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Abstract

Most modern heuristics for classical planning are specified
in terms of minimizing the summed operator costs. Heuris-
tics for oversubscription planning (OSP), on the other hand,
maximize the utility on states. In this work we aim to pro-
vide the grounds for the adaptation of existing heuristics for
classical planning to the OSP setting. To this end, we re-
formulate the OSP task to a classical planning task extended
with an additional operator costs function, reflecting the util-
ity information fully. We exemplify how existing heuristics
from classical planning can be adapted to such a setting with
a merge-and-shrink heuristic and empirically validate the fea-
sibility of our approach.

Introduction
The field of automated planning is concerned with the prob-
lem of finding a course of action satisfying certain prede-
fined goals. While the classical planning problem requires
achieving all goals, partial satisfaction planning relaxes this
restriction, allowing to achieve a subset of the goals. As
a result, even an empty plan is a trivial valid solution, and
therefore the aim of partial satisfaction planning is to obtain
solutions of best possible quality. In net-benefit planning
(van den Briel et al. 2004), a subfield of partial satisfaction
planning, the assumption is that the solution cost and state
values are comparable. As a consequence, the solution qual-
ity is measured as the net difference between the value of the
obtained end state and the solution cost. In oversubscription
planning (Smith 2004), on the other hand, the solution cost
and state values are assumed to be incomparable. Thus, to
take the cost into account, a bound on the cost or a budget
is introduced (Smith 2004), and the objective is to maximize
the value of the obtained end state, while constraining the
solution cost.

Heuristic search is among the best performing approaches
to both classical and net-benefit planning, with many search
guiding heuristics developed over the years. These heuristics
are typically classified into four families: abstractions, (e.g.,
Culberson and Schaeffer 1998; Edelkamp 2001; Helmert et
al. 2014; Katz and Domshlak 2010a), delete relaxations,
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(e.g., Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Keyder and Geffner 2008; Domshlak et al. 2015), crit-
ical paths (Haslum and Geffner 2000), and landmarks,
(e.g., Richter et al. 2008; Karpas and Domshlak 2009;
Helmert and Domshlak 2009; Keyder et al. 2010). The
basic principle behind all these heuristics is the same – re-
laxing the task at hand to fit some tractable fragment of the
planning problem. In net-benefit planning, these heuristics
are often applied not directly to the net-benefit task, but to
a reformulation into classical planning (Keyder and Geffner
2009).

In optimal oversubscription planning, however, not much
work was focused on heuristic search, and the progress was
somewhat slower. A significant performance improvement
was first reported by Mirkis and Domshlak (2013). They
exploited explicit abstractions (Edelkamp 2001), which are
tractable due to their small size. The abstract oversubscrip-
tion planning problems were additively composed into in-
formative admissible estimates which are then used to prune
states in a branch-and-bound search. The approach turned
out to work well in practice: in some cases the search space
was reduced by three orders of magnitude compared to the
baseline algorithm. Later, Mirkis and Domshlak (2014) ex-
ploit the notion of landmarks for task reformulation, en-
riching the task with reachability information. Katz and
Mirkis (2016) characterize tractable fragments of oversub-
scription planning tasks according to causal graph structure
and variable domain sizes, and derive admissible estimates
from these fragments. Unfortunately, even the simplest frag-
ment under this characterization was found to be not solv-
able in polynomial time. Thus, additional restrictions are re-
quired to achieve tractability, similarly to the ones that were
previously exploited in deriving heuristics for classical plan-
ning.

