
Task Planning for an Autonomous Service Robot

Thomas Keller, Patrick Eyerich, and Bernhard Nebel

University of Freiburg
Institut für Informatik

Georges-Köhler-Allee 52
79111 Freiburg

{tkeller,eyerich,nebel}@informatik.uni-freiburg.de

Abstract. In the DESIRE project an autonomous robot capable of per-
forming service tasks in a typical kitchen environment has been devel-
oped. The overall system consists of various loosely coupled subcompo-
nents providing particular features like manipulating objects or recog-
nizing and interacting with humans. To bring all these subcomponents
together to act as monolithic system, a high-performance planning sys-
tem has been implemented. In this paper, we present this system’s basic
architecture and some advanced extensions necessary to cope with the
various challenges arising in dynamic and uncertain environments like
those a real world service robot is usually faced with.

1 Introduction

The overall aim of the DESIRE1 project [1] was to develop an autonomous
robot capable of performing service tasks in a typical kitchen environment. From
the project’s beginnings, rather than focus on the accomplishment of predefined
scenarios, it was decided to keep the system as unbounded as possible in order to
gain maximum flexibility. This led to a system architecture consisting of several
loosely coupled subsystems which are able to fulfill basic tasks like manipulating
objects, driving autonomously in a dynamic environment or recognizing and
interacting with humans. From our point of view, the most important implication
of this decision was the need for a domain-independent planning system that is
able to combine any number of these subsystems in an efficient yet stable manner.

The integration of such a task planner into the system increases the robot’s
level of intelligence and flexibility by altering the way the robot is controlled,
moving from predefined sequences of detailed user instructions to a more sophis-
ticated goal