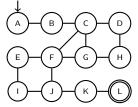
On Variable Dependencies and Compressed Pattern Databases

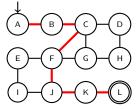
Malte Helmert¹ Nathan Sturtevant² Ariel Felner³

University of Basel, Switzerland
 University of Denver, USA
 Ben Gurion University, Israel

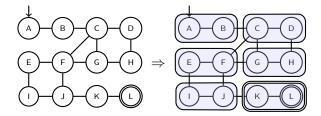
SoCS 2017

Introduction

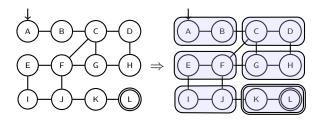

Quotation

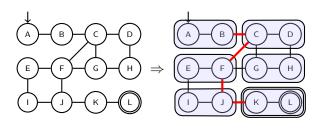

previous work on compressed pattern databases:

Sturtevant, Felner and Helmert (SoCS 2014)

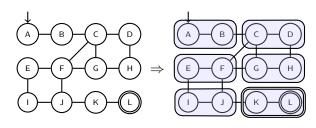

"This approach worked very well for the 4-peg Towers of Hanoi, for instance, but its success for the sliding tile puzzles was limited and no significant advantage was reported for the Top-Spin domain (Felner et al., 2007)."

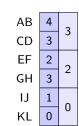
this paper: try to understand why

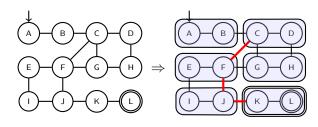



$$h^*(A) = 6$$

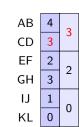
$$h^*(A) = 6$$


$$h^*(A) = 6$$


$$h^*(A) = 6$$
$$h_{PDB}(A) = 4$$


AB 4
CD 3
EF 2
GH 3
IJ 1

KL



$$h^*(A) = 6$$

 $h_{PDB}(A) = 4$
 $h_{PDB}^{comp}(A) = 3$

$$h^*(A) = 6$$

 $h_{PDB}(A) = 4$
 $h_{PDB}^{comp}(A) = 3$

Comparing PDBs to Compressed PDBs

Assume we have N units of memory.

Consider three heuristics:

- h_F : fine-grained PDB ($M \gg N$ entries)
- h_F^{comp} : compressed fine-grained PDB (N entries)
- h_C: coarse-grained PDB (N entries)

Which one should we use, h_F^{comp} or h_C ?

				h_F^{comp}		
State Space	M/N	h_F	MOD	DIV	random	h_C
Hanoi	4	104.32	87.04	103.76	90.08	87.04
Sliding Tiles A	10	34.99	29.89	32.08	26.38	32.08
Sliding Tiles B	10	34.99	30.50	32.84	26.38	15.29
TopSpin	12	10.78	9.29	9.59	8.73	9.59

- Hanoi: 4 pegs and 16 disks; pattern with 15 disks
- Sliding Tiles A: 4×4 puzzle; pattern $\langle blank, 1, 2, 3, 4, 5, 6 \rangle$
- Sliding Tiles B: 4×4 puzzle; pattern (6, 5, 4, 3, 2, 1, blank)
- TopSpin: 18 tokens and turnstile size 4; pattern with 7 tokens

				h _F comp		
State Space	M/N	h_F	MOD	DIV	random	h _C
Hanoi	4	104.32	87.04	103.76	90.08	87.04
Sliding Tiles A	10	34.99	29.89	32.08	26.38	32.08
Sliding Tiles B	10	34.99	30.50	32.84	26.38	15.29
TopSpin	12	10.78	9.29	9.59	8.73	9.59

 h_F^{comp} better than h_C on average

- Hanoi: 4 pegs and 16 disks; pattern with 15 disks
- Sliding Tiles A: 4×4 puzzle; pattern $\langle blank, 1, 2, 3, 4, 5, 6 \rangle$
- Sliding Tiles B: 4×4 puzzle; pattern (6, 5, 4, 3, 2, 1, blank)
- TopSpin: 18 tokens and turnstile size 4; pattern with 7 tokens

				h_F^{comp}		
State Space	M/N	h_F	MOD	DIV	random	h _C
Hanoi	4	104.32	87.04	103.76	90.08	87.04
Sliding Tiles A	10	34.99	29.89	32.08	26.38	32.08
Sliding Tiles B	10	34.99	30.50	32.84	26.38	15.29
TopSpin	12	10.78	9.29	9.59	8.73	9.59