Our aim in this work is to lay grounds for adapting many
existing and future heuristics for classical planning to over-
subscription planning. In order to do that, similarly in spirit
to what was done for net-benefit planning by Keyder and
Geffner (2009), we suggest a reformulation of an oversub-
scription planning task to a classical planning task with two
cost functions on operators. The first one corresponds to the
original operator costs and is intended for restricting the set
of feasible solutions. The second one corresponds to the net
difference in state values. We then search for an optimal



feasible solution of the reformulated planning task accord-
ing to the second cost function. Using merge-and-shrink ab-
straction heuristics (Helmert et al. 2014) as an example, we
show how this reformulation can exploit existing heuristics.
Another contribution of our work is the first attempt at stan-
dardizing the benchmark set for oversubscription planning.
For that, we introduce additional sections to PDDL intended
to specify state-additive utility functions and a cost budget.
Further, we adapt the Fast Downward translator (Helmert
2006) to parse these sections, and we create a collection
of oversubscription planning benchmarks from the classi-
cal STRIPS domains used in International Planning Compe-
titions.

Background
In line with the SAS formalism1 for deterministic planning
(Bäckström and Klein 1991), a planning task structure is
given by a pair xV,Oy, where V is a set of state variables,
and O is a finite set of operators. Each state variable v P V
has a finite domain dompvq. A pair xv, ϑy with v P V and
ϑ P dompvq is called a fact. A partial assignment to V is
called a partial state. The subset of variables instantiated by
a partial state p is denoted by Vppq Ď V . Often it is conve-
nient to view partial state p as a set of facts with xv, ϑy P p
iff prvs “ ϑ. We say a partial state s is a state iff Vppq “ V .
Partial state p is consistent with state s if s and p agree on all
variables in Vppq. We denote the set of states of a planning
task structure xV,Oy by S.

Each operator o is a pair xprepoq, effpoqy of partial states
called preconditions and effects. We assume that all oper-
ators are in SAS format i.e. Vpeffpoqq Ď Vpprepoqq for all
o P O. An operator cost function is a mapping C : O Ñ R.
While in classical planning the operator cost functions C are
typically assumed to be non-negative, we emphasize that in
general cost functions C can take negative values as well.

An operator o is applicable in a state s P S iff srvs “
prepoqrvs for all v P Vpprepoqq. Applying o changes the
value of each v P Vpeffpoqq to effpoqrvs. The resulting state
is denoted by sJoK. An operator sequence π “ xo1, . . . , oky
is applicable in s if there exist states s0, ¨ ¨ ¨ , sk such that (i)
s0 “ s, and (ii) for each 1 ď i ď k, oi is applicable in si´1

and si “ si´1JoiK. We denote the state sk by sJπK and call
it the end state of π.

Oversubscription Planning An oversubscription plan-
ning (OSP) task ΠOSP “ xV ,O, sI , C , u,By extends a plan-
ning task structure xV,Oy with an initial state sI P S, a
non-negative operator cost function C and a utility function
u : S Ñ R0`, and a cost bound B P R0`.

An operator sequence π is called an s-plan for ΠOSP if it
is applicable in sI , and

ř

oPπ Cpoq ď B. We call an sI -plan
a plan for ΠOSP . By the value ûpπq of a plan we refer to
the value of the end-state of π, that is, ûpπq “ upsIJπKq. A
plan π for ΠOSP is optimal if ûpπq is maximal among all the
plans. While an empty operator sequence is a plan for every
OSP task, the objective in oversubscription planning is to

1Not to be confused with the more commonly used SAS` for-
malism (Bäckström and Nebel 1995).

find a plan achieving a state of high utility and optimal over-
subscription planning is devoted to searching for optimal
plans only. In what follows, we restrict our attention to addi-
tive utility function, computed as a sum over the state facts.
Such value functions have the form upsq “

ř

fPs u1pfq,
where u1 is a function mapping facts to non-negative real
values. Slightly abusing the notation, we denote u1 by u in
the following.

A heuristic for the OSP task ΠOSP “ xV ,O, sI , C , u,By
over states S is a mapping h : SˆR0` ÞÑ R0`Yt8u from
state-budget pairs to a non-negative real value or infinity.
The perfect heuristic h˚ maps each state s P S and bound
b P R0` to the utility ûpπ˚q of an optimal plan π˚ for the
OSP task xV,O, s, C, u, by or to ´8 if no such plan exists.
A heuristic h is admissible if h ě h˚. Note that admissible
heuristics overestimate the optimal utility instead of under-
estimating the optimal plan cost as in classical planning.

