
Improving the Efficiency of Multi-site Web Search Engines

Guillem Francès
∗

Universitat Pompeu Fabra
Barcelona, Spain

guillem.frances@upf.edu

Xiao Bai
Yahoo Labs

Barcelona, Spain
xbai@yahoo-inc.com

B. Barla Cambazoglu
Yahoo Labs

Barcelona, Spain
barla@yahoo-inc.com

Ricardo Baeza-Yates
Yahoo Labs

Barcelona, Spain
rbaeza@acm.org

ABSTRACT
A multi-site web search engine is composed of a number
of search sites geographically distributed around the world.
Each search site is typically responsible for crawling and in-
dexing the web pages that are in its geographical neighbor-
hood. A query is selectively processed on a subset of search
sites that are predicted to return the best-matching results.
The scalability and efficiency of multi-site web search en-
gines have attracted a lot of research attention in recent
years. In particular, research has focused on replicating im-
portant web pages across sites, forwarding queries to rele-
vant sites, and caching results of previous queries. Yet, these
problems have only been studied in isolation, but no prior
work has properly investigated the interplay between them.

In this paper, we take this challenge up and conduct what
we believe is the first comprehensive analysis of a full stack
of techniques for efficient multi-site web search. Specifically,
we propose a document replication technique that improves
the query locality of the state-of-the-art approaches with
various replication budget distribution strategies. We de-
vise a machine learning approach to decide the query for-
warding patterns, achieving a significantly lower false posi-
tive ratio than a state-of-the-art thresholding approach with
little impact on search result quality. We propose three re-
sult caching strategies that reduce the number of forwarded
queries and analyze the trade-off they introduce in terms of
storage and network overheads. Finally, we show that the
combination of the best-of-the-class techniques yields very
promising search efficiency, rendering multi-site, geographi-
cally distributed web search engines an attractive alternative
to centralized web search engines.

∗This research was carried out during the author’s internship
at Yahoo Labs Barcelona.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM’14, February 24–28, 2014, New York, New York, USA.
Copyright 2014 ACM 978-1-4503-2351-2/14/02 ...$15.00.
http://dx.doi.org/10.1145/2556195.2556249.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

Keywords
Distributed web search; query processing; document repli-
cation; query forwarding; result caching; efficiency

1. INTRODUCTION
As the vast amount of data available in the Web and the

number of users accessing it keep their steady growth, an
emerging line of research has focused on the scalability prob-
lems faced by single-site, centralized web search engines [3,
10, 13, 21]. An interesting alternative, multi-site distributed
web search engines were shown to reduce the resource con-
sumption in query processing and thus the financial costs of
search engines, while also decreasing query response times
experienced by users [3]. In multi-site web search engines,
the whole document collection is partitioned into a number
of distributed indexes, usually based on the geographical
proximity between web servers and users. The objective is
to exploit the so-called query locality, i.e., the fact that a
large fraction of queries can find their top k best-matching
documents in the index of the local site to which they are is-
sued, saving the need to process them on non-local sites and
thus reducing query response latencies and query processing
workloads.

Multi-site web search engines raise three major research
problems regarding query processing, which forms the fo-
cus of our work. First, since each search site indexes only
a subset of the documents, for some queries, some of the
best-matching documents may not be present in the local
index. Therefore, a query forwarding strategy is necessary
to determine, every time a query is received at a local site,
which non-local search sites may have indexed the missing
best-matching documents for the query, so that the query
can be forwarded to those sites. In order to avoid unnec-
essary increases in query response time, it is important to
forward queries only to those sites that indexed the best-
matching documents. Second, forwarding queries increases
the query response time due to the network latency among
sites. If we replicate and locally index those documents that
are frequently fetched from remote sites, more queries will
benefit from query locality, decreasing query response times.

The challenge here is to determine the right documents to
replicate on the sites in order to achieve high query locality
with low storage overhead. Third, as commonly used in cen-
tralized search engines, a result cache is useful for reducing
query response times and query processing workload. In ad-
dition to the problems faced by result caches in centralized
search engines (e.g., admission, eviction, invalidation), it is
also important for a multi-site search engine to determine in
which sites the results of a query should be cached.
Contribution. We propose and evaluate new strategies for
each of the outlined problems (document replication, query
forwarding, and multi-site result caching) and conduct what
we believe is the first realistic simulation of the full stack of
strategies in a multi-site search engine:
• We propose a document replication technique that re-

lies on per-document utility to select the documents to
be replicated on each site, improving the query locality
of the state-of-the-art approaches by up to 5.88% with
various replication budget distribution strategies.
• We propose a machine learning approach for the query

forwarding problem that exploits the trade-off between
result quality, on the one hand, and query response
time and system workload, on the other hand. With-
out using any document replication or result caching
techniques, our technique is able to increase the frac-
tion of locally processed queries by up to 61% with
respect to a state-of-the-art approach.
• We propose three multi-site result caching strategies

that improve the query locality of the local cache ap-
proach by up to 3.4% and evaluate the trade-off in
terms of network and storage overheads.
• We conduct extensive experiments with real datasets

to study the interplay among the proposed techniques
and show that the combination of the best-of-the-class
techniques improves the average query response time
of the state-of-the-art approach by up to 24% with very
little sacrifice from the result quality.

Paper outline. In Section 2, we provide some background
on multi-site web search engines. Section 3 describes the
data and setup used in our simulations. Sections 4, 5, and 6
present the strategies we propose for document replication,
query forwarding, and multi-site result caching, respectively.
Section 7 evaluates the combination of the best-of-the-class
techniques. Section 8 surveys the related work. The paper
is concluded in Section 9.