 h_F^{comp} worse than h_C on average

- Hanoi: 4 pegs and 16 disks; pattern with 15 disks
- Sliding Tiles A: 4×4 puzzle; pattern $\langle blank, 1, 2, 3, 4, 5, 6 \rangle$
- Sliding Tiles B: 4×4 puzzle; pattern (6, 5, 4, 3, 2, 1, blank)
- TopSpin: 18 tokens and turnstile size 4; pattern with 7 tokens

				h_F^{comp}		
State Space	M/N	h_F	MOD	DIV	random	h _C
Hanoi	4	104.32	87.04	103.76	90.08	87.04
Sliding Tiles A	10	34.99	29.89	32.08	26.38	32.08
Sliding Tiles B	10	34.99	30.50	32.84	26.38	15.29
TopSpin	12	10.78	9.29	9.59	8.73	9.59

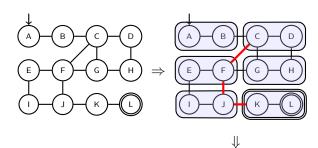
 h_F^{comp} equal to h_C on average

- Hanoi: 4 pegs and 16 disks; pattern with 15 disks
- Sliding Tiles A: 4×4 puzzle; pattern $\langle blank, 1, 2, 3, 4, 5, 6 \rangle$
- Sliding Tiles B: 4×4 puzzle; pattern (6, 5, 4, 3, 2, 1, blank)
- TopSpin: 18 tokens and turnstile size 4; pattern with 7 tokens

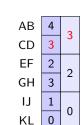
Dominance of Compressed PDBs

Theorem (dominance of compressed PDBs)

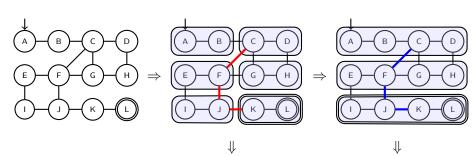
Let h_F and h_C be heuristics such that h_F is a refinement of h_C . Consider compressed heuristics with a compression regime that is compatible with h_F and h_C .

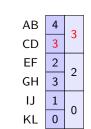

Then

$$h_F^{comp}(s) \geq h_C(s)$$

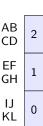

for all states s.

informally: compression step applies further abstraction on top of the abstraction h_F

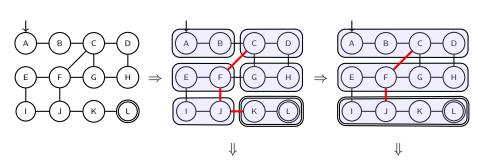

Dominance of Compressed PDBs: Proof Idea


$$h^*(A) = 6$$

 $h_F(A) = 4$
 $h_F^{comp}(A) = 3$



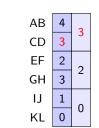
Dominance of Compressed PDBs: Proof Idea

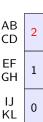


$$h^*(A) = 6$$

 $h_F(A) = 4$
 $h_F^{comp}(A) = 3$

Dominance of Compressed PDBs: Proof Idea




$$h^*(A) = 6$$

$$h_F(A) = 4$$

$$h_F^{comp}(A) = 3$$

$$h_C(A) = 2$$

Dominance of Compressed PDBs: Experimental Results

				h _F comp		
State Space	M/N	h_F	MOD	DIV	random	h_C
Hanoi	4	104.32	87.04	103.76	90.08	87.04
Sliding Tiles A	10	34.99	29.89	32.08	26.38	32.08
Sliding Tiles B	10	34.99	30.50	32.84	26.38	15.29
TopSpin	12	10.78	9.29	9.59	8.73	9.59

- Hanoi: 4 pegs and 16 disks; pattern with 15 disks
- Sliding Tiles A: 4×4 puzzle; pattern $\langle blank, 1, 2, 3, 4, 5, 6 \rangle$
- Sliding Tiles B: 4×4 puzzle; pattern (6, 5, 4, 3, 2, 1, blank)
- TopSpin: 18 tokens and turnstile size 4; pattern with 7 tokens

Dominance of Compressed PDBs: Experimental Results

				h _F comp		
State Space	M/N	h_F	MOD	DIV	random	h _C
Hanoi	4	104.32	87.04	103.76	90.08	87.04
Sliding Tiles A	10	34.99	29.89	32.08	26.38	32.08
Sliding Tiles B	10	34.99	30.50	32.84	26.38	15.29
TopSpin	12	10.78	9.29	9.59	8.73	9.59

 $h_F^{comp}(s) \ge h_C(s)$ for all states according to the theorem

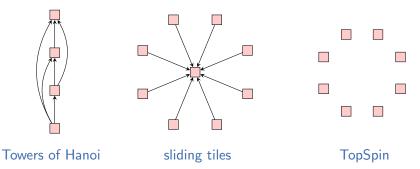
- Hanoi: 4 pegs and 16 disks; pattern with 15 disks
- Sliding Tiles A: 4×4 puzzle; pattern $\langle blank, 1, 2, 3, 4, 5, 6 \rangle$
- Sliding Tiles B: 4×4 puzzle; pattern (6, 5, 4, 3, 2, 1, blank)
- TopSpin: 18 tokens and turnstile size 4; pattern with 7 tokens

State Variables

States are described in terms of state variables.