Multiple Cost Function Planning
We now present an extended classical planning formalism
that limits the set of feasible solutions with secondary cost
functions and can have negative values in the primary cost
function.
Definition 1. A multiple cost function (MCF) planning task
is a tuple ΠMCF “ xV,O, sI , G, C0,C y, where xV,Oy is a
planning task structure and
• sI is a state, called initial state
• G is a partial state, called goal state
• C0 is a cost function
• C “ txCi,Biy | 1 ď i ď nu where Ci is a non-negative

cost function and Bi P RY t8u.
We call the cost function C0 the primary cost function and

each cost function Ci with 1 ď i ď n a secondary cost func-
tion. An operator sequence π is a plan for ΠMCF if G is
consistent with sJπK and

ř

oPπ Cipoq ď Bi for 1 ď i ď n.
A plan is optimal if it has minimal primary cost among
all plans of ΠMCF. A heuristic for MCF planning task
ΠMCF “ xV,O, sI , G, C0,C y with states S is a mapping
h : S ˆ R|C | ÞÑ R Y t´8,8u. The perfect heuristic h˚
maps a state s and a vector of bounds b to the primary cost
C0pπ

˚q of an optimal plan π˚ for the MCF planning task
xV,O, s,G, C0,C 1y, with C 1 “ txCi,biy | xCi,Biy P C u
or to 8 if no such plan exists. A heuristic h is admissible if
h ď h˚.

A classical planning task is an MCF planning task
Π “ xV,O, sI , G, C0,Hy with C0 being non-negative.
As the set of secondary cost functions only constrains
the set of plans, every plan for an MCF task ΠMCF “

xV,O, sI , G, C0,C y is also a plan for the classical planning
task Π “ xV,O, sI , G, C0,Hy.

In classical planning, abstractions can be obtained by
e.g. projecting the problem on a subset of its variables
(Edelkamp 2001), or through a merge-and-shrink process
(Helmert et al. 2007; 2014). One of the strengths of abstrac-
tion heuristics in classical planning is their low per-node
computation time during search. For explicit abstractions,
such as projections and merge-and-shrink, the computation
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Figure 1: The figures show the idea behind reformulating an operator sequences with a state dependent utility function (a) into
an operator sequences where a cost function reflects the utility difference between two successive states (b). The additive utility
function allows for a state-independent cost function (c).

is basically a linear-time lookup. For implicit abstractions
(Katz and Domshlak 2010a), the computation is more com-
plicated, but is still of low polynomial time.

Abstractions for MCF planning generalize the definition
for classical planning (Helmert et al. 2007) by additionally
requiring reachable abstract state distances under the sec-
ondary cost functions to be below their respecive bounds.
Formally, a (labeled) transition system (with multiple cost
functions) is a tuple Θ “ xS,L, c, T, s0, S˚y where S is a
finite set of states, L is a finite set of labels, c “ xc0, ¨ ¨ ¨ , cny
are functions ci : L ÞÑ R (1 ď i ď n), T Ď S ˆ L ˆ S a
set of labeled transitions, s0 the initial state and S˚ the goal
states.

The induced transition of an MCF task ΠMCF “

xV,O, sI , G, C0,C y is the transition system ΘΠMCF “

xS1, L1, c1, T 1, s10, S
1
˚ywhere S1 are the states of ΠMCF, L1 “

O, cipoq “ Cipoq, ps, o, tq P T 1 iff s is consistent with prepoq
and t is consistent with effpoq, s10 is the initial state of the
planning task and S1˚ are the goal states of the planning task.
An abstraction is a mapping α : S1 ÞÑ Sα where Sα are the
states of the transition system Θα “ xSα, L, c, Tα, sα0 , S

α
˚ y

with Tα “ txαpsq, o, αptqy | ps, o, tq P T u, sα0 “ αps0q and
Sα˚ “ tαpsq | s P Su. Θα is called the abstract transition
system.