2. MULTI-SITE WEB SEARCH

2.1 Preliminaries
Notation. A distributed web search engine is composed of a
set S={s1, s2, . . . , sm} of m geographically distributed sites.
A set D = {d1, d2, . . . , dn} of n documents is partitioned
among these m sites. Each site si maintains a local index
built on a disjoint subset Di of documents such that D =⋃

1≤i≤mDi and Di ∩ Dj = ∅, for 1 ≤ j ≤ m and i 6= j.1

We denote by size(d) the number of postings contributed to
the inverted index by document d.2 Also, for document set
D, we define size(D) =

∑
d∈D size(d). Each site si serves a

set Qi of queries that are issued to the site. We denote by

1We assume that the partitioning of documents on sites is deter-
mined according to some external design factor.
2This is equal to the number of unique terms in the document.

fi(q) the number of times a query q was issued to si (in a
given query set). Finally, we denote by R(q) ⊆ D the global
top-k result set for query q (i.e., the result set that would
be returned by a centralized search engine).3

Query forwarding. Upon the reception of a query q at
some search site si, a query forwarder decides in which
search sites the best-matching documents of the query might
have been indexed. Based on this decision, the query is for-
warded to a number of sites and processed on their indexes.
The top-k result sets retrieved from the contacted sites are
then merged at the local site si and returned to the user.4

Replication. The occurrence of documents in query result
sets is highly skewed. Therefore, replicating a certain subset
of documents (typically, the most popular documents) on
search sites considerably reduces the number of forwarded
queries [3, 21]. We assume that each site si maintains a
replicated index built on a subset Ri ⊆ D\Di of documents
that are not present in the local index of the site.
Caching. Finally, some form of result caching might be
used in order to reduce query response times as well as the
overall system workload.

2.2 Performance Metrics
Query locality. For a given combination of document repli-
cation, query forwarding, and result caching strategies, we
define query locality as the fraction of queries that are an-
swered by the local site they are submitted to without neces-
sitating any forwarding. Increasing the query locality allows
lower query response times and also helps decreasing the
overall system workload.
Query forwarding accuracy. Given a query q received
at site si, the query forwarder on that site needs to decide
whether to process q on the index of each site sj (1 ≤ j ≤ m).
Each of these m binary decisions might turn out to be a
true positive (TP), a true negative (TN), a false positive
(FP), or a false negative (FN). If the decision is not to for-
ward the query to sj , we have an FN if sj has indexed some
best-matching document in R(q) (and that document is not
locally replicated), or a TN otherwise. If the decision is to
forward the query to sj , we have an FP if sj has indexed
no best-matching documents, or a TP otherwise. An FN
degrades the quality of search results since the final result
set will be missing some best-matching documents. On the
other hand, it might reduce the average response time and
system workload. An FP might increase the average re-
sponse time (because the user might have to wait for unnec-
essary query processing and round-trip time due to forward-
ing) as well as increasing the system workload. However, it
does not affect the quality of results. We report the FP and
FN rates as well as the overall accuracy for different query
forwarding strategies.
Result quality. We aim at generating the same result set
that a centralized search engine can provide. In order to
measure the degradation in the result quality (caused by
the FN rate of the query forwarder), we use a number of
standard metrics. These metrics compare the result sets
returned by the distributed architecture against those that
would be returned by a centralized architecture, using the
latter as a ground truth. We measure the quality at different
result ranks, considering only the first p results (for practical

3In the rest of the paper, we assume a standard value of k=10.
4In contrast to previous approaches, we allow the query forwarder
not to process q on the local site si, as described later.

reasons, we restrict ourselves to p ∈ {1, 5, 10}). The three
metrics we used are summarized below:

(i) Exact match rate at rank p (EMR@p). We define the
exact match rate as the fraction of queries for which
the top-k results returned by the distributed architec-
ture are identical to the top-k results returned by the
centralized architecture.

(ii) Average overlap at rank p (overlap@p). For a given
query q, let Dp(q) and Rp(q) be the sets contain-
ing the first p results returned by the distributed and
centralized architectures, respectively. We define the
overlap at rank p for query q as the fraction of re-
sults in Rp(q) that are also present in Dp(q), i.e.,
|Dp(q) ∩ Rp(q)|/|Rp(q)|.5 The obtained overlap val-
ues are averaged over all queries in a test set.

(iii) Average normalized discounted cumulative gain at rank
p (NDCG@p). Finally, we measure the average NDCG
metric. Here, we assume that a document is relevant
if and only if it belongs to the top-k result set of the
centralized architecture. We normalize the DCG of a
query by the DCG value attained by the centralized
architecture.6

Query response time. We estimate query response times
by simulating the processing of queries in a distributed web
search engine and report the distribution of response times.
System workload. We estimate the workload incurred by
a query as the sum of the lengths of the inverted lists that
need to be traversed when processing the query. We average
the workload estimates over all queries in a query set.

3. EXPERIMENTAL SETUP
Datasets. We simulate a distributed search engine com-
posed of five sites, located in five different major continents.
For each site, we sample consecutive queries from the corre-
sponding search frontend of a commercial web search engine.
Queries are normalized by case-folding, stop-word removal,
term uniquing, and alphabetical ordering of query terms.
The full query set is split roughly 75%–25% between a train-
ing set (5.25 million queries), which we use to compute the
replication utility of the documents and to train our query
forwarding models, and a test set (1.72 million queries),
which we use to compute the performance metrics. The
document collection contains about 200 million web pages
obtained after various cleansing and filtering steps such as
spam filtering. A proprietary classifier is used to assign the
documents to a home country (some documents are not as-
signed to any of the five sites). This classifier uses features
such as document language, IP address, and domain name,
among others.
Simulation parameters. For each search site, we build a
separate index using the documents assigned to it. Each site
is assumed to have computational resources proportional to
its index size. The simulated response times include query
processing times and network latencies. For the former,
we assume a processing cost of 200 ns per posting and a
fixed preprocessing overhead of 20 ms per query, as in [13].
The top k query results are retrieved using the open-source
search engine Terrier. For the latter, we considered the user-

5We note that this metric becomes identical to the recall metric
if the results in Rp(q) are the only results considered as relevant.
6In this respect, our metric is slightly different than the standard
NDCG definition in [19].

to-site and site-to-site network latencies, estimated based on
the geodesic distances between the users and sites.
Baselines. We compare the performance of our query for-
warder to the state-of-the-art LP forwarding model proposed
in [13]. In order to facilitate the interpretation of our results,
we often show the performance of an ORACLE query forwarder
that always knows, for any given query, in which search sites
the top k best-matching documents are indexed.

4. DOCUMENT REPLICATION
As mentioned before, document replication helps increas-

ing the query locality in a distributed search engine. Repli-
cating too many documents, however, defeats the purpose
of a distributed search engine. Moreover, query processing
time may increase when the replicated indexes are too large.
Typically, the storage overhead of replicated documents are
constrained by an upper-bound on the replication amount.
Herein, we aim to devise a replication strategy that selects a
set Ri ⊂ D \Di of documents and builds a replicated index
on those documents for each site si such that

(i) the total size of the replicated documents remains be-
low a given fraction b of the global document collec-
tion’s size (i.e.,

∑
1≤i≤m size(Ri) ≤ b× size(D)), and

(ii) the query locality, i.e., the fraction of queries that can
be processed locally without any quality loss (on both
local and replicated indexes), is maximized.

