Hapori Stone Soup

Patrick Ferber!, Michael Katz?, Jendrik Seipp’, Silvan Sievers', Daniel Borrajo*, Isabel Cenamor,
Tomas de la Rosa, Fernando Fernandez-Rebollo*, Carlos Linares Lopez*, Sergio Nuiiez,
Alberto Pozanco, Horst Samulowitz?, Shirin Sohrabi’

! University of Basel, Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, USA
3 Linkoping University, Sweden
Universidad Carlos III de Madrid, Spain
patrick.ferber @unibas.ch, michael .katzl @ibm.com, jendrik.seipp @liu.se, silvan.sievers @unibas.ch, dborrajo@ia.uc3m.es,
icenamorg @ gmail.com, tomdelarosa@ gmail.com, ffernand @inf.uc3m.es, clinares @inf.uc3m.es, sergio.nunez @repsol.com,
alberto.pozanco@gmail.com, samulowitz@us.ibm.com, shirin.sohrabi @ gmail.com

Abstract

Hapori Stone Soup' is a portfolio planner which participated
in the optimal and satisficing tracks of the International Plan-
ning Competition (IPC) 2023. It uses the Stone Soup algo-
rithm (Helmert, Réger, and Karpas 2011) to compute a se-
quential static portfolio over IPC 2018 planners in an offline
preprocessing phase.

Building the Portfolios

The Stone Soup algorithm requires the following informa-
tion as input:

e A set of planning algorithms A. We use a different set of
Fast Downward configurations depending on the track,
which we describe below.

* A set of training instances Z, for which portfolio per-
formance is optimized. We use a set of 7330 instances,
described below.

* Complete evaluation results that include, for each algo-
rithm A € A and training instance I € Z,

— the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds (we did not consider anytime planners), and

— the plan cost ¢(A, I) of the plan that was found.

To generate this data, we limit memory to 8§ GiB and
use time limits of 30 minutes for optimal planners and
5 minutes for satisficing planners. If algorithm A fails to
solve instance [within these bounds, we set t(A4,1) =
c¢(A,I) = oco.

The procedure computes a portfolio as a mapping P :
A — Ny which assigns a time limit (possibly 0 if the al-
gorithm is not used) to each component algorithm. It is a
simple hill-climbing search in the space of portfolios, shown
in Figure 1.

In addition to the algorithms and the evaluation results,
the algorithm takes two parameters, granularity and timeout,
both measured in seconds. The timeout is an upper bound on
the total time for the generated portfolio, which is the sum of

"Hapori is the Maori word for community.

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A — 0| A € algorithms}
repeat | fimeout/granularity | times:
candidates := successors(portfolio, granularity)
portfolio := arg maxcecandidates Score(C, results)
portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Stone Soup algorithm for building a portfolio.

all component time limits. The granularity specifies the step
size with which we add time slices to the current portfolio.

The search starts from a portfolio that assigns a time limit
of 0 seconds to all algorithms. In each hill-climbing step,
it generates all possible successors of the current portfolio.
There is one successor per algorithm A, where the only dif-
ference between the current portfolio and the successor is
that the time limit of A is increased by the given granularity.

We evaluate the quality of a portfolio P by computing
its portfolio score s(P). The portfolio score is the sum of
instance scores s(P, I) over all instances I € Z. The func-
tion s(P,I) is similar to the scoring function used for the
International Planning Competitions since 2008. The only
difference is that we use the best solution quality among our
algorithms as reference quality (instead of taking solutions
from other planners into account): if no algorithm in a port-
folio P solves an instance I within its allotted runtime, we
set s(P,I) = 0. Otherwise, s(P,I) = c}/cf’, where ¢} is
the lowest solution cost for I of any input algorithm A € A
and cf denotes the best solution cost among all algorithms
A € A that solve the instance within their allotted runtime
P(A).

In each hill-climbing step the search chooses the succes-
sor with the highest portfolio score. Ties are broken in favor
of successors that increase the timeout of the component al-
gorithm that occurs earliest in some arbitrary total order.