For this paper, we assume MCF tasks with at most one
secondary cost function, i.e., having |C | ď 1.

Reformulation
We now show how to reformulate an OSP task into an MCF
task. The key idea here is to compile the (additive) utility
function into the primary cost function of an MCF planning
task. We start by noting that for an additive state value func-
tion u, there is an easily computable finite upper bound

M :“
ÿ

vPV

max
ϑPdompvq

upxv, ϑyq.

This upper bound allows us to switch from maximization
to minimization of the utility value. Thus, our first step in
the formulation is to switch to a new state value function
u : S Ñ R0` defined by upsq “M´upsq, and the objective

of the new task is to find a plan π minimizing the value ûpπq.
The idea behind our reformulation, illustrated in Figure 1, is
to compute by how much each operator changes the utility
of a state, if applied. In other words, for a state s and an
operator o applicable in s, we compute the value ups, oq :“
upsJoKq ´ upsq.
Theorem 1. The value ups, oq is independent of the state s.

Proof. By definition of SAS, Vpeffpoqq Ď Vpprepoqq for ev-
ery operator o P O. For a variable v P V zVpeffpoqq, we have
srvs “ sJoKrvs and hence upxv, srvsyq ´ upxv, sJoKrvsyq “
0. Therefore, it suffices to consider variables v P Vpeffpoqq:

ups, oq “ pM ´ upsJoKqq ´ pM ´ upsqq

“
ÿ

vPV

upxv, srvsyq ´ upxv, sJoKrvsyq

“
ÿ

vPVpeffpoqq

upxv, srvsyq ´ upxv, sJoKrvsyq

“
ÿ

vPVpeffpoqq

upxv, prepoqrvsyq ´ upxv, effpoqrvsyq.

Thus, we can define a (state-independent) cost function
over operators u : O Ñ R as

upoq “
ÿ

vPVpeffpoqq

upxv, prepoqrvsyq ´ upxv, effpoqrvsyq.

Note that the cost function u may have negative values.
We say that an operator o achieves utility if upoq ă 0 and o
destroys utility if upoq ą 0.
Theorem 2. For a sequence of operators π applicable in
state s, we have upsq `

ř

oPπ upoq “ upsJπKq.
The proof is straightforward from the definition of u on

operators. Thus, finding a sequence of operators leading to a
state with the minimal value u corresponds exactly to finding
a sequence of operators of a minimal summed cost u. We
can thus solve the OSP task as a classical with multiple cost
functions and an empty goal.



Definition 2. Let ΠOSP “ xV ,O, sI , C , u,By be an over-
subscription planning task. The multiple cost function re-
formulation ΠR

MCF “ xV,O, sI , G, C0, txC,Byuy of ΠOSP is
the MCF planning task, where

• G “ H, and
• C0poq “

ř

vPVpeffpoqq

upprepoqrvsq ´ upeffpoqrvsq, for o P O.

Theorem 3. Let ΠOSP be an oversubscription planning task
and ΠMCF its multiple cost function reformulation. If π is a
plan of ΠOSP with utility ûpπq then π is a plan of ΠMCF with
cost C0pπq “ upsIq ´ ûpπq and vice versa.

Proof. Operator applicability is defined in the same way for
ΠOSP and ΠMCF, so if π is a plan in one task, it is certainly
applicable in the other task and ends in the same state, i.e.
sIJπK is well-defined and the same state in both tasks.

The operator sequence π respects the bounds of ΠOSP iff
ř

oPπ Cpoq ď B iff π respects the bounds of the (only) sec-
ondary cost function of ΠMCF. Therefore, and because all
states are goal states in ΠMCF, π is a plan in ΠOSP iff it is a
plan in ΠMCF.