In the rest of the section, we first categorize different docu-
ment replication strategies (Section 4.1). We then propose a
new document selection heuristic (Section 4.2). Finally, we
show that this heuristic outperforms existing heuristics in
terms of query locality (Section 4.3), assuming the presence
of an ORACLE query forwarder.

4.1 Document Replication Strategies
Figure 1 illustrates the way different strategies replicate

documents across the search sites. Figure 1(a) illustrates
the case without any document replication, with each site
indexing its own disjoint subset of documents.
Identical replication. A simple strategy is to replicate the
same set R of documents on all sites (Figure 1(b)). Since
part of the replicated documents may already exist in the
local collection Di of site si (the dotted regions within the
replicated indexes in Figure 1(b)), only those documents in
Ri =R\Di are used to build the replicated index. At query
processing time, this avoids the potential redundancy due to
duplicate scoring of documents that appear in both indexes.
To bound the total size of replicated documents, we just
need to ensure that size(R) ≤ b

m
× size(D).

Individual replication. Identical replication possesses an
obvious drawback: the documents best-suited for replication
on site si might not be the best documents for site sj since
the users of each search site might have different information
needs. A possible improvement is to replicate a distinct
subset of documents on each site such that the replicated
documents are selected depending on the query stream of
the site. We study the following two alternatives for this
kind of individual replication strategies.

(i) Global replication budget. In this option, the to-
tal size of the replicated indexes is constrained, i.e.,∑

1≤i≤m size(Ri) ≤ b × size(D). As shown in Fig-

ure 1(c), a site with a small local index may have a
large replicated index (e.g., site 3) and a site with a

(c) Individual replication - Global budget
Search site 1

Local
Index

Local
Index

(a) No replication

(b) Identical replication

(d) Individual replication - Local budget

Search site 1

Search site 2 Search site 3Search site 1

Search site 2

Search site 2Search site 1

Replicated
Index

Local
Index

Local
Index

Local
Index

Local
Index

Local
Index

Local
Index

Local
Index

Local
Index

Local
Index

Local
Index

Search site 2

Replicated
Index

Replicated
Index

Replicated
Index

Search site 3

Replicated
Index

Replicated
Index

Replicated
Index

Search site 3

Replicated
Index

Replicated
Index

Search site 3

Figure 1: Different document replication strategies.

large local index may have a small replicated index
(e.g., site 1).

(ii) Local replication budget. In a distributed search en-
gine, the amount of storage and computational re-
sources available in search sites may show high vari-
ation. Under a global replication budget, replicating
a large number of documents on a small search site
with limited resources may require redistribution of
resources among the sites or an investment in new re-
sources. A potential solution is to use a local replica-
tion budget and limit the size of the replicated index
on each site si to a certain fraction b of the local index
size, i.e., size(Ri) ≤ b× size(Di) (Figure 1(d)).

4.2 Document Selection Heuristics
Herein, we present a generic heuristic that selects the doc-

uments to be replicated at each site, for any given replication
strategy. For a given query set Q, it has been shown that the
computation of the replicated subsets Ri that maximize the
fraction of top-k relevant documents that are indexed locally
can be reduced to the 0-1 knapsack problem [14, 21],7 which
is known to be NP-hard. In our work, we rely on a greedy
heuristic where the documents are sorted in descending or-
der of their replication utility and progressively selected in
this order until the replication budget is exhausted. We next
define how the replication utility of a document is estimated.

For a given site si, let Ri(q) = R(q) \ Di be the set of
documents in the top-k result set of q that are not indexed
in the local index of si. We define the utility of replicating
a document d ∈ D \Di on site si with respect to query q as

ui,q(d) =

{
1

|Ri(q)|×size(d)
, if d ∈ R(q);

0, otherwise.

7The basic idea is to assign each document a weight equal to its
size and a utility proportional to the number of top-k result sets
where it appears.

Given this, we define the global utility of replicating a doc-
ument d ∈ D \ Di on site si as the sum of the individual
utility of each query q weighted by its frequency fi(q), i.e.,

ui(d)=
∑
q∈Qi

fi(q)× ui,q(d).

The choice of ui(d) stems from the following observations:
(i) replicating a non-local document in R(q) is more likely to
increase the query locality of site si if query q is frequently
issued to site si (i.e., larger fi(q)), (ii) as there are fewer
non-local documents in R(q), it becomes more likely that
replicating one of these non-local documents will let q be
processed locally, and (iii) the utility should be computed
per unit document size, not per document. With this utility
definition, we build the replicated document sets Ri for each
replication strategy discussed in Section 4.1 as follows:
Identical replication. We compute the utility u(d) of
replicating a document as the sum of the utilities of repli-
cating it on each site, i.e., u(d) =

∑
1≤i≤m ui(d) and select

documents in descending order of u(d) values until the repli-
cation budget b

m
× size(D) is exhausted.

Individual replication with global budget. Since a
site can replicate any number of documents as long as the
global replication budget is not exhausted, we rank the pairs
〈ui(d), si〉 in descending order of ui(d) and select document
d with the highest ui(d) for replication on site si until the
global replication budget b× size(D) is exhausted.
Individual replication with local budget. The size of
replicated documents in a site should not exceed the local
budget of the site. For each site si, we rank the documents
in descending order of their ui(d) values and select them in
this order until the local budget b× size(Di) is exhausted.

