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Abstract. Agent-Based Models (ABM) are being increasingly applied
to the study of a wide range of social phenomena, often putting the fo-
cus on the macroscopic patterns that emerge from the interaction of a
number of agents programmed to behave in a plausible manner. This
agent behavior, however, is all too often encoded as a small set of rules
that produces a somewhat simplistic behavior. In this short paper, we
propose to explore the impact of decision-making processes on the out-
come of simulations, and introduce a type of agent that uses a more
systematic and principled decision-making approach, based on casting
the simulation environment as a Markov Decision Process. We compare
the performance of this type of agent to that of more simplistic agents
on a simple ABM simulation, and examine the interplay between the
decision-making mechanism and other relevant simulation parameters
such as the distribution and scarcity of resources. Our preliminary find-
ings show that our novel agent outperforms the rest of agents, and, more
generally, that the process of decision-making needs to be acknowledged
as a first-class parameter of ABM simulations with a significant impact
on the simulation outcome.
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1 Introduction and Motivation

Recent years have witnessed a remarkable increase in the use of computer sim-
ulation methods and, more specifically, Agent-Based Model simulations, to en-
hance our understanding of an extremely wide array of social processes, from
the emergence of social norms [1] to population dynamics [19], through all sorts
of cultural [6], economic [20], or archaeological processes [10]. One of the rea-
sons of this momentum is the fact that simulation stands as a compelling and
affordable paradigm for the analysis of complex, highly non-linear environments
involving the interaction of heterogeneous entities. Indeed, central to the devel-
opment of ABM simulations and to the broader notion of complexity theory
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is the ambition to explain the emergence of certain regularities at the macro-
scopic level from the microscopic-level interaction of agents. These agents are
generally programmed to behave in a plausible manner, often in the form of a
fixed set of simple condition-action rules [13, 2]. However, the plausibility of this
type of behavioral strategy remains somewhat problematic, in particular, but
not exclusively, when the simulation agents are meant to model human beings
[21].

As a matter of fact, the problem of intelligent behavior, i.e. of choosing what
action to perform next, has been one of the core concerns of Artificial Intelli-
gence (AI) almost since the dawn of the discipline, with the General Problem
Solver [12] being at the same time one of the first automated planners and
one of the first AI programs. Geffner [8] classifies the different solutions histor-
ically used to address this problem into three categories or approaches. In the
programming-based approach, a human programmer reflects on the character-
istics of the problem, devises an ad-hoc way of solving it, and expresses this
solution as a computer program. In the learning-based approach, the behavior
is learnt from the experience of past actions and their associated rewards, as in
reinforcement learning [18]. Finally, in the model-based approach, the behavior
is derived from a model of the the world, i.e. a formal description of its possible
states, the actions that can be performed and the goals to be achieved. As we
suggested before, the approach usually employed to define the behavior of ABM
simulation agents is the first one, as it offers the advantage of being simple and
computationally inexpensive [21]. However, the only way in which this approach
can be considered to model intelligent behavior is insofar as it embodies the
intelligence of a human programmer. The model-based approach, in contrast,
offers a more generic and principled method for the generation of behavior that
can be considered intelligent and cognitively more plausible, thus fitting much
better the objectives of ABM simulations.

The motivation of the present work is twofold. On the one hand, we aim at
exposing the fundamental but seldom recognized affinity between agent-based
modeling and AI, framing the problem of deriving the behavior of simulation
agents in the context of well-studied model-based planning techniques. Inci-
dentally, this will allow us to provide a generic mechanism where the modeler
needs only specify the utility function that should govern the agent behavior,
and let the actual behavior be automatically derived. On the other hand, we
aim at exploring the impact of different decision-making strategies on the ac-
tual outcome of simulations, and check if the use of these more sophisticated
(and computationally expensive) AI techniques pays off, not only conceptually
and theoretically but also empirically, thus producing significantly different out-
comes. We hypothesize that the use of different decision-making mechanisms
can radically affect macro-level indicators (such as the carrying capacity of the
simulated environment) that are frequently used for the analysis of emergent
phenomena.

Outline of the paper. The remainder of this paper is organized as follows.
The next section offers a brief account of Markov Decision Processes and of
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the UCT algorithm, which form the basis of the novel type of ABM agent we
present. Section 3 describes a simple ABM model that we put to work in order
to evaluate the impact of different decision-making strategies and compare them
to this novel type of agent, and Section 4 discusses some preliminary empirical
results. Finally, Section 5 concludes the paper and outlines some ideas for future
research.