The primary cost of π is C0pπq “
ř

oPπ upoq, which is
equal to upsIJπKq ´ upsIq “ upsIq ´ ûpπq according to
Theorem 2.

As upsIq is constant, a plan π maximizes ûpπq iff it mini-
mizes C0pπq and the following result directly follows:

Corollary 1. An oversubscription planning task and its
multiple cost function reformulation have the same optimal
plans.

Heuristics for OSP via Reformulation
Having proposed the OSP reformulation, we now turn our
attention to devising heuristics for MCF planning. We start
by clarifying how heuristics from MCF planning can be in-
tegrated into an OSP approach.

Definition 3. Let ΠOSP be an OSP task, ΠMCF its multi-
ple cost function reformulation, and S the states of ΠOSP.
Let hMCF : S ˆ R ÞÑ R Y t´8,8u be a heuristic for
ΠMCF. The multiple cost function reformulation heuristic
of hMCF, denoted by hR

MCF is defined by hR
MCFps, bsq “

upsq ´ hMCFps, bsq.

Multiple cost function reformulation heuristics are heuris-
tics for OSP tasks. The following lemma establishes the con-
nection between the informativeness of heuristics for MCF
planning tasks and their multiple cost function reformulation
heuristics.

Lemma 1. For an OSP task ΠOSP and ΠMCF “ ΠR
MCF, we

have h˚ΠOSP
“ ph˚ΠMCF

q
R.

The lemma is a direct outcome from Theorem 3. We use
it in order to show the following main result.

Theorem 4. Let ΠOSP “ xV ,O, sI , C , u,By be an OSP
task, ΠMCF its multiple cost function reformulation, and
hMCF an admissible heuristic for ΠMCF. Then hR

MCF is an
admissible heuristic for ΠOSP.

Proof. Let h˚MCF be the perfect heuristic for ΠMCF and h˚OSP
the perfect heuristic for ΠOSP. With Definition 3, we can
rewrite h˚MCFps, bsq as upsq ´ ph˚MCFq

R
ps, bsq, which is

upsq ´ h˚OSPps, bsq according to Lemma 1.
From Definition 3 we have

hR
MCFps, bsq “ upsq ´ hMCFps, bsq,

and from admissibility of hMCF we have

hMCFps, bsq ď h˚MCFps, bsq,

so

hR
MCFps, bsq ě upsq ´ h˚MCFps, bsq

“ upsq ´ pupsq ´ h˚OSPps, bsqq

“ h˚OSPps, bsq.

Abstraction Heuristics for MCF Planning
Having established how admissible heuristics of MCF plan-
ning tasks can be exploited for deriving admissible heuristics
of OSP tasks, we now show a concrete example of this by
deriving a merge-and-shrink heuristic for OSP. We start by
introducing a generic scheme for abstraction heuristics.

Definition 4. Let ΠMCF be an MCF task, α be an abstrac-
tion and Θα its abstract transition system. The heuristic
hαΘ : pS ˆ Rnq ÞÑ R Y t´8,8u is the MCF planning ab-
straction heuristic of ΠMCF if it maps a state s P S and
bounds b1, . . . bn to the cost of a path ρ in the abstract tran-
sition system Θα, such that

• for all 1 ď i ď n, Cipρq ď bi, and
• ρ is cost-minimal among such paths according to the pri-

mary cost C0.

If no such path to an abstract goal state exists, the heuris-
tic value is 8. Otherwise, if there exists such a path that
contains a cycle of a negative total cost under C0, then the
heuristic value is ´8.