4.3 Experiments on Performance
In this section, we compare the performance of the pro-

posed heuristic against the frequency-based heuristic used
for identical replication in [13], where the utility of repli-
cating a document is computed as the total frequency of
the queries having the document in their top-k results di-
vided by the size of the document. We refer to this heuristic
as Identical-OF, where OF stands for optimizing frequency.
Moreover, we compare our heuristic against the ORT (opti-
mizing response time) heuristic used in [21] for individual
replication both with global (Individual-ORT-G) and local
(Individual-ORT-L) replication budgets. In [21], the util-
ity of replicating a document, is computed as in [13], but
only non-local documents are considered for replication. We
refer to the three replication strategies using our heuristics
as Identical-OU, Individual-OU-G, and Individual-OU-L,
where OU stands for optimizing utility.
Query locality. If no documents are replicated, 44.40% of
queries can be processed entirely locally (44.80% in case of
unique queries). Figure 2 compares our heuristic against the
three baseline heuristics under different replication strate-
gies for varying replication budgets. We observe that (i)
replicating documents significantly improves the number of
locally processed queries (e.g., replicating only 1% of doc-
uments improves the query locality by 36% assuming all
queries are used), (ii) individual replication outperforms
identical replication, (iii) for individual replication, using
global budgets outperforms using local budgets, and (iv)
our heuristic (*-OU-*) improves the query locality metric by
0.34% to 1.32% in case of all queries and by 0.73% to 2.22%

1 2 4 8 16 32
Replication percentage

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Fr

ac
tio

n
of

lo
ca

lly
pr

oc
es

se
d

qu
er

ie
s

Individual-OU-G
Individual-ORT-G
Individual-OU-L
Individual-ORT-L
Identical-OU
Identical-OF

(a) All queries.

1 2 4 8 16 32
Replication percentage

0.45

0.50

0.55

0.60

0.65

Fr
ac

tio
n

of
lo

ca
lly

pr
oc

es
se

d
qu

er
ie

s

Individual-OU-G
Individual-ORT-G
Individual-OU-L
Individual-ORT-L
Identical-OU
Identical-OF

(b) Unique queries.

Figure 2: Effectiveness of document replication.

in case of unique queries relative to the two individual repli-
cation strategies. The improvement with respect to identical
replication is up to 5.88%. Interestingly, the improvement
is higher in case of unique queries. This will be important
once we add a cache layer (Section 6).
Load distribution. We study the load distribution among
different sites by measuring the per-site storage overhead
due to replication. This overhead is measured as the ra-
tio between the replicated and local index sizes. According
to Figure 3(a), individual replication with a global budget
replicates more documents in sites having smaller local in-
dexes (e.g., s5) while individual replication with local bud-
gets results in a more balanced replication pattern.8 In Fig-
ure 3(b), we observe that sites with larger local indexes have
higher query locality. This explains why individual replica-
tion with a global budget results in larger query locality than
individual replication with local budgets.

5. QUERY FORWARDING
In this section, we describe the solution we propose for

the query forwarding problem. Given m distributed search
sites, we cast the problem as m2 independent binary decision
problems arising from every possible site pair. Thus, each lo-
cal site si has m available binary classifiers ci,1, ci,2, . . . , ci,m,
where ci,j is in charge of deciding, for any query received at
site si, whether it is worth processing the query on the index
residing at site sj . We present the type of machine learning
features we consider in Section 5.1, and we evaluate them in
Section 5.2. We detail the query forwarding architecture in
Section 5.3 and report on its performance in Section 5.4.
Interplay with document replication. Query forward-
ing in multi-site search engines typically determines where
to forward a query according to the likelihood of a remote
site to index some of the best-matching documents of the
query [3]. In Section 4.3, we saw that individual replication
outperforms identical replication. However, in the individ-
ual replication strategy, documents are usually replicated on
a subset of the sites. Because of this, determining the opti-
mal subset of sites to which the query should be forwarded
becomes much more involved. Since this issue is beyond
the classical query forwarding problem we aim to solve, in
the rest of the paper, we assume that query forwarding is
coupled with the identical replication strategy.9

8For easier visualization, Figure 3 assumes a fixed replication
budget b = 8%. Other values of b exhibit a similar behavior.
9The above-mentioned problem does not exist in case of identical
replication, where a replicated document becomes locally acces-
sible in all sites, eliminating the need for query forwarding.

s1 s2 s3 s4 s5

Search site
0.0

0.1

0.2

0.3

0.4

0.5

S
iz

e
of

re
pl

ic
at

ed
in

de
x

w
.r.

t.
or

ig
in

al
in

de
x Individual-OU-G

Individual-ORT-G
Individual-OU-L
Individual-ORT-L
Identical-OU
Identical-OF

(a) Storage overhead.

s1 s2 s3 s4 s5

Search site
0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

qu
er

y
lo

ca
lit

y

Individual-OU-G
Individual-ORT-G
Individual-OU-L
Individual-ORT-L

Identical-OU
Identical-OF
NoRep

(b) Locally processed queries.

Figure 3: Load distribution among sites (b = 8%).

Table 1: Feature categories

Type Category #

Pre-retrieval

Term lengths 8
Term IDFs 20
Term scores 32
Query language 1
Query popularity 15
Query performance 12

Post-retrieval
Local query score 8
LP forwarder decision 4

5.1 Feature Extraction
Given the model described above, each query q submitted

to a site si can be seen as the source of m different machine
learning instances qi,1, . . . , qi,m, where the data instance qi,j
will solely be used to train the binary classifier ci,j and con-
tains features about (i) the local site si, (ii) the remote site
sj , (iii) some third sites sk, where k /∈ {i, j},10 and (iv) any
meaningful combination of the previous options. Finally, the
label (i.e., our ground truth) of every query instantiation qi,j
is a binary variable indicating whether site sj contains at
least one document from R(q) \ (Di ∪Ri), i.e., a document
that should be in the top-k result set returned to the user
and not available in neither index in site si.

Table 1 shows a summary of the different feature cate-
gories that we have considered. It is important to note that
pre-retrieval features can be extracted prior to the local pro-
cessing of the query, whereas post-retrieval features can be
computed afterwards. We next give a brief description of
these different categories.
Term lengths, IDFs and scores. We extract some basic
features about the query and the terms in it. We also use
some per-term and per-site frequency statistics as well as
information on the maximum contribution of any term ap-
pearing in the site index to the score of a query containing
the term.11 As previously mentioned, we extract a number
of features from that information, including features that
try to capture the possible contribution of third sites to the
result set.

10 For instance, by encoding the maximum score that the lowest-
scoring term is able to achieve at a third site, we expect our query
forwarder to be more informed than the previous thresholding
models [3, 13], which by nature only take into account information
from the local-remote site pair.

11As pointed out in [12], the storage overhead of keeping this site×
term score matrix is negligible.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IG
 s

co
re

LP
Term IDF
Term scores
Query scores
Third site
Other

0

1000

2000

3000

4000

5000

6000

χ
2

 s
co

re

IG score
χ2 score

Figure 4: Individual feature scores.