2 Model-Based Behavior

2.1 Model-based planning and Markov Decision Processes

The alternative to traditional rule-base behavior that we propose is based on
finite-horizon Markov Decision Processes (MDPs). In a nutshell, these are fully-
observable, stochastic state models where the objective is to find a suitable
policy of action that maximizes the expected reward that can be accumulated
in a fixed number of timesteps, the so-called horizon of the problem. MDPs
have been widely used and studied in several fields, from artificial intelligence
to operational research and economics [4, 18], but to the best of our knowledge
this work constitutes the first attempt to use them in the context of agent-based
models and social simulations. The basic idea is to cast the simulation environ-
ment as an MDP and automatically derive the behavior of each simulation agent
by selecting at each time step the action that best suits her interests, suitably
defined through a utility function. Formally, a finite-horizon MDP is defined by
(i) a set S of possible states of the world, (ii) an initial state s0 ∈ S, (iii) a set
A(s) of actions that can be applied in each state s ∈ S, (iv) transition probabil-
ities Pa(s′|s) that encode the probability of transitioning from state s to state s′

when the action a ∈ A(s) is applied, and, finally (v) a utility or reward function
r : S × A → R that models the agent interest by specifying the reward r(s, a)
obtained by applying action a ∈ A(s) when s is the actual state of the world.

2.2 The UCT Algorithm

In order to choose the adequate action in an MDP, we employ the UCT algorithm
[9], an anytime optimal algorithm [3] for finite-horizon MDPs that is guaranteed
to converge to the optimal sequence of actions when given enough time. Being
one of the most popular Monte-Carlo Tree Search methods [5], UCT success-
fully tackles extremely large state spaces by running a number of stochastic
simulations from the initial state of the problem that help building incremen-
tally a partial search tree containing the most promising nodes. The algorithm
has been empirically proven to excel at finding an adequate balance between
the exploitation of actions that are believed to offer the highest reward and the
exploration of actions that appear to be sub-optimal but might emerge as better
options when sufficiently explored. For a more thorough discussion on UCT and
Monte-Carlo Tree Search methods, we refer the interested reader to [5]; for the
purpose of this work, it suffices to note that the two parameters of the algorithm
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that are relevant to our simulations are the planning horizon h and the number
of stochastic simulations run from the initial state, which we call the width w of
the algorithm.

3 Model Description

We next describe a simple Sugarscape-like model [7] that we have designed and
implemented on top of the Pandora simulation framework [17] in order to test
the different decision-making mechanisms that we consider.5

3.1 Resource distribution and dynamics

Agents interact in a 50×50 grid-like resource map where each map cell contains
an amount of resources between 0 and a maximum that depends on the particular
cell. These per-cell maximum values are spatially autocorrelated, meaning that
the value of each cell relates to that of neighboring cells, following a standard
ecological model of resource distribution in which spatial autocorrelation is a
key feature that adapted foraging strategies need to take into account [11]. The
higher the autocorrelation factor we use, the more clustered the map resources
are. At the beginning of the simulation all map cells start at their maximum
amount of resources. Whenever this amount is diminished by the action of agents,
each cell increases one amount of resources per timestep, up to its maximum.

3.2 Agent dynamics

Agents are basic resource-accumulating entities, and start the simulation at ran-
dom map locations. At each time step, they can either remain in their current
cell or move to one of the 8 neighboring cells (for a total of 9 possible actions, di-
agonal moves are allowed). After the move, each agent collects from her current
cell an amount of resources which is distributed uniformly between 1 and the
resources available on the cell. After the resource collection, agents consume a
fixed amount of resources λ, a simulation parameter intended to model resource
scarcity. If the total amount of resources accumulated by an agent is less than
λ, the agent dies; if, on the contrary, this amount surpasses a certain threshold
value (currently 20λ), the agent gives birth to a new agent, which will be located
in the same cell, and both agents see their amount of resources set to a fixed
value 5λ.

3.3 Agent behavior

We examine a number of possible decision-making strategies to choose among
the 9 possible actions. We first consider a baseline random agent that chooses

5 The model, implemented in C++, can be downloaded from https://github.com/

gfrances/model-based-social-simulations/releases/tag/eumas2014.
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uniformly at random between the available actions. Second, we consider a greedy

agent that chooses among the 9 possible destination cells the one with the highest
amount of available resources, breaking ties at random. We also consider a lazy

agent that only moves whenever the current cell does not satisfy her needs, i.e.
when the amount of resources in the cell multiplied by a certain slack parameter α
(0 < α ≤ 1) is less than the agent’s daily consumption requirements. In that case,
the agent moves to the first satisfactory cell, according to a random ordering;
in case none of the 9 possible destinations is satisfactory, a random action is
chosen. Finally, we consider a novel MDP-based agent, which we describe more in
detail next.

3.4 Modeling the world as a Markov Decision Process

As previously mentioned, the decision-making process of an MDP agent is based
on choosing the optimal action according to a specific utility function and to the
evaluation performed by the UCT algorithm on an MDP model of the world that
is constructed by each agent at each timestep. The states of the MDP contain
information regarding (i) the position of the agent, (ii) the amount of resources
held by the agent, and (iii) the availability of resources in each cell of the map.
The initial state of the MDP is derived from the actual state of the world in the
current time step, and the transition probabilities between states are given by
the simulation dynamics described above, the only stochasticity arising from the
resource recollection process. Most relevantly, the utility function of the agent
is designed to strongly penalize those states in which the agent is dead, and
otherwise is proportional to the amount of resources held by the agent. It is
important to note that at this stage, the presented MDP model does not take
into account the indirect competition of other agents that might be consuming
resources from neighboring cells.