The hill-climbing phase ends when all successors would
exceed the given time bound. A post-processing step reduces
the time assigned to each algorithm by the portfolio. It con-
siders the algorithms in the same arbitrary order used for
breaking ties in the hill-climbing phase and sets their time

limit to the lowest value that would still lead to the same
portfolio score. Finally, Stone Soup orders the algorithms
with non-zero time slices by the number of tasks they solve,
in decreasing order.

Components and Training Data

As the pool of planners for our portfolios to choose from,
we use all planners from the IPC 2018 and a selection of
planners from IPC 2014. If an IPC 2018 planner is itself a
portfolio, we use its component planners instead. We only
consider each planner once. (Some IPC 2018 portfolios in-
clude planners that were also submitted separately and sev-
eral portfolios included the same planners.)

Optimal Planners. For the optimal track, we exclude the
planners MAPlan-1, MAPIlan-2 and Meta-Search Planner
because they use CPLEX, and Complementaryl because it
may generate suboptimal solutions. Furthermore, the FDMS
planners and Metisl are covered by the Delfi portfolio al-
ready. This results in the following list of planners (or their
components):

* Complementary2 (Franco, Lelis, and Barley 2018)

» components of DecStar (Gnad, Shleyfman, and Hoff-
mann 2018)

e components of Delfi (Delfil and Delfi2 have the same
components; Katz et al., 2018b)

* Metis2 (Sievers and Katz 2018)
 Planning-PDBs (Moraru et al. 2018)

» Scorpion (Seipp 2018b)

e SymBA*1 (IPC 2014; Torralba et al., 2014)

e Symple-1 and Symple-2 (Speck, Geifler, and Mattmiiller
2018)

Satisficing Planners. All planners participating in the IPC
2018 satisficing track also participated in the agile track (ex-
cept for Fast Downward Stone Soup 2018), with an identical
code base but possibly with different configurations. We thus
only have one set of planners but multiple configurations
for these two tracks. We exclude the Alien planner because
we could not get it to run, and Freelunch-Doubly-Relaxed,
FS-blind and FS-sim because they have a large number of
dependencies which results in planner images too large to
be included in our planner pool. Furthermore, IBaCoP-2018
and IBaCoP2-2018 use a large number of planners or port-
folios of which newer and stronger versions participated in
IPC 2018 as standalone planners, or which we failed to get to
run, so we only cover the component planners Jasper, Mada-
gascar, Mercury, and Probe. This results in the following list
of planners (or their components):

¢ Cerberus and Cerberus-gl (Katz 2018)

e components of DecStar (Gnad, Shleyfman, and Hoff-
mann 2018)

» components of Fast Downward Remix (Seipp 2018a)

* components of Fast Downward Stone Soup 2018 (Seipp
and Roger 2018)

* Jasper (IPC 2014; Xie, Miiller, and Holte, 2014)

* Dual-BFWS, BFWS-preference, BFWS-polynomial and
DFS™ (Frances et al. 2018)

* Madagascar (IPC 2014; Rintanen, 2014)

* Mercury2014 (Katz and Hoffmann 2014)

* MERWIN (Katz et al. 2018a)

¢ OLCFF (Fickert and Hoffmann 2018)

* Probe (IPC 2014; Lipovetzky et al., 2014)

* Grey Planning configuration of Saarplan (Fickert et al.,
2018; rest covered by DecStar)

» Symple-1 and Symple-2 (Speck, Geiller, and Mattmiiller
2018)

Benchmarks and Runtimes. For training the portfolios,
we use all tasks and domains from previous IPCs, from
the Delfi training set (Katz et al. 2018b), and from the Au-
toscale 21.11 collection Torralba, Seipp, and Sievers (2021),
leading to a set of 92 domains with 7330 tasks. We use
Downward Lab (Seipp et al. 2017) to run all planners across
all benchmarks on AMD EPYC 7742 2.25GHz processors,
imposing a memory limit of 8§ GiB and a time limit of
30 minutes for optimal planners and 5 minutes for satisfic-
ing and agile planners. For each run, we store its outcome
(plan found, out of memory, out of time, task not supported
by planner, unexpected error), the execution time, the maxi-
mum resident memory, and if the run found a plan, the plan
length and plan cost. This data set is available online.”> As
training data for our optimal (respectively satisficing/agile)
portfolios, we select from each domain the 30 tasks which
are solved by the fewest optimal (or satisficing/agile) plan-
ners, which results in 1926 (optimal) and 2377 (satisfic-
ing/agile) tasks.