Query language. Another feature which can be intuitively
expected to capture the relevance of the indexes in different
sites is the language of the query, especially given that doc-
uments are assigned to sites using language as a feature. We
try to predict the language of the query by using a character-
level, n-gram-based predictor.
Per-site query popularity. A simple set of features en-
coding information about whether the query belongs to the
most frequent queries issued to the local site si, for different
percentile-based definitions of most frequent queries.
Query performance. We also extract some features re-
lated to the query performance predictors: γ1 and γ2, which
predict how good the results of a query will be on a given
index [18]. These predictors are based on the distribution of
IDF values over different terms of a query and can be easily
computed in the pre-retrieval stage.
Local query score. This set contains a number of features
related to the scores obtained after processing the query on
the local index.
LP forwarder decision. We compute some features using
the LP-based query forwarding model described in [13].

5.2 Feature Evaluation
We investigate the importance of individual query fea-

tures by computing both the informational gain (IG) and
chi-squared (χ2) scores of each feature. IG measures the
reduction of entropy when the feature value is known, and
χ2 measures the lack of independence between a feature and
class values. Both metrics have been previously reported to
perform well as feature selection methods [24].

Figure 4 shows IG and χ2 scores averaged over the query
instances arising from different site pairs, and are ordered
by decreasing IG score types. The first thing to note is that
the relative performance of individual features is roughly the
same for both scores. As expected, the most informative
features are those extracted from the LP formulation. A bit
surprisingly, the post-retrieval query score features based on
the local processing of the query are less informative than
pre-retrieval features based on term scores and term IDFs.
However, we note that we are only measuring the perfor-
mance of features when they are considered in isolation.
Therefore, the informativeness of some feature combinations
might not be properly captured. It is also worth noting that
features capturing information of term scores in sites other
than the local-remote pair (labeled as the third site features)
carry a certain amount of information. Finally, let us note
that the features showing the worst performance are those
related to query popularity, on the one hand, and to query
language, on the other hand. This is probably due to the
difficulty of accurately predicting the language of queries,
given their very short length.

No

Pre-retrieval
classifier c > C

< F, c > Yes

Post-retrieval
classifier

Local query score
Local

query processor

Fq

ML query forwarder

F

Figure 5: Architecture of the ML query forwarder.

5.3 Machine-Learned Query Forwarder
Figure 5 illustrates the proposed machine-learned query

forwarder. The forwarder is composed of two different clas-
sifiers. On one hand, we have a pre-retrieval classifier which
only uses pre-retrieval features and thus can be run right
upon the reception of the query. Since this classifier dis-
misses post-retrieval features, however, it will predictably
be less accurate than the full post-retrieval classifier, which
employs all available features. In order to exploit the trade-
off between the result quality and efficiency, we choose to
trust the set F of forwarding decisions made by the pre-
retrieval classifier only if the confidence score c ∈ [0.5, 1] of
the classifier is high enough, i.e., higher than a given thresh-
old C.12 The ML architecture is thus parametrized by the
confidence threshold C, and different values of C will result
in query forwarders with different properties: lower thresh-
olds will be able to trigger the forwarding process earlier,
but at the cost of being less precise and thus producing both
worse results and a higher chance of unnecessarily overload-
ing remote sites. Also, we note that this architecture gives
us the option not to process the query locally, as opposed to
previous approaches.

As the classification model, we choose to combine a set
of 100 base decision trees through the bagging ensemble
method [9]. We use an off-the-shelf implementation of both
the bagging method and the fast REP classification tree pro-
vided by the WEKA package [17]. In our preliminary exper-
iments, other machine learning approaches such as random
forest classifiers showed slightly better accuracy rates, but
their training time was significantly larger. Given the large
number of classifiers and the size of the datasets, we chose
to use the bagging classifier.

In order to assess the value of using large training sets, we
analyze the accuracy of our pre-retrieval classifiers as the
amount of training queries increases, in the no-replication
scenario. We hold out a fraction of our training dataset for
testing purposes and train the forwarders with subsets of
varying size from the remaining fraction. The resulting ac-
curacies (averaged over all different site pairs) do not attain
any saturation point before reaching the maximum training
set size. Increasing the number of training queries from 10K
to 100K, for instance, raises the accuracy from 88.72% to
90.86%. Using all the available queries results in a further
boost up to 92.75% accuracy. We thus only report hence-
forth on query forwarders trained with the full training set.

5.4 Experiments on Performance
We now report the accuracy and the query locality metric

attained by our classification strategy and defer the discus-

12Note that this confidence score is actually the estimated prob-
ability of the decision to be right. Hence, since we are dealing
with a binary decision problem, the score always lies in the range
[0.5, 1].

0.5 0.6 0.7 0.8 0.9 1.0
Confidence threshold

0.75

0.80

0.85

0.90

0.95

1.00
Ac

cu
ra

cy
No replication
8% replication

ML
LP

(a) Accuracy.

0.5 0.6 0.7 0.8 0.9 1.0
Confidence threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

qu
er

y
lo

ca
lit

y

No replication
8% replication

ML
LP

Oracle

(b) Query locality.

Figure 6: Performance of different query forwarders.

Table 2: Confusion matrix values (%)

Replication budget (b)
0% 8%

TP TN FP FN TP TN FP FN
ORACLE 42.97 57.03 0.00 0.00 32.22 67.78 0.00 0.00
LP 42.97 33.14 23.89 0.00 32.21 50.26 17.53 0.00
ML0.5 38.61 54.14 2.89 4.36 28.56 65.79 1.99 3.66
ML0.75 40.41 54.67 2.36 2.57 30.41 63.43 4.35 1.81
ML1.0 40.64 54.64 2.39 2.33 30.72 61.49 6.29 1.50

sion of other metrics to Section 7. Figure 6(a) compares the
accuracy of our ML forwarder against that of the LP baseline,
varying the confidence threshold and assuming two different
replication scenarios (no replication and 8% identical repli-
cation). Table 2 further presents the true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN) rates (MLC stands for our ML forwarder with confidence
threshold C). We note that due to the false positives, in
some cases the ML forwarder has higher query locality than
ORACLE. In both replication scenarios, the accuracy of the ML

forwarder significantly exceeds that of the LP forwarder (for
any confidence threshold), due to the high FP rate of the LP
model. Unexpectedly, in the replicated scenario, the accu-
racy decreases as the confidence threshold increases, i.e., as
more queries are forwarded according to the post-retrieval
query forwarder. To investigate this issue, in Figure 7, we
show a graphical breakdown of the evolution of the confu-
sion matrix values for increasing confidence threshold val-
ues. The accuracy decrease in the replicated scenario turns
out to be caused by an increase in the FP rate, although
the FN rate actually decreases. This might be due to the
higher imbalance caused by document replication. A poten-
tial solution is to weight false positives and false negatives
non-uniformly, e.g., penalizing false positives more than false
negatives when training the classifiers. We explore this pos-
sibility and its outcome in Section 7.