For an MCF planning task with one secondary cost func-
tion, an abstraction heuristic hαΘps, bq can be computed us-
ing the following scheme:

(I) Construct abstract transition system Θα,

(II) Compute shortest path distances from αpsIq to all abstract
states in Θα according to the secondary cost function C1

and discard abstract states with abstract distances strictly
larger than b, and

(III) Compute shortest path distances from all remaining ab-
stract states to some abstract goal state, according to the
primary cost function C0.

There are essentially two challenges in turning this
scheme into an abstraction heuristic. First, since the primary
cost function is potentially negative, there might be reach-
able cycles of total negative cost in Θα resulting in a un-
informative heuristic. Concrete choice of methods for con-
structing Θα in step (I) should aim at preventing or at least



alleviate this problem. In this work, we use existing meth-
ods for constructing merge-and-shrink abstractions (Sievers
et al. 2014), leaving the methods for constructing abstrac-
tions that avoid negative cost cycles for future work.

The second challenge lies in the runtime complexity of
heuristic computation. The reachable abstract states in step
(II) depend on the budget b, and for maximizing the informa-
tiveness of the heuristic, step (III) should be performed for
every evaluated state, given the reachability of abstract states
under the budget b for that concrete state. Additionally, the
possibly negative cost function madates the use of a short-
est path algorithm that supports negative weights. Such al-
gorithms are computationally more expensive than the typi-
cally used shortest path algorithms for non-negative weights.
We alleviate this problem by performing the computation in
step (III) only once, for reachability defined under the initial
budget b0.

Experimental Evaluation
To empirically evaluate the practical potential of our ap-
proach, we first create a benchmark set for oversubscription
planning.

Creating a Benchmark Set for OSP
Since no official, publicly available benchmark set for over-
subscrition planning is currently available, we had to create
one. We created a benchmark suite similar to Domshlak and
Mirkis (2015), based on the collection of classical Interna-
tional Planning Competition (IPC) domains. However, in
contrast to previous approaches, we consider all planning
tasks for which any solution is known, not only a prov-
ably optimal one. Such upper bounds on solution costs can
be obtained from the information available at planning.
domains (Muise 2016), a repository of planning bench-
marks to which researchers are contributing meta-data on
solved planning problems. We set the bounds for oversub-
scription planning tasks to either 25%, 50%, 75%, or 100%
of the best known solution cost for the classical planning
task, resulting in four variants for each classical planning
domain. In the following, we refer to these numbers as dif-
ferent domain suites. Every fact in the goal of the classical
planning task, we assigned the utility of 1, every other fact
the value of 0.

We briefly describe how we modified the PDDL specifi-
cation. We extended PDDL by two additional sections in
the problem file. The first section p:BOUND contains the
bound on the solution cost, while the second section con-
tains the utility function. The second section (:UTILITY al-
lows to provide a collection of function assignments of nu-
meric values to grounded predicates, e.g., (= (ON C B) 1).
To translate the PDDL instances to a multi-valued formal-
ism, we adapted the translator of the Fast Downward plan-
ning system to handle oversubscription planning tasks. Both
the PDDL domain collection and the adapted translator are
available on demand.

Transforming SAS` to SAS
Fast Downward translates PDDL into SAS` representation,
which is more compact than SAS. Thus, to apply our tech-

25% 50% 75% 100%

Coverage Bl M&S Bl M&S Bl M&S Bl M&S
airport 20 9 16 9 15 9 15 9
miconic 85 85 56 55 50 49 45 45
mprime 13 12 10 9 7 7 6 6
mystery 10 10 9 8 7 7 7 7
scanalyzer08 13 12 12 12 12 11 12 11
scanalyzer11 10 9 9 9 9 8 9 8
tetris14 17 2 14 2 10 2 8 2
tidybot11 20 1 20 1 16 1 13 1
tidybot14 20 0 17 0 12 0 6 0
woodwork08 25 24 12 12 9 9 7 7
woodwork11 18 17 7 7 4 4 2 2
pipes-notank 40 18 29 18 20 17 14 15
pipes-tank 28 25 18 19 14 15 11 10
depot 15 15 8 9 6 8 4 6
openstacks08 29 30 24 27 23 26 22 25
openstacks11 20 20 17 18 17 18 17 18
openstacks14 19 19 10 11 5 9 3 8
parcprinter08 15 16 12 13 10 12 9 10
parcprinter11 11 12 8 9 6 8 5 6
parking11 10 10 1 2 0 2 0 2
parking14 11 11 0 4 0 4 0 4
satellite 8 9 6 6 3 3 3 3
Sum equal 587 587 450 450 376 376 349 349
Sum all 1044 953 765 710 631 605 567 554