4 Experiment Design and Empirical Results

4.1 Assessing the Impact of UCT Parameters

Before discussing the fully multi-agent simulations, and in order to calibrate the
width and horizon parameters of the UCT algorithm discussed in Section 2, we
first run some single-agent (only one agent, no agent reproduction) simulations,
measuring the amount of resources that the agent is able to accumulate over
time. To simplify things, we only explore moderate resource consumption factors
λ ∈ {2, 3}, and fix the map autocorrelation factor to 25. We examine the per-
formance of MDP agents using varying horizon (h ∈ {2, 4, 6, 8, 10, 12}) and width
(w ∈ {50, 100, 500, 1000, 5000}), running simulations with the agent starting in a
number of different random locations that are consistently the same for the dif-
ferent combinations of values of w and h. We expect the amount of accumulated
resources to grow with both the allowed width and horizon. The results of these
simulations, not shown here for the sake of brevity, are not entirely consistent
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Fig. 1. Population dynamics for the four types of agents under different resource
scarcity conditions λ.

for the lower width values, which do not permit a sufficient exploration of the
search tree. For higher values w ∈ {1000, 5000}, however, the amount of accumu-
lated resources slightly increases as the horizon grows, although the differences
are not significant. Because of this, and since the computation time required by
UCT increases with both the width and horizon, we stick with an intermediate
combination 〈h = 8, w = 1000〉 for the remainder of our experiments.

4.2 Comparative Performance

We now turn to compare MDP agents with the other decision-making strategies
that we consider in multi-agent simulations. We have run a number of simula-
tions comparing the four decision-making strategies under varying values of the
resource scarcity parameter λ ∈ {2, 3, 4, 5} and resource autocorrelation factor
autocorrelation ∈ {1, 10, 25}. Each subplot in Figure 1 shows the population
growth for the 4 agent types, averaged over 50 runs on 5 different randomly
generated maps with a fixed resource autocorrelation value of 25. As expected,
resource scarcity has a big impact on population growth for all types of agents:
as the value of λ increases, resources are more scarce and the total population
achieved by any agent type sharply decreases, with λ = 5 simulations being
hardly able to sustain any agent. For the remaining values of λ, we note that
the carrying capacities for different agents vary broadly, and that the MDP agent



Decision Making in Agent-Based Models 7

0 200 400 600 800 1000

Time

0

50

100

150

200

250

300

350

Po
pu

la
tio

n

autocorrelation=1

random
lazy
greedy
mdp

0 200 400 600 800 1000

Time

0

50

100

150

200

250

300

350
autocorrelation=10

random
lazy
greedy
mdp

0 200 400 600 800 1000

Time

0

50

100

150

200

250

300

350
autocorrelation=25

random
lazy
greedy
mdp

Fig. 2. Population dynamics for the four types of agents under different resource dis-
tribution conditions.

outperforms the rest of agents by a large margin. In general, the population of
greedy agents increases more rapidly than that of lazy and random agents, al-
though the carrying capacity of the system for this type of agent is lower in some
contexts. This is due to the fact that many greedy agents located in nearby cells
will tend to overpopulate the same cell if its amount of resources is higher than
that of the neighbors, whereas random and lazy agents will tend to disseminate
more over the available space.

Figure 2 focuses on the impact of resource distribution on the performance of
agents, with each subplot showing the results of 50 runs on maps generated with
resource autocorrelation factors 1, 10, 25, for a fixed value of λ = 3. Interestingly,
random and lazy agents perform better as the resources of the map tend to be
more clustered, but the same does not hold for greedy and MDP agents. In the case
of greedy agents, a more uniform distribution of resources, might help overcome
the negative effects of their myopic nature; in the case of MDP agents, the way in
which the clusterization of resources affect population dynamics is not entirely
clear from the results of this experiment, and deserves further examination.

5 Conclusions

We have presented a preliminary examination of the use of sound and principled
model-based AI techniques to handle the problem of decision making in ABM
simulations, in an attempt to bridge the large and (to our opinion) inexplicable
gap between the two disciplines. Our empirical findings show that agents employ-
ing these techniques adapt to the simulation environment significantly better,
and that this holds irrespective of resource distribution and scarcity issues. Due
to the exploratory nature of this work, however, we have put aside a large num-
ber of issues that deserve further analysis. Coupling the UCT algorithm with a
base policy that exploits the particular characteristics of the simulation model,
for instance, should be a straight-forward manner to improve the efficiency of
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MDP agents — exploring discretization strategies in order to reduce the size of
the state space should be another. More relevantly, the possibility of linking the
use of model-based techniques to the systematic analysis of the role of bounded
rationality (both as bounded information and bounded complexity [14]) in ABM
simulations, on the one hand, and the stimulus posed by ABM simulations to
develop truly multi-agent planning techniques [8], on the other, constitute, in
our opinion, promising areas for future research.
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