Figure 6(b), on the other hand, compares the query local-
ity achieved by different forwarding strategies. As expected,
both LP and ML forwarders are able to exploit the higher
query locality allowed by the document replication. Com-
pared to the LP forwarder, however, the lower FP rates of
our approach ensure significant increase in query locality
(10%–20% more queries are locally processed). Again, we
note that in the replicated scenario, the increase in the FP
rate that we just mentioned has a negative impact on the
query locality for high confidence thresholds.

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Confidence score

0.0

0.2

0.4

0.6

0.8

1.0
TN rate
TP rate
FN rate
FP rate

0.55 1.000.0

0.1

(a) No replication.

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Confidence score

0.0

0.2

0.4

0.6

0.8

1.0
TN rate
TP rate
FN rate
FP rate

0.55 1.000.0

0.1

(b) 8% replication.

Figure 7: Confusion matrix values. The inset details the
lower section of the graph for easier visualization.

6. RESULT CACHING
Result caching is an important technique for improving

the performance of search engines. The results of recurrent
queries can be served by the cache, eliminating the need
to process the query on the index. In previously proposed
multi-site search architectures, each site typically maintains
its own result cache, which contains the results of queries
issued to itself. In this section, we are interested in designing
cache architectures for multi-site search engines, where the
search sites coordinate among each other to decide when
and where query results should be cached. The proposed
architectures further reduce the need for query forwarding.
We limit ourselves to infinite-capacity caches, as assumed
in [1]. To maintain the freshness of results served by the
cache, we expire cached entries with a simple time-to-live
(TTL) mechanism.

6.1 Result Caching Strategies
Local cache. A straightforward, yet common result caching
approach in multi-site search architectures is to assume a
local, independent cache in each search site [13]. When a
site receives a query whose results are already cached, the
results are served immediately by the local cache if the age
of the cached results is less than a predefined TTL value.
Otherwise, the query could be processed locally and also
forwarded to non-local sites depending on the decision of
the query forwarder. The lack of coordination between the
caches cause certain queries to be processed redundantly
although their results are already cached in one or more
search sites.
Global cache. An effective way to reduce the number of
queries that require processing is to replicate cached query
results on all sites. Once a query is added to the local cache
of a site, it is sent to the rest of the sites and cached also
remotely.13 This approach ensures that any site can serve
the query results from its cache (until the TTL expires).
Partial cache. In global caching approach, certain cache
entries are replicated on sites where they will never be re-
quested. Moreover, the storage and transmission overheads
are high. To alleviate these problems, the results of a query
may be replicated only on the sites where the query is for-
warded during the query processing. The intuition behind

13This can be achieved either on a per-query basis or in batch
mode, according to the desired trade-off between the hit rate and
the transmission cost.

1530 60 120 240 ∞

TTL (min)
0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
Hi

t r
at

e

Local
Partial/Forward
Global

(a) Hit rate w.r.t. TTL.

s1 s2 s3 s4 s5

Site
100

101

102

103

104

Ne
tw

or
k

ov
er

he
ad

 (M
B)

Forward
Partial

Global

(b) Network overhead.

Figure 8: Performance of different caching strategies.

this partial caching approach is that, since the contacted
sites are more likely to index documents relevant to the
query, the query will be issued to them with higher proba-
bility.
Forward cache. A variation of the above approach to re-
duce the transmission overhead is that, whenever a query
is forwarded from site si to site sj , sj caches a pointer to
site si. If sj receives the same query in the future, it sim-
ply requests the results from the cache on site si instead
of processing the query. The validity of the cached pointer
entries are expired by the same TTL mechanism used be-
fore. Queries that are processed locally are maintained in
the cache as in the local caching approach.

6.2 Experiments on Performance
In this section, we evaluate the performance of different re-

sult caching strategies. Figure 8(a) shows the hit rate as the
value of TTL increases. As expected, the global caching ap-
proach consistently achieves the highest hit rate compared
to other strategies, as the results of queries are replicated
across all caches. Taking a TTL of 2 hours as an example,
the average hit rate of in case of a global cache is 3.4% higher
than that in case of a local cache, and 1.1% higher than those
in case of partial cache and forward cache.14 In Figure 8(b),
we observe that the global cache incurs higher network and
storage overheads. Nevertheless, since our caches have un-
limited capacity and the transmission of cached results be-
tween sites can be performed offline, we choose to focus only
on the performance of the global caching approach in the rest
of the paper.

In Figure 9, we show that the query locality increases
along with the TTL value, for both replication budgets (0%
and 8%) and query forwarding strategies that we take into
consideration. More importantly, we observe that the pro-
posed ML query forwarder outperforms the baselines for all
TTL values. Besides, even if the difference between not us-
ing a cache (i.e., zero TTL) and using a cache (e.g., a TTL
of minutes) decreases when documents are replicated, using
a cache still improves the query locality by at least 9.3% for
different query forwarding strategies.

7. GLOBAL RESULTS
In this section, we report the performance in terms of re-

sult quality, query response time, and system workload. We
first report on these metrics independently and then study

14We assume that the queries are forwarded by the ORACLE for-
warder.

0 1530 60 120 240 ∞

TTL (min)

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

qu
er

y
lo

ca
lit

y

ML,c=0.5
ML,c=0.75
ML,c=1
LP
Oracle

(a) No replication.

0 1530 60 120 240 ∞

TTL (min)

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

qu
er

y
lo

ca
lit

y

ML,c=0.5
ML,c=0.75
ML,c=1
LP
Oracle

(b) 8% replication.

Figure 9: Impact of global cache on query locality.