Table 1: Per-domain coverage comparison of the blind
heuristic (Bl) and merge-and-shrink (M&S) for the four do-
main suites. Top part depicts domains with advantage to
the blind heuristic in all suites, middle part depicts domains
with mixed results, while bottom parts shows domains with
advantage to the merge-and-shrink heuristic in all suites.

niques to the problems in our benchmark set, we need to
transform these tasks to the SAS format. To achieve that, we
need to modify operators with preconditions not specified
for some effect variables. We used a procedure similar to the
transition normalization (Pommerening and Helmert 2015)
for this purpose. As the transition normalization increases
the state space exponentially, we propose an optimization to
moderate that increase. Note that our reformulation restricts
the preconditions to be specified on effect variables only for
variables with specified utility on at least one value. Thus,
we do not modify the variables whose values do not have
utilities specified.

Comparison to a Baseline
In our experiments, we compare different heuristics within
a best-first branch-and-bound (BFBB) search, which we im-
plemented in Fast Downward planning system. BFBB uses
two heuristic functions. One is for choosing the next node
to expand (guidance heuristic), and another one for pruning
the nodes (pruning heuristic). We compare the following
configurations differing in their pruning heuristic:
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Figure 2: Comparison of the number of expansions performed with the blind and the merge-and-shrink heuristics for different
problem suites, (a) 25%, (b) 50%, (c) 75%, and (d) 100%.
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Figure 3: Domain-wise comparison of the number of ex-
pansions performed with the blind and the merge-and-shrink
heuristics for the 100% problem suite. Domains where
merge-and-shrink exhibits better performance in terms of
the number of expansions are emphasized.

Bl Blind heuristic hBlps, bq “M

M&S A merge and shrink approach to compute hαΘps,bq.
For step (I) we used the bisimulation based shrinking, and
as merge strategy SCC-DFP (Sievers et al. 2014) accord-
ing to secondary cost function C1. For step (III) we used
the Bellman-Ford algorithm (Shimbel 1954) to compute
(possibly negative) shortest path distances. For better run-
time complexity, we do step (III) only once, with fixed
budget B0. The heuristic hαΘps,bq is reformulated into an

OSP heuristic according to Definition 3.

For a fair comparison, we set the guidance heuristic in all
our approaches to the blind heuristic. To compare to pre-
vious state-of-the-art approaches to OSP, much work is still
needed to adapt these techniques to work in an out-of-the-
box fashion. For instance, the planner of Mirkis and Domsh-
lak (2013) requires a specification of variable patterns to be
used in their PDB heuristic. Similarly, the approach de-
scribed in Mirkis and Domshlak (2014) also did not work
out-of-the-box, since it is based on the previous one. How-
ever, the performance of these approaches is not too far from
the simple blind heuristic, always returning the maximal
utility, and therefore we use the blind heuristic as our base-
line. The experiments were performed on Intel(R) Xeon(R)
CPU E7-8837 @ 2.67GHz machines, with the time and
memory limit of 30min and 2GB, respectively.

