Search Progress and Potentially Expanded States in Greedy Best-First Search

Manuel Heusner

Thomas Keller

Malte Helmert

University of Basel

July 17th, 2018

Introduction

A* [Hart et al.,1968]:

- increasing f-value \rightsquigarrow search progress
- necessarily expanded states \rightsquigarrow quality of heuristic
- potentially expanded states \(\sim \) importance of tie-breaking
- never expanded states → pruning

Introduction

A* [Hart et al.,1968]:

- increasing f-value → search progress
- necessarily expanded states \rightsquigarrow quality of heuristic
- potentially expanded states → importance of tie-breaking
- never expanded states → pruning

Greedy best-first search [Doran and Michie, 1966]:

• ?

Introduction

state space search algorithm

- state space search algorithm
- heuristic search algorithm

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D, K \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D, K, C \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D, K, C, H \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D, K, C, H, J \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D, K, C, H, J, I \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D, K, C, H, J, I, M \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D, K, C, H, J, I, M, N \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions

 $\langle A, D, K, C, H, J, I, M, N, O \rangle$

- state space search algorithm
- heuristic search algorithm
- greedily expands open states with lowest heuristic value
- tie-breaking decisions
- many possible search runs

$$\begin{split} \langle A, D, K, C, H, J, I, M, N, O \rangle \\ \langle A, B, G, H, J, I, N, O \rangle \end{split}$$

 $\langle A, E, O \rangle$

Introduction

basis of our analysis [Wilt & Ruml,2014]

- basis of our analysis [Wilt & Ruml,2014]
- highest heuristic value that GBFS starting in a state must expand in order to reach a goal

- basis of our analysis [Wilt & Ruml,2014]
- highest heuristic value that GBFS starting in a state must expand in order to reach a goal
- no expansions of states with heuristic values above the high-water mark

- basis of our analysis [Wilt & Ruml,2014]
- highest heuristic value that GBFS starting in a state must expand in order to reach a goal
- no expansions of states with heuristic values above the high-water mark
- generalize to set of states because GBFS acts globally

- high-water mark decreases during search
- discard open states when high-water mark decreases

- high-water mark decreases during search
- discard open states when high-water mark decreases

- high-water mark decreases during search
- discard open states when high-water mark decreases

- high-water mark decreases during search
- discard open states when high-water mark decreases
- progress determined locally

- high-water mark decreases during search
- discard open states when high-water mark decreases
- progress determined locally
- expansion of progress state generates states with lower high-water mark than that of progress state itself

- high-water mark decreases during search
- discard open states when high-water mark decreases
- progress determined locally
- expansion of progress state generates states with lower high-water mark than that of progress state itself

- high-water mark decreases during search
- discard open states when high-water mark decreases
- progress determined locally
- expansion of progress state generates states with lower high-water mark than that of progress state itself

- high-water mark decreases during search
- discard open states when high-water mark decreases
- progress determined locally
- expansion of progress state generates states with lower high-water mark than that of progress state itself

- high-water mark decreases during search
- discard open states when high-water mark decreases
- progress determined locally
- expansion of progress state generates states with lower high-water mark than that of progress state itself

- high-water mark decreases during search
- discard open states when high-water mark decreases
- progress determined locally
- expansion of progress state generates states with lower high-water mark than that of progress state itself
- possible progress states characterized independent of tie-breaking and search history

Search Behavior

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- episode is a search a bench
- transition to next bench shows progress

- progress decomposes state space into a directed acyclic graph of benches
- benches are regions of the state space
- progress splits search run into sequence of episodes
- · episode is a search a bench
- transition to next bench shows progress

Potentially Expanded States

states on benches

Potentially Expanded States

- states on benches
- states expanded under any tie-breaking

- states on benches
- states expanded under any tie-breaking
- tie-breaking independent number for given state space and heuristic

Potentially Expanded States

- states on benches
- states expanded under any tie-breaking
- tie-breaking independent number for given state space and heuristic
- never expanded states

Conclusion

Conclusion:

- surprising local property of progress
- critical role in the search behavior
- reasoning over all possible tie-breakings/search runs

Conclusion

Conclusion

Conclusion:

- surprising local property of progress
- critical role in the search behavior
- reasoning over all possible tie-breakings/search runs

Follow up work:

- Best-Case and Worst-Case Behavior of Greedy Best-First Search
- talk + poster here at IJCAI2018

Conclusion

Conclusion:

- surprising local property of progress
- critical role in the search behavior
- reasoning over all possible tie-breakings/search runs

Follow up work:

- Best-Case and Worst-Case Behavior of Greedy Best-First Search
- talk + poster here at IJCAI2018

Thank you for your attention!

Conclusion