Resulting Portfolios

We ran the Stone Soup algorithm with timeout set to 1800
seconds and with 35 different granularity values between 10
and 900 seconds. For the optimal track, the highest cover-
age (1645 tasks) was achieved with granularity=300s, while
for the satisficing track, the highest quality score (2131.69
points) was achieved with granularity=40s. The two result-
ing portfolios are shown in Tables 1 and 2.

Planner Time Marginal Tasks
Scorpion 883 326
SymBA*1 297 184
Metis2 287 75
DecStar: blind search 209 119

Table 1: Portfolio learned for the Optimal Track. For each
planner A in the portfolio, we list its time slice and its
marginal contribution, i.e., the number of tasks solved by A,
that no other of the three planners solves within their time
slice.

Zhttps://github.com/ipc2023-classical/planner19/tree/latest/
experiments/data/01-opt-planners-eval and https://github.com/
ipc2023-classical/planner19/tree/latest/experiments/data/02-sat-
planners-eval

Planner Time Tasks Score

ipc2018-saarplan 298 74 73.29
ipc2014-jasper 274 60 59.37
ipc2018-dual-bfws 36 4 747
ipc2018-olcff 80 1 11.78
ipc2018-bfws-pref 238 47 63.95
ipc2018-fdss-2018:22 80 7 11.39
ipc2018-fdss-2018:46 40 1 482
ipc2018-fdss-2018:44 38 1 492
ipc2018-fdss-2018:10 37 3520
ipc2018-fdss-2018:17 39 1 5.27
ipc2018-fdss-2018:59 36 2 523
ipc2018-fdss-2018:53 40 2 427
ipc2018-fdss-2018:05 24 0 263
ipc2018-fdss-2018:23 119 9 14.69
ipc2018-fdss-2018:50 79 6 11.16
ipc2018-mercury2014 39 7 11.32
ipc2014-probe 32 0 541
ipc2014-mpc 79 14 18.12
ipc2018-dfs+ 80 1 10.73
ipc2018-freelunch-madagascar 38 7 10.75

Table 2: Portfolio learned for the Satisficing Track. For each
planner A in the portfolio, we list its time slice and its
marginal contributions with respect to coverage and quality
score, i.e., the decrease in coverage and quality score that
would occur if we took A out of the portfolio.

Executing Sequential Portfolios

In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequen-
tial order unspecified. With the simplifying assumption that
all planners use the full assigned time and do not communi-
cate with each other, the order is indeed irrelevant. In reality
the situation is more complex since we do not know upfront
how long a selected planner will really run. Therefore, we
treat per-algorithm time limits defined by the portfolio as
relative, rather than absolute values: whenever we start an
algorithm, we compute the total allotted time of this and all
following algorithms and scale it to the actually remaining
computation time. We then assign the respective scaled time
to the run. As a result, the last algorithm is allowed to use all
of the remaining time.

In the satisficing setting we would like to use the cost of
a plan found by one algorithm to prune the search of subse-
quent planner runs (in the agile setting we stop after finding
the first valid plan). However, since we use the planners as
black boxes, this is impossible in our setting.

We use the driver component of Fast Downward (Helmert
2006) which implements the above described mechanism for
running portfolios.

Post-Competition Analysis
The IPC 2023 used 7 domains with 20 tasks each, resulting
in a benchmark set of 140 planning tasks, for all three tracks.
Each planner was limited to 30 minutes of CPU time and 8
GiB of memory.

