DecAbStar

Daniel Gnad', Silvan Sievers?, Alvaro Torralba’

! Linkoping University, Sweden
2 University of Basel, Switzerland
3 Aalborg University, Denmark
daniel.gnad @liu.se, silvan.sievers @unibas.ch, alto@cs.aau.dk

Abstract

DecAbStar extends Fast Downward by Decoupled state space
search, a technique that exploits the independence between
components of a planning task to reduce the size of the
state-space representation. Partitioning the state variables into
components, such that the interaction between these takes the
form of a Star topology, decoupled search only searches over
action sequences affecting the center component of the topol-
ogy, and enumerates reachable assignments to each leaf com-
ponent separately. This can lead to an exponential reduction
in the search-space representation size. It is not always easy
to find a partitioning for a given planning task, though, so
we extend decoupled search by a fallback option which runs
explicit-state search whenever no (good) partitioning could
be found. DecAbstar uses Abstraction heuristics to guide the
search both in the decoupled and explicit search component.

General Overview

Decoupled search reduces the representation size of search
spaces by exploiting the structure of the problem within the
search (Gnad and Hoffmann 2015; Gnad, Hoffmann, and
Domshlak 2015; Gnad and Hoffmann 2018). The size of the
decoupled state space can be exponentially smaller than that
of the explicit state space, which decoupled search achieves
by partitioning the task into several components, called fac-
tors, trying to identify a star topology with a single center
factor that interacts with multiple leaf factors. By enforcing
this structure, and thereby restricting the dependencies be-
tween the components, decoupled search has proven to be
very efficient and competitive with state-of-the-art planners.

The performance of decoupled search is highly influenced
by the outcome of the factoring process, i.e., the process of
partitioning the state variables. Just, how to find a good fac-
toring, and what qualifies a factoring as being good? These
questions have been addressed by Gnad, Poser, and Hoff-
mann (2017); Schmitt, Gnad, and Hoffmann (2019); Gnad,
Torralba, and FiSer (2022), who devised algorithms that can
detect star topologies on a wide range of planning domains.
Still, the proposed algorithms can fail to find a factoring,
or succeed, but return a factoring with undesired properties,
e. g., large leaf components that incur a prohibitive runtime
overhead when generating new search states. In this case, we
simply run explicit-state search instead.

In decoupled search, dominance pruning instead of dupli-
cate checking is performed to prune previously seen states
during search. Dominance pruning identifies states that can
be safely discarded without affecting completeness and op-
timality. Since decoupled states represent sets of states, de-
coupled search is less likely to find exact duplicates and
dominance pruning can be exponentially stronger compared
to duplicate checking in explicit-state search. We employ the
dominance pruning techniques introduced by Gnad (2021).

We guide the search using a diverse set of abstraction
heuristics, namely explicit pattern database (PDB) heuristics
(Culberson and Schaeffer 1998; Edelkamp 2001), symbolic
PDB heuristics (Edelkamp 2002; Kissmann and Edelkamp
2011; Torralba, Linares Lépez, and Borrajo 2018), and
merge-and-shrink heuristics (Helmert et al. 2014; Sievers
and Helmert 2021). We combine multiple explicit PDBs
in saturated cost partitionings (Seipp, Keller, and Helmert
2020). All these heuristics have recently been adapted to
work in decoupled search (Sievers, Gnad, and Torralba
2022; Gnad, Sievers, and Torralba 2023). Variants of these
heuristics are used in decoupled search as well as in the fall-
back case, i. e., when no good factoring could be detected.

We extend the standard preprocessor of Fast Downward
with the h2-based task simplification by Alcézar and Tor-
ralba (2015), which removes irrelevant and unreachable
facts and actions from the task.

Implementation & Configurations

Decoupled Search has been implemented as an extension of
the Fast Downward (FD) planning system (Helmert 2006).
By changing the low-level state representation, many of
FD’s built-in algorithms and functionality can be used with
only minor adaptations. We perform decoupled search like
introduced by Gnad and Hoffmann (2018), using the fac-
toring method called bM80s by Gnad, Torralba, and FiSer
(2022). The factoring process is given a time limit of 30
seconds. After FD’s translator component finishes, we per-
form a relevance analysis based on h? for 4 minutes to elim-
inate actions and simplify the planning task prior to the
search (Alcazar and Torralba 2015).

Decoupled search is the main component of our planner.
However, as outlined before, our factoring strategies are not
guaranteed to find good task decompositions. Thus, in that
case we run explicit-state search as fallback method. Our

implementation of decoupled search does not support con-
ditional effects, so we also fall back to explicit-state search
in their presence. For the same reason, we switch off ex-
plicit PDB heuristics if there are conditional effects. More
advances PDDL features such as derived predicates or ax-
ioms are not supported by the planner.

