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In this Work

Context: classical planning using heuristic search

Some domains can be solved in linear time

Hill-climbing + heuristic leading direct to the goal

We want to learn these heuristics automatically
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Generalized Potential Heuristics

Definition (Generalized Potential Heuristic)

Linear combination of features well-defined over all tasks:

h(s) =
∑
f ∈F

w(f ) · f (s)
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Description Logics for Planning

Primitive Concepts & Roles

ontable = { , }
on = {( , )}
holding = ∅
clear = { , }
clearG = { }
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Description Logic

Description Logic SOI with Role Value Maps

Complex concepts

⊥, >
¬C
C1 t C2, C1 u C2

∀R.C , ∃R.C
R1 = R2

{a1, . . . , an}

Complex roles

R−1

R+

R1 ◦ R2

Complex Concepts & Roles

“Set of blocks above some block that needs to be cleared”
∃on+.clearG = { }
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Example: Clearing a Block

Generalized Potential Heuristic for Blocksworld

→ Blocksworld tasks where the goal is to clear a set of blocks

h(s) = 2 · |C1|+ |C2|

C1 ≡ ∃on+.clearG :
“Set of blocks above some block that needs to be cleared”

C2 ≡ holding :
“Set of blocks being held”
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Existence

We prove that generalized heuristics leading directly to a goal
state exist for a number of standard domains:

Blocksworld
Gripper
Spanner
Logistics
. . .

Greedy search solves any task in time O(|Objects|)

Can we obtain these heuristics automatically?
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Learning the Heuristic

Overview of our inductive approach:

1 Fully expand small tasks to generate training set S.

2 Generate set of generalized features F with all features
under a certain syntactic complexity.

3 Compute simplest potential heuristic on F leading
states from S directly to the goal.

If no such h exists, augment F .
If it does exist, test h on unseen tasks.
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Computing the Weights

Mixed Integer Linear Program

min
w

∑
f ∈F

[wf 6= 0]K(f ) subject to∨
s′∈succ(s)

h(s ′) + 1 ≤ h(s) for alive states s

h(s ′) ≥ h(s) for transitions (s, s ′)

where s is alive

and s ′ is unsolvable
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Results

Learn: Generalized heuristics on standard domains

Gripper, Miconic, Spanner, VisitAll.

Prove: Heuristics generalize all possible tasks.

Except VisitAll: No linear solution possible

Solve: Steepest-ascent hill-climbing in linear time.

In some domains, such heuristics exist but we cannot scale.
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Conclusion
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Contributions

Generalized descending and dead-end avoiding heuristics
exist for several planning domains.

Heuristics learned can be intepreted.

Solve any task in linear time.

We can learn them automatically from a suitable
logical model and small tasks.

Heuristic refinement procedure in the paper
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Semantics – Examples

Concepts:

(∃R.C )M = {a | ∃b : (a, b) ∈ RM ∧ b ∈ CM},

(R = R ′)M = {a | ∀b : (a, b) ∈ RM ↔ (a, b) ∈ R ′
M}.

Roles:

(R−1)M = {(b, a) | (a, b) ∈ RM},

(R ◦ R ′)M = {(a, c) | ∃b : (a, b) ∈ RM ∧ (b, c) ∈ R ′
M}
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Example: unrestricted Blocksworld tasks

hbw(s) = −4|C6| − |holding | − 2|ontable| − 2|C7|,

C1 : ontableG u ontable
Blocks that are correctly placed on the table

C2: (∃onG .>) u (on = onG )
Blocks that are placed on their target block

C3: ¬(ontableG t ∃onG .>)
Blocks that are not mentioned in the goal

C4: C1 t C2 t C3

Blocks where block (or table) below is consistent with the goal

C5: ∀on−1G .(on = onG )
Blocks where the block above is consistent with the goal

C6: C4 u ∀on+.(C4 u C5)
Blocks that are well-placed.

C7: holding u ∃onG .(clear u C6)
Blocks held while their target block is clear and well-placed.
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G M S V

# of training instances 8 12 11 9
# of iterations 2.0 2.7 1.0 1.7
|F| 469 2105 904 330
# of MIP variables 2017 7273 3381 1039
# of MIP constraints 2238 7331 3370 1190
Complexity of h 8 (18) 6 (14) 8 (20) 5 (8)
# of features in h 5 4 5 3
Total time 8h 32m 178s 87s
Total MIP time 7.4h 26m 6.8s 2.1s
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