In the optimal track, there were 22 competing planners.
The objective was to optimally solve the tasks. The best
planner solved 77 tasks, the blind baseline 50, the LM-
cut baseline 34, and our Hapori Stone Soup portfolio 62
tasks, ranking 6th. Unfortunately, our Hapori submissions
had many technical problems, such as writing to inaccessible
temporary directories, making their results hard to analyze.
We aim to fix these problems and do a thorough comparison
of the Hapori portfolios in a journal article.

In the satisficing track, there were 22 competing plan-
ners. The objective was to find plans of high quality. The
best planner achieved a summed score of 71.86, only closely
beating the baseline LAMA with a score of 68.76, and our
Hapori Stone Soup portfolio scored 54.52 points, ranking
14th. Here, too, our planner had some bugs that lead to se-
lecting a planner by the wrong name or choosing a planner
which did not support some PDDL features.

In the agile track, there were 22 competing planners. The
objective was to find plans as quickly as possible. The best
planner achieved a score of 40.25, closely below the baseline
LAMA-first with a score of 40.28, and our Hapori Stone
Soup portfolio, identical to the one used in the satisficing
track, scored 28.49 points, ranking 10th.

Acknowledgments

The success of a portfolio planner must be primarily at-
tributed to the developers of the portfolio components.
Therefore, we would like to express our gratitude to the
numerous authors of the components on which our portfo-
lios are based. We also thank Daniel FiSer and Florian Pom-
merening for organizing the competition and taking on the
time-consuming task of running our numerous planner sub-
missions.

References

Fickert, M.; Gnad, D.; Speicher, P.; and Hoffmann, J. 2018.
SaarPlan: Combining Saarland’s Greatest Planning Tech-
niques. In Ninth International Planning Competition (IPC-
9): Planner Abstracts, 11-16.

Fickert, M.; and Hoffmann, J. 2018. OLCFF: Online-
Learning h°tY. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 17-19.

Frances, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 23-27.

Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Com-
plementary2 Planner in the IPC 2018. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 32-36.

Gnad, D.; Shleyfman, A.; and Hoffmann, J. 2018. DecStar
— STAR-topology DECoupled Search at its best. In Ninth
International Planning Competition (IPC-9): Planner Ab-
stracts, 42-46.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191-246.

Helmert, M.; Roger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. In ICAPS 2011 Workshop on Planning and Learning,
28-35.

Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 47-51.

Katz, M.; and Hoffmann, J. 2014. Mercury Planner: Push-
ing the Limits of Partial Delete Relaxation. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
43-47.

Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2018a. MERWIN Planner: Mercury Enchanced With Nov-
elty Heuristic. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 53-56.

Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018b. Delfi: Online Planner Selection for Cost-Optimal
Planning. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 57-64.

Lipovetzky, N.; Ramirez, M.; Muise, C.; and Geffner, H.
2014. Width and Inference Based Planners: SIW, BFS(f),
and PROBE. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 6-7.

Moraru, 1.; Edelkamp, S.; Martinez, M.; and Franco, S.
2018. Planning-PDBs Planner. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 69-73.

Rintanen, J. 2014. Madagascar: Scalable Planning with
SAT. In Eighth International Planning Competition (IPC-
8): Planner Abstracts, 66-70.

Seipp, J. 2018a. Fast Downward Remix. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
74-76.

Seipp, J. 2018b. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
77-79.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.

Seipp, J.; and Roger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, 80-82.

Sievers, S.; and Katz, M. 2018. Metis 2018. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
83-84.

Speck, D.; Geiler, F.; and Mattmiiller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
91-94.

Torralba, A.; Alcazar, V. Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 105-109.

Torralba, A.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Goldman, R. P.;

Biundo, S.; and Katz, M., eds., Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling (ICAPS 2021), 376-384. AAAI Press.

Xie, F.; Miiller, M.; and Holte, R. 2014. Jasper: the art of
exploration in Greedy Best First Search. In Eighth Inter-

national Planning Competition (IPC-8): Planner Abstracts,
39-42.