We perform a single A* search using three heuristics,
combined using maximum:

¢ For explicit PDBs, we combine a set of PDB heuristics
using saturated cost partitioning, adapting code from the
Scorpion planner for the latter (Seipp 2018). We com-
pute patterns by running the multiple CEGAR algorithm
by Rovner, Sievers, and Helmert (2019) for 70s, system-
atically generating all interesting patterns up to size 2
(Pommerening, Roger, and Helmert 2013) for 70s, and
running hill climbing for 110s. We then compute a set
of diverse (heuristic) orders for these PDBs for 110s,
each optimized using dynamic greedy ordering for 2s
(Seipp, Keller, and Helmert 2020). When running de-
coupled search, we use the single-leaf approximation to
obtain an efficient heuristic computation (Sievers, Gnad,
and Torralba 2022).

* For symbolic PDBs, abstractions are computed with
Gamer PDBs (Kissmann and Edelkamp 2011), using the
symbolic search enhancements by Torralba et al. (2017)
and the CUDD 3.0.0 library (Somenzi 1997). We give
350s and 4GiB to compute the abstraction when running
decoupled search, 500s and 4GiB for explicit-state search
in absence of conditional effects, and 550s and 5GiB in
presence of conditional effects. When running decoupled
search, we use the ADD traversal lookup to obtain an
efficient heuristic computation (Gnad, Sievers, and Tor-
ralba 2023).

e For merge-and-shrink heuristics, we run the sbMI-
ASM merge strategy (Sievers, Wehrle, and Helmert
2016), using bisimulation shrinking (Nissim, Hoffmann,
and Helmert 2011), and exact label reduction (Sievers,
Wehrle, and Helmert 2014). We limit the size of each
intermediate abstraction to 50.000 states. For decoupled
search, we cluster the variables using the factoring to
obtain an efficient heuristic computation by forcing the
factored mapping to be compliant with the factoring.
For explicit-state search, we cluster the variables using
the strongly connected components of the causal graph
(Sievers, Wehrle, and Helmert 2016). We impose a run-
time limit of 450s to construct the heuristic for decoupled
search, 600s for explicit-state search without conditional
effects, and 650s in presence of conditional effects.

Post-Competition Analysis

We analyzed the competition results by investigating the log
files that have been provided by the organizers. Table 1 sum-
marizes our findings in a per-domain analysis for all compe-
tition domains. The first two columns, F and “oom”, show
the number of instances in which a factoring was detected,
so decoupled search was in play, respectively in which the
preprocessing of the heuristics ran out of memory. Our first

Coverage
Domain #| F | oom || Dec. Expl. |>"
folding 200 O 9 0 21 2
folding™¥ 200 O 10 0 21 2
labyrinth 20| 0| 15 0 1] 1
quantum-layout 20|20 1 12 0]12
recharging-robots 20| 4 2 4 0| 4
recharging-robots™ 20 | 4 4 4 6|10
ricochet-robots 200 O 0 0 7 7
rubiks-cube 200 0| 20 0 0] O
rubiks-cube™ 200 0| 20 0 0| O
slitherlink 200 O 20 0 0] 0
slitherlink ™ 200 0| 13 0 5| 5
> 220 |28 | 114 20 23|43

Table 1: Per-domain analysis of the preprocessing and cov-
erage. F shows the number of instances for which a non-
trivial factoring can be computed; “oom” shows the number
of instances in which the planner ran out of memory when
pre-computing the heuristics. The right part shows coverage
for decoupled search (“Dec.”), explicit search (“Expl.”), and
the total coverage.

observation is that there are only two domains, quantum-
layout and recharging-robots, in which decoupled search can
actually be performed. This is a quite low number compared
to previous competitions. Hence, the results mostly show
the behaviour of explicit-state search. Second, the number
of out-of-memory instances during preprocessing indicates
that we were a bit too generous with the memory given to the
heuristics. This might have been amplified by the implemen-
tation of the external memory limit, which enforced 8GiB
for the entire process, out of which the Apptainer reserves
a significant chunk. With that, the planner did not even start
the search in 114 out of 220 instances.

The right part of the table shows detailed coverage re-
sults, distinguishing decoupled search from explicit search.
We observe that from the 28 instances tackled by decoupled
search, 20 were solved. Explicit search solves an additional
23 instances, summing up to a total coverage of 43.

Acknowledgments

Since we build upon Fast Downward and code from Scor-
pion, we would like to thank all contributors to these plan-
ners.

References

Alcézar, V.; and Torralba, A. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2—6. AAAI Press.

Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318-334.

Edelkamp, S. 2001. Planning with Pattern Databases. In
Cesta, A.; and Borrajo, D., eds., Proceedings of the Sixth Eu-

ropean Conference on Planning (ECP 2001), 84-90. AAAI
Press.

