ficial Intelligence, 21–34. Heidelberg: Springer-Verlag.

Daniele, M.; Traverso, P.; and Vardi, M. Y. 1999. Strong
cyclic planning revisited. In Biundo, S., and Fox, M., eds.,
Recent Advances in AI Planning. 5th European Confer-
ence on Planning (ECP’99), volume 1809 ofLecture Notes
in Artificial Intelligence, 35–48. Heidelberg: Springer-
Verlag.

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. In Biundo, S., and Fox, M., eds.,Recent Ad-
vances in AI Planning. 5th European Conference on Plan-
ning (ECP’99), volume 1809 ofLecture Notes in Artificial
Intelligence, 135–147. Heidelberg: Springer-Verlag.

Edelkamp, S., and Helmert, M. 2000. On the imple-
mentation of MIPS. In Traverso, P.; Veloso, M.; and
Giunchiglia, F., eds.,Proceedings of the AIPS-2000 Work-
shop on Model-Theoretic Approaches to Planning.

Edelkamp, S. 2001. Directed symbolic exploration in AI-
planning. In Khatib, L., and Pecheur, C., eds.,AAAI Spring
Symposium on Model-based Validation of Intelligence, 84–
92. AAAI Press.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Chien, S.; Kambhampati, S.; and
Knoblock, C. A., eds.,Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling (AIPS 2000), 140–149. AAAI Press.

Biographical Information
Stefan Edelkamp is a research assistant at the Algorithms
and Data Structures group of the Institute for Computer Sci-
ence at the University of Freiburg. He studied computer
science and mathematics in Dortmund and Dublin and re-
ceived his Ph.D. in computer science from the University of
Freiburg on the subject of “Data Structures and Learning Al-
gorithms in State Space Search”. His current research inter-
ests include sequential sorting, heuristic search, AI planning,
model checking, and graph algorithms. His e-mail address
is edelkamp@informatik.uni-freiburg.de.

Malte Helmert is currently working on his Ph.D. thesis at
the Artificial Intelligence group of the Institute for Computer
Science at the University of Freiburg. He studied computer
science in Freiburg and Durham.

His current research interests include AI planning, com-
plexity theory, games, and computational geometry. His e-
mail address is helmert@informatik.uni-freiburg.de.