Results
Table 1 shows the per-domain coverage, comparing our ap-
proach to the baseline. On many domains, the performance
of both approaches in terms of coverage is the same, for all
suites. These rows are not shown in the table and summed in
the “Sum equal” row. Overall, the baseline still achieves the
higher coverage, with the difference getting smaller towards
suites with larger cost bounds, namely, 91 for suite 25, 55 for
suite 50, 26 for suite 75, and 13 for suite 100. We note that
the domains AIRPORT, TETRIS, TIDYBOT11, TIDYBOT14,
PIPESWORLD-NOTANKAGE, and PIPESWORLD-TANKAGE
are responsible for most of the difference, due to the con-
struction of merge-and-shrink abstraction not being finished
within the time bound. With the exception of these 6 do-
mains, merge-and-shrink loses at most one task in cover-
age per suite. Looking at the bottom part of the table, there
are several domains where the performance improves signif-
icantly, across the suites. The improvement is getting larger
towards suites with larger cost bounds. This is consistent
with the overall results, hinting that merge-and-shrink would
be beneficial for larger cost bounds.

In order to look beyond the coverage, Figure 2 depicts
the comparison in terms of the number of node expansions



performed by the branch-and-bound search algorithm. The
cost bound increases, from left to right. Figure 2 (a) shows
the expansions for the suite 25, where there is a clear advan-
tage to the blind heuristic, but as we move to larger bounds,
the advantage becomes moderate, and then turns into some-
what complementary results in Figure 2 (d) for suite 100.
Note that, in contrast to the classical optimal planning with
A˚, here a dominating heuristic does not guarantee a smaller
number of expansions. However, when the blind heuristic
has a smaller number of expansions, it is always within one
order of magnitude. For the other case, when merge-and-
shrink dominates in the number of expansions, it can get to
two orders, and more.

Further focusing on suite 100, the per-domain expan-
sions can be observed in Figure 3. Improvement over the
baseline can be observed in many domains, in particular in
some domains where this improvement is not reflected in
the overall coverage, probably due to the costly pre-search
abstraction computation. These include FREECELL, NO-
MYSTERY, PIPESWORLD-NOTANKAGE, PIPESWORLD-
TANKAGE, SOKOBAN08, and TRUCKS. There are ad-
ditional 8 domains where the improvement in expansions
is reflected in the coverage, namely DEPOTS, OPEN-
STACKS08, OPENSTACKS11, OPENSTACKS14, PARC-
PRINTER08, PARC-PRINTER11, PARKING11, and PARK-
ING14.

Conclusions and Future Work
In this work we have introduced a reformulation of an over-
subscription planning task to a classical planning task with
two cost functions on operators, allowing to ease the adap-
tation of the existing heuristics for classical planning to the
oversubscription planning setting. We have shown with the
merge-and-shrink heuristic how such an adaptation can be
done. Our experimental evaluation shows the feasibility of
such an approach. In order to perform the experimental
evaluation, in the absense of a standard benchmark set and
a PDDL fragment for describing oversubscription planning
tasks, we have introduced such a fragment and created the
benchmark set, as well as provided a translator from PDDL
to a multi-valued variables formalism SAS, which is used
internally by most modern planners. By adapting the Fast
Downward planning framework, with many classical plan-
ning heuristics implemented, to oversubscription planning
formalism we have simplified the future adaptation of clas-
sical planning heuristics to oversubscription planning via the
suggested reformulation.

In future work we intend to investigate such adapta-
tions. Further, we intend to investigate the interplay be-
tween the reformulation and heuristics additivity criteria,
such as action cost partitioning (Katz and Domshlak 2008;
2010b) or disjointness for pattern databases (Haslum et al.
2007). We would also like to integrate and automate the
approach of Mirkis and Domshlak (Mirkis and Domshlak
2013; 2014) and explore the connections between the refor-
mulation and their approach. In addition, we would like to
explore various heuristics for nodes ordering in the branch-
and-bound search. Last, but not least, we would like to adapt
the existing search pruning techniques for classical planning

(Domshlak et al. 2012; Alkhazraji et al. 2012) to the branch-
and-bound search over the oversubscription planning tasks.
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