Search Behavior of Greedy Best-First Search

Manuel Heusner

May 10th, 2019

University of Basel

State Spaces

input:

• initial state

input:

- initial state
- goal test function

input:

- initial state
- goal test function
- successor generator

input:

- initial state
- goal test function
- successor generator
- transition cost function

input:

- initial state
- goal test function
- successor generator
- transition cost function

output:

• solution path

input:

- initial state
- goal test function
- successor generator
- transition cost function

output:

• solution path

additional information:

- heuristic
 - → heuristic best-first search

Motivation

information of A*

- c^* : optimal solution path cost
- f(s): estimate of optimal solution path cost

Motivation

information of A*

- c*: optimal solution path cost
- f(s): estimate of optimal solution path cost

behavior of A*:

- necessary: $f(s) < c^*$
- never: $f(s) > c^*$
- potential: $f(s) = c^*$
- worst case: necessary & potential
- best case: necessary & shortest path of potential states
- progress: increase of *f*-value

Motivation

information of A*

- c*: optimal solution path cost
- f(s): estimate of optimal solution path cost

behavior of A*:

- necessary: $f(s) < c^*$
- never: $f(s) > c^*$
- potential: $f(s) = c^*$
- worst case: necessary & potential
- best case: necessary & shortest path of potential states
- progress: increase of *f*-value

Can we get similar results for greedy best-first search?

Guiding Questions

Given a state space and a heuristic:

- When does GBFS make search progress?
- Which states does GBFS potentially, never or necessarily expand?
- Which are the best-case and worst-case search runs of GBFS?

When does GBFS make search progress?

The highest h-value that GBFS reaches during a search run starting in a state.

The highest h-value that GBFS reaches during a search run starting in a state.

The highest h-value that GBFS reaches during a search run starting in a state.

High-Water Mark Pruning [Wilt & Ruml,2014]

GBFS never expands a state s with $h(s) > hwm(s_{init})$.

High-Water Mark Pruning [Wilt & Ruml,2014]

GBFS never expands a state s with $h(s) > hwm(s_{init})$.

Search Progress

Search Progress

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

progress state:

hwm(s) > hwm(succ(s))

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

progress state:

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

progress state:

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

progress state:

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

progress state:

high-water mark of set of states:

$$hwm(S) := \min_{s \in S} (hwm(s))$$

progress state:

episodes of local searches!

Search Progress
GBFS makes progress when
expanding a progress state.

Which states does GBFS potentially or never expand?

Progress States

Benches

• progress state s induces bench $\mathcal{B}(s)$

Benches

• progress state s induces bench $\mathcal{B}(s)$

Bench Space

• connects the benches via progress states

Potentially or Never Expanded States

Potentially and Never
Expanded States
GBFS potentially expands a state that is on at least one bench from the bench space.

GBFS never expands all other states.

Which states does GBFS necessarily expand?

Crater and Surface States

- crater state: h(s) < hwm of bench
- surface states: all other states on the bench

Craters

• surface state s induces crater C(s)

Craters

• surface state s induces crater C(s)

Craters

• surface state s induces crater C(s)

Necessarily Expanded States If GBFS expands a surface state s on a bench, then it necessarily expands all the crater states from crater C(s).

Which is a best-case search run of GBFS?

Crater Space

 connects craters of a bench via surface states

Best-Case Search Run

Best-Case Search Run

- path in crater space
- minimize length of path and number of crater states

Best-Case Search Run

Best-Case Search Run

- path in crater space
- minimize length of path and number of crater states

Best-Case Search Run

Best-Case Search Run

- path in crater space
- minimize length of path and number of crater states

Complexity Results Given a state space and heuristic:

- NP-complete
- polynomial-time if overlap-free or undirected

Which is a worst-case search run of GBFS?

Worst-Case Search Run

Worst-Case Search Run

- path in bench space
- maximize length of path and number of non-progress states

Worst-Case Search Run

Worst-Case Search Run

- path in bench space
- maximize length of path and number of non-progress states

Worst-Case Search Run

Worst-Case Search Run

- path in bench space
- maximize length of path and number of non-progress states

Complexity Results Given a state space and heuristic:

- NP-complete
- polynomial-time if overlap-free or undirected

Experiments

- implemented algorithms for extracting the search behavior
- state spaces: classical planning tasks from international planning competitions
- heuristic: hff

Feasibility: Potential State Space

Feasibility: Best-Case and Worst-Case Search Runs

Tie-Breaking Policies

Conclusion

- search progress based on high-water mark
- criterion for expanded states based on benches and craters
- characterization of best-case and worst-case search runs based on bench space and crate space
- demonstrated potential for improvement of tie-breaking