Table 3: Quality metrics at different result positions (p)

Replication budget (b)
0% 8%

C p O@p N@p E@p O@p N@p E@p

0.5
1 0.965 0.965 96.52 0.970 0.971 97.04
5 0.957 0.959 94.41 0.964 0.965 95.33
10 0.934 0.945 82.73 0.944 0.953 85.54

0.75
1 0.983 0.983 98.32 0.991 0.991 99.07
5 0.978 0.979 97.07 0.987 0.988 98.21
10 0.964 0.971 89.22 0.977 0.982 92.34

1.0
1 0.988 0.988 98.84 0.997 0.997 99.69
5 0.983 0.984 97.61 0.994 0.994 98.92
10 0.970 0.976 90.23 0.984 0.989 93.66

the combined effect of different strategies.15 Table 3 shows
some result quality metrics for our ML forwarder assuming
three different confidence thresholds C ∈ {0.5, 0.75, 1.0} at
different rank positions p ∈ {1, 5, 10}. O@p, N@p and E@p
stand for overlap@p, NDCG@p and EMR@p, respectively.
The results are consistent with what we saw in the previous
sections: as the confidence threshold increases, the qual-
ity improves (according to all metrics). This is because the
post-retrieval forwarder, which has a smaller FN rate, is used
more often.

In Figure 10, we analyze the variation of query response
time across different queries. The figure shows the cumula-
tive percentage of queries that are answered below a certain
time threshold. In the scenario with replication, for instance,
53.51% of the test queries are answered in less than 300ms
when using the LP forwarder, whereas by using our ML strat-
egy, this percentage is increased to a value in the 62.09%–
71.43% range, depending on the confidence threshold.

We now turn our attention to the trade-off between both
metrics, this time taking into account the impact of caching
strategies (Figure 11(a)). In the figure, the solid markers de-
note a simulation without caching while the hollow markers
include the effect of a global cache with a two-hour TTL. The
markers from left to right correspond to ML forwarders with
increasing confidence threshold C ∈ [0.5, 1]. As expected,
the average response time increases as the result quality in-
creases. Without caching and taking the LP forwarder as
a baseline, the proposed ML forwarder achieves a significant
reduction in average response time: in the 20%–22% range
(no replication) or 15%–25% (8% replication), depending on

15Note that caching has no impact on the result quality.

0 100 200 300 400 500 600 700 800 900 1000
Response time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(A

cc
um

ul
at

ed
) F

ra
ct

io
n

of
 q

ue
rie

s

Oracle
LP
ML,c=0.5
ML,c=1

(a) No replication.

0 100 200 300 400 500 600 700 800 900 1000
Response time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(A
cc

um
ul

at
ed

) F
ra

ct
io

n
of

 q
ue

rie
s

Oracle
LP
ML,c=0.5
ML,c=1

(b) 8% replication.

Figure 10: Distribution of the query response time.

the confidence threshold, in exchange for a small loss in re-
sult quality. If we focus on the scenario with replication and
pick a confidence threshold of 0.7, our approach offers an
improvement of 19.5% in the average response time while
the average NDCG remains as high as 0.978, and 91.65% of
queries obtain a result set identical to that of a centralized
architecture. We omit the relative improvements in query
processing workload since they follow a similar pattern.

Regarding the impact of the cache layer, we observe that
caching neutralizes the advantages of replication as far as
the response time is concerned, up to the point where larger
index sizes due to replication and the induced larger query
processing time outweighs the benefits achieved by the repli-
cation itself. This might be partly due to the fact that the
replication strategy is specifically tailored to query frequen-
cies in the original query stream, which is largely modified by
the presence of a cache layer. To circumvent this problem,
one should simulate a fixed caching strategy paired with a
fixed TTL value and tailor the replication decisions to the
resulting, post-cache query stream.
Varying training weights. In Section 5.4, we hinted at
an alternative, orthogonal way of exploring the quality-time
trade-off that consisted of modifying the balance between
false positives and false negatives by weighting them non-
uniformly while training the query forwarder. We show the
results of applying this strategy in Figure 11(b), where for
easier visualization only a scenario with 8% replication cou-
pled with a global cache with a two-hour TTL, is depicted.
w=x stands for a ML forwarder such that during the train-
ing phase an FP is considered x times as negative as an FN
(e.g., the w=−2 stands for those forwarders where an FN
is considered twice as harmful as an FP). It can be seen
that this strategy further widens the flexibility that the ML

forwarder offers to the system designer. In exchange for a
larger quality loss, the average query response time can now
be decreased to as little as 137ms (a 40% reduction with re-
spect to the LP forwarder). More interestingly, on the other
extreme, we can reach a 0.99 NDCG quality and decrease
the average response time to 176ms, which is almost as good
as the ORACLE forwarder. This means a significant reduction
of 24% with respect to the state-of-the-art LP forwarder.16

8. RELATED WORK
There is a rich literature on query forwarding, document

replication, and result caching. Herein, we provide a brief

16These response time gains (not shown in the figure) are virtually
the same even without the cache layer.

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
Average NDCG

150

200

250

300

350

400

Av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s) ML
Oracle

LP

No replication
8% replication

Global, TTL=2h
No cache

(a) No training weights.

0.88 0.90 0.92 0.94 0.96 0.98 1.00
Average NDCG

120

140

160

180

200

220

240

Av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

w=5
w=0
w=2

w=-5
w=-2

ML
LP

Oracle

(b) Varying training weights.

Figure 11: Trade-off between result quality and time.

survey of related work on these topics, limiting the context
to multi-site web search. A broader survey on scalability
and efficiency of web search engines can be found in [10].
Query forwarding. In the multi-site web search frame-
work, the query forwarding problem is first investigated by
Baeza-Yates et al. [3]. The authors propose a simple tech-
nique for estimating the maximum score a query can achieve
on each search site. The forwarding decisions are made
based on the outcome of a comparison between the esti-
mated maximum scores and the lowest score in the top k
result set computed by the local search site. The authors
show that, with the proposed technique, many queries can
be processed solely in local search sites without sacrificing
the result quality. The work of Cambazoglu et al. [10] fur-
ther increases the rate of locally processed queries by us-
ing a linear-programming technique. The technique exploits
the co-occurrence of query terms in documents and yields
tighter upper bound score estimations. In our work, we use a
machine-learned query forwarding technique, which achieves
further performance improvements over the linear program-
ming model used in [13]. Finally, Baeza-Yates et al. [4] also
investigate the use of machine learning techniques in a dis-
tributed search engine, although the scope of their simula-
tion is much more limited and their focus is on two-tiered
systems with high index size imbalance.
Document replication. There are two prior studies on
document replication in multi-site web search engines [8,
21]. Brefeld et al. [8] employ machine learning techniques to
select the data center(s) where a newly discovered document
should be replicated. Since no past popularity information
(i.e., the number of views in web search results) is available
for new documents, the features used by the learning model
are mainly extracted from the document content (e.g., the
language feature). Kayaaslan et al. [21] consider a scenario
where past popularity information is available for every doc-
ument. They propose three algorithmic optimizations that
aim to reduce the response latency, query processing work-
load, and the loss in result quality. The replication heuristic
proposed in our work achieves further improvements over
the heuristic described in [21] in terms of the query local-
ity metric. Besides [8] and [21], Cambazoglu et al. [13] also
evaluate a simple replication heuristic, where a small frac-
tion of frequently viewed documents are replicated on all
search sites. However, document replication does not form
the main focus of their work. Finally, Blanco et al. [7] in-
vestigate the problem of assigning documents to search sites
with the most similar content, obtaining a one-to-one map-
ping between the newly crawled documents and search sites.

