Generalized Potential Heuristics
for Classical Planning

Guillem Frances, Augusto B. Corréa, Cedric Geissmann,
Florian Pommerening

University of Basel, Switzerland

August 15, 2019

Introduction

Introduction
oeo

Motivation

@ Problems of a classical planning domain
share a common structure

@ Generalized planning tries to find a solution
for a whole domain

Introduction
ooe

In this Work

@ For some domains a solution that solves the whole domain
can be described easily

@ We try to learn these solutions from small instances

Background

Background
0®00

Representing Progress with Heuristic Functions

Descending & dead-end avoiding heuristics (Seipp et al., 2016)

@ descending:
all alive states have an improving successor

@ dead-end avoiding;:
all improving successors of alive states are solvable

A state is alive if it is reachable, solvable and not a goal.

Descending, dead-end avoiding heuristics
@ guide greedy search to a goal
@ use at most h(sg) — h(sg) steps

@ encode a measure of progress (Parmar, 2002)

Background
fele] 1)

Description Logics

Description Logic SOZ with Role Value Maps

@ Primitive concepts

o represent set of objects with some property
@ Primitive roles
o represent relation between objects

Complex concepts Complex roles
o L, T o R!
o -C o RT
o GGUG, GNG e RioR,
e VR.C, 3R.C
o R =R

C {317---7an}

Background
ocooe

Description Logic for Planning Domain

Description logic for a planning domain
@ Interpretation for every state of any instance

Concepts and roles
@ Primitive concept for each unary predicate
e Example: clear
@ Primitive role for each binary predicate
e Example: on
@ Primitive concepts and roles for predicates in the goal
e Example: ong

Generalized Potential Heuristics

@000

Generalized Potential Heuristics

Generalized Potential Heuristics
0®00

Generalized Potential Heuristics

Definition (Generalized Potential Heuristic)

Linear combination of features well-defined over all instances:

h(s) = w(f)-f(s)

feF

@ We use two types of features based on description logics:

e cardinality features |C]|
o distance features (see paper)

Generalized Potential Heuristics
00e0

Example: Clearing a Block

o Consider the subset of Blocksworld problems where the goal is
to clear a given subset of blocks

Descending and Dead-end Avoiding Generalized Potential Heuristic

h(s) =2-1G[+ &

o C, =3Jont.clearg:
“Set of blocks above some block that needs to be cleared”

o (G = holding:
“Set of blocks being held”

Generalized Potential Heuristics
oooe

Existence of Descending and Dead-End Avoiding Heuristics

@ We prove that descending, dead-end avoiding generalized
heuristics exist for a number of standard domains:

Blocksworld

Gripper

Spanner

Miconic

Logistics

@ Greedy search solves all instances in linear time

— The challenge: can we obtain these heuristics automatically?

Learning the Heuristic

Learning the Heuristic
0®00

Learning the Heuristic

Overview of our inductive approach:

@ Fully expand small instances to generate training set S.

@ Generate set of generalized features F with all features
under a certain syntactic complexity.

© Compute simplest potential heuristic on F that is
descending and dead-end avoiding on states in S.

o If no such h exists, try with larger set F.
o If it does exist, test h on unseen instances.

Learning the Heuristic
fe]eY 1]

Computing the Weights

Mixed Integer Linear Program

min wr # O]KC(f subject to
in Xl #0007 j
\/ h(s") + 1 < h(s) for alive states s
s’ esucc(s)
h(s") > h(s) for transitions (s, s’)

where s is alive

and s’ is unsolvable

@ Solutions map to heuristics that are descending and dead-end
avoiding on all states in S...

Learning the Heuristic
fe]eY 1]

Computing the Weights

Mixed Integer Linear Program

min wr # O]KC(f subject to
in Xl #0007 j
\/ h(s") + 1 < h(s) for alive states s
s’ esucc(s)
h(s") > h(s) for transitions (s, s’)

where s is alive

and s’ is unsolvable

@ Solutions map to heuristics that are descending and dead-end
avoiding on all states in S...
@ ... and have minimum complexity.

Learning the Heuristic
oooe

Results

@ Our approach learns generalized heuristics on standard
domains such as Gripper, Miconic, Spanner, VisitAll.
@ We have (manually) checked that they are descending
and dead-end avoiding on all instances of the domain.
e Exception VisitAll: No linear solution possible

@ Steepest-ascent hill-climbing with these heuristics solves
any instances of these domains in linear time.

@ Other domains such as Blocksworld appear to need
better feature exploration strategies.

Conclusion

Conclusion
oeo

Contributions

@ General descending and dead-end avoiding heuristics
exist for several planning domains.

@ These solve any instance in linear time.

@ We can learn them automatically from a suitable
logical model and small instances.

Conclusion
ooe

Discussion and Future Work

@ The learned heuristic can be easily interpreted.
@ The learned heuristic has only inductive guarantees, but

o We have shown how it can be refined in an online fashion
whenever it doesn't generalize correctly.

e One could attempt to prove the correctness of the heuristic
deductively with an automatic theorem prover.

o Better feature generation methods are necessary to
scale up to more complex problems.

Bonus Slides

Bonus Slides
oeo
Example: unrestricted Blocksworld instances

how(s) = —4|Cs| — | holding| — 2|ontable| — 2| (7|,

@ (; : ontableg M ontable
Blocks that are correctly placed on the table

@ (G (dong.T)M(on = ong)
Blocks that are placed on their target block

@ G3: —(ontableg LU3ong.T)
Blocks that are not mentioned in the goal

0 (G GUGUCG
Blocks where block (or table) below is consistent with the goal

e Gs: Yong!.(on = ong)
Blocks where the block above is consistent with the goal

(*] C61 C4 |—]VOI’1+.(C4 1 C5)
Blocks that are well-placed.

@ C7: holding M Jong.(clear M Gg)
Blocks held while their target block is clear and well-placed.

Bonus Slides
ooe

G M S \)
of training instances 8 12 11 9
of iterations 2.0 2.7 1.0 1.7
| F| 469 2105 904 330
of MIP variables 2017 7273 3381 1039
of MIP constraints 2238 7331 3370 1190
Complexity of h 8(18) 6(14) 8(20) 5(8)
of features in h 5 4 5 3
Total time 8h 32m 178s 87s

Total MIP time 7.4h 26m 6.8s 2.1s

	Introduction
	Background
	Generalized Potential Heuristics
	Learning the Heuristic
	Conclusion
	Bonus Slides