Edelkamp, S. 2002. Symbolic Pattern Databases in Heuris-
tic Search Planning. In Ghallab, M.; Hertzberg, J.; and
Traverso, P., eds., Proceedings of the Sixth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2002), 274-283. AAAI Press.

Gnad, D. 2021. Revisiting Dominance Pruning in Decou-
pled Search. In Leyton-Brown, K.; and Mausam, eds., Pro-
ceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2021), 11809-11817. AAAI Press.
Gnad, D.; and Hoffmann, J. 2015. Beating LM-Cut with
h™ (Sometimes): Fork-Decoupled State Space Search. In
Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein, S.,
eds., Proceedings of the Twenty-Fifth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2015),
88-96. AAAI Press.

Gnad, D.; and Hoffmann, J. 2018. Star-Topology Decoupled
State Space Search. Artificial Intelligence, 257: 24—60.
Gnad, D.; Hoffmann, J.; and Domshlak, C. 2015. From Fork
Decoupling to Star-Topology Decoupling. In Lelis, L.; and
Stern, R., eds., Proceedings of the Eighth Annual Sympo-
sium on Combinatorial Search (SoCS 2015), 53-61. AAAI
Press.

Gnad, D.; Poser, V.; and Hoffmann, J. 2017. Beyond Forks:
Finding and Ranking Star Factorings for Decoupled Search.
In Sierra, C., ed., Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI 2017), 4310—
4316. IJCAL

Gnad, D.; Sievers, S.; and Torralba, A. 2023. Efficient Eval-
uation of Large Abstractions for Decoupled Search: Merge-
and-Shrink and Symbolic Pattern Databases. In Koenig, S.;
Stern, R.; and Vallati, M., eds., Proceedings of the Thirty-
Third International Conference on Automated Planning and
Scheduling (ICAPS 2023), 138-147. AAAI Press.

Gnad, D.; Torralba, A.; and Fiser, D. 2022. Beyond
Stars - Generalized Topologies for Decoupled Search. In
Thiébaux, S.; and Yeoh, W., eds., Proceedings of the Thirty-
Second International Conference on Automated Planning
and Scheduling (ICAPS 2022), 110-118. AAAI Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191-246.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1-63.

Kissmann, P.; and Edelkamp, S. 2011. Improving Cost-
Optimal Domain-Independent Symbolic Planning. In Bur-
gard, W.; and Roth, D., eds., Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2011),
992-997. AAAI Press.

Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing Perfect Heuristics in Polynomial Time: On Bisimulation
and Merge-and-Shrink Abstraction in Optimal Planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 1983—
1990. AAAI Press.

Pommerening, F.; Roger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning.
In Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357—
2364. AAAI Press.

Rovner, A.; Sievers, S.; and Helmert, M. 2019.
Counterexample-Guided Abstraction Refinement for
Pattern Selection in Optimal Classical Planning. In Lipovet-
7Ky, N.; Onaindia, E.; and Smith, D. E., eds., Proceedings
of the Twenty-Ninth International Conference on Automated
Planning and Scheduling (ICAPS 2019), 362-367. AAAI
Press.

Schmitt, F.; Gnad, D.; and Hoffmann, J. 2019. Advanced
Factoring Strategies for Decoupled Search Using Linear
Programming. In Lipovetzky, N.; Onaindia, E.; and Smith,
D. E., eds., Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling (ICAPS
2019), 377-381. AAAI Press.

Seipp, J. 2018. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
77-79.

Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129-167.

Sievers, S.; Gnad, D.; and Torralba, A. 2022. Additive
Pattern Databases for Decoupled Search. In Chrpa, L.;
and Saetti, A., eds., Proceedings of the 15th Annual Sym-
posium on Combinatorial Search (SoCS 2022), 180-189.
AAALI Press.

Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71:781-883.

Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
Label Reduction for Merge-and-Shrink Heuristics. In Brod-
ley, C. E.; and Stone, P., eds., Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence (AAAI
2014), 2358-2366. AAAI Press.

Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An Analy-
sis of Merge Strategies for Merge-and-Shrink Heuristics. In
Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and San-
ner, S., eds., Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS
2016), 294-298. AAAI Press.

Somenzi, F. 1997. CUDD: CU decision diagram package.
Technical report, University of Colorado at Boulder.

Torralba, A.; Alcézar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient Symbolic Search for Cost-optimal Planning.
Artificial Intelligence, 242: 52-79.

Torralba, A.; Linares Lépez, C.; and Borrajo, D. 2018. Sym-
bolic perimeter abstraction heuristics for cost-optimal plan-
ning. Artificial Intelligence, 259: 1-31.