Result caching. Result caching is long recognized as an
important technique for improving search engine perfor-
mance [22]. So far, various caching policies are proposed
to increase the hit rates [2, 15] or to reduce the query work-
load of search backends [16, 23]. Recent studies mainly focus
on refreshing result caches [11, 20] and cache invalidation [1,
5, 6]. To the best of our knowledge, our work is the first to
investigate result caching strategies in the context of multi-
site web search.

9. CONCLUSIONS
In this paper, we studied the interplay between three im-

portant mechanisms in a multi-site web search engine: docu-
ment replication, query forwarding, and result caching. For
each of these mechanisms, we proposed new strategies that
outperform the existing state-of-the-art approaches. Most
notably, we explored the fundamental trade-off between re-
sult quality, on the one hand, and query response time and
system workload, on the other hand. The use of a machine-
learned query forwarding strategy can allow system design-
ers to exploit this trade-off and obtain significant improve-
ments in query response time and overall system workload,
in exchange for a little quality loss. We note that our ma-
chine learning technique can be improved through active
learning on forwarding mistakes, i.e., adding false positives
and false negatives to the training data.

10. ACKNOWLEDGEMENTS
This work was supported by the LEADS project (ICT-

318809), funded by the European Community, and the Tor-
res Quevedo Program from the Spanish Ministry of Science
and Innovation, co-funded by the European Social Fund.

11. REFERENCES
[1] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and

O. Ulusoy. Timestamp-based result cache invalidation for
web search engines. In Proc. 34th Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval, pages
973–982, 2011.

[2] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The impact of caching on
search engines. In Proc. 30th Int’l ACM Conf. Research
and Development in Information Retrieval, pages 183–190,
2007.

[3] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Plachouras,
and L. Telloli. On the feasibility of multi-site web search
engines. In Proc. 18th ACM Int’l Conf. Information and
Knowledge Management, pages 425–434, 2009.

[4] R. Baeza-Yates, V. Murdock, and C. Hauff. Efficiency
trade-offs in two-tier web search systems. In Proc. 32nd
Int’l ACM Conf. Research and Development in
Information Retrieval, pages 163–170, 2009.

[5] X. Bai and F. P. Junqueira. Online result cache
invalidation for real-time web search. In Proc. 35th Int’l
ACM SIGIR Conf. Research and Development in
Information Retrieval, pages 641–650, 2012.

[6] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel,
L. Telloli, and H. Zaragoza. Caching search engine results
over incremental indices. In Proc. 33rd Int’l ACM SIGIR
Conf. Research and Development in Information Retrieval,
pages 82–89, 2010.

[7] R. Blanco, B. B. Cambazoglu, F. P. Junqueira, I. Kelly,
and V. Leroy. Assigning documents to master sites in
distributed search. In Proc. 20th ACM Int’l Conf.
Information and Knowledge Management, pages 67–76,
2011.

[8] U. Brefeld, B. B. Cambazoglu, and F. P. Junqueira.
Document assignment in multi-site search engines. In Proc.
4th ACM Int’l Conf. Web Search and Data Mining, pages
575–584, 2011.

[9] L. Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

[10] B. B. Cambazoglu and R. Baeza-Yates. Scalability
challenges in web search engines. In M. Melucci,
R. Baeza-Yates, and W. B. Croft, editors, Advanced Topics
in Information Retrieval, volume 33 of The Information
Retrieval Series, pages 27–50. Springer Berlin Heidelberg,
2011.

[11] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras,
S. Banachowski, B. Cui, S. Lim, and B. Bridge. A
refreshing perspective of search engine caching. In Proc.
19th Int’l Conf. World Wide Web, pages 181–190, 2010.

[12] B. B. Cambazoglu, V. Plachouras, F. Junqueira, and
L. Telloli. On the feasibility of geographically distributed
web crawling. In Proc. 3rd Int’l Conf. Scalable Information
Systems, pages 31:1–31:10, 2008.

[13] B. B. Cambazoglu, E. Varol, E. Kayaaslan, C. Aykanat,
and R. Baeza-Yates. Query forwarding in geographically
distributed search engines. In Proc. 33rd Int’l ACM Conf.
Research and Development in Information Retrieval, pages
90–97, 2010.

[14] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher
Education, 2nd edition, 2001.

[15] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting
the performance of web search engines: caching and
prefetching query results by exploiting historical usage
data. ACM Trans. Inf. Syst., 24(1):51–76, 2006.

[16] Q. Gan and T. Suel. Improved techniques for result caching
in web search engines. In Proc. 18th Int’l Conf. World
Wide Web, pages 431–440, 2009.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data mining
software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[18] B. He and I. Ounis. Inferring query performance using
pre-retrieval predictors. In String Processing and
Information Retrieval, pages 43–54. Springer, 2004.

[19] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[20] S. Jonassen, B. B. Cambazoglu, and F. Silvestri.
Prefetching query results and its impact on search engines.
In Proc. 35th Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval, pages 631–640,
2012.

[21] E. Kayaaslan, B. B. Cambazoglu, and C. Aykanat.
Document replication strategies for geographically
distributed web search engines. Inf. Process. Manage.,
49(1):51–66, 2013.

[22] E. P. Markatos. On caching search engine query results.
Computer Comm., 24(2):137–143, 2001.

[23] R. Ozcan, I. S. Altingovde, and O. Ulusoy. Cost-aware
strategies for query result caching in web search engines.
ACM Trans. Web, 5(2):9:1–9:25, 2011.

[24] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proc. 14th Int’l
Conf. Machine Learning, pages 412–420, 1997.