Examples:

- Towers of Hanoi: position of one disk
- sliding tiles: position of a tile (or blank)
- TopSpin: position of a token


PDBs project to a subset of variables (the "pattern").

Variable Dependencies

Variable u depends on variable v if changing u is conditioned in any way on v.

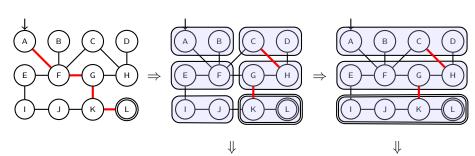
Variable Dependencies

Variable u depends on variable v if changing u is conditioned in any way on v.

Improvements vs. Dependencies

Theorem (no improvements without dependencies)

Consider the patterns $F \supseteq C$ in an undirected state space.

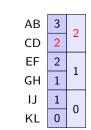

Let h_F^{comp} be a compressed PDB heuristic with a compression regime compatible with the refinement relation between F and C.

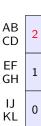
If no variable in C depends on any variable in $F \setminus C$, then

$$h_F^{comp}(s) = h_C(s)$$

for all states s.

Improvements vs. Dependencies: Proof Idea




$$h^*(A) = 4$$

$$h_F(A) = 3$$

$$h_F^{comp}(A) = 2$$

$$h_C(A) = 2$$

Improvements vs. Dependencies: Experimental Results

				h_F^{comp}		
State Space	M/N	h_F	MOD	DIV	random	h_C
Hanoi	4	104.32	87.04	103.76	90.08	87.04
Sliding Tiles A	10	34.99	29.89	32.08	26.38	32.08
Sliding Tiles B	10	34.99	30.50	32.84	26.38	15.29
TopSpin	12	10.78	9.29	9.59	8.73	9.59

- Hanoi: 4 pegs and 16 disks; pattern with 15 disks
- Sliding Tiles A: 4×4 puzzle; pattern $\langle blank, 1, 2, 3, 4, 5, 6 \rangle$
- Sliding Tiles B: 4×4 puzzle; pattern (6, 5, 4, 3, 2, 1, blank)
- TopSpin: 18 tokens and turnstile size 4; pattern with 7 tokens

Improvements vs. Dependencies: Experimental Results

				h_F^{comp}		
State Space	M/N	h_F	MOD	DIV	random	h_C
Hanoi	4	104.32	87.04	103.76	90.08	87.04
Sliding Tiles A	10	34.99	29.89	32.08	26.38	32.08
Sliding Tiles B	10	34.99	30.50	32.84	26.38	15.29
TopSpin	12	10.78	9.29	9.59	8.73	9.59

, comp

 $h_F^{comp}(s) = h_C(s)$ for all states according to the theorem

- Hanoi: 4 pegs and 16 disks; pattern with 15 disks
- Sliding Tiles A: 4×4 puzzle; pattern $\langle blank, 1, 2, 3, 4, 5, 6 \rangle$
- Sliding Tiles B: 4×4 puzzle; pattern (6, 5, 4, 3, 2, 1, blank)
- TopSpin: 18 tokens and turnstile size 4; pattern with 7 tokens

Related Work in Classical Planning

our result:

- $h_F^{comp} = h_C$
- for undirected state spaces
- under certain dependency conditions

Related Work in Classical Planning

our result:

- $h_F^{comp} = h_C$
- for undirected state spaces
- under certain dependency conditions

literature (Haslum et al. 2007; Pommerening et al. 2013):

- \bullet $h_F = h_C$
- for arbitrary state spaces
- under certain (different) dependency conditions

neither result entails the other

→ many more details in paper

Conclusion

Conclusion

When is entry compression a good idea?

- never bad when compatible with refinement
- never good when refinement does not capture a dependency

What does this mean for the benchmarks?

- Towers of Hanoi: must compress smaller disks away
- sliding tile: compressing blank the only useful refinement
- TopSpin: no dependencies, hence no gain (ditto: Pancakes, Rubik's Cube)

Thank You

Thank you for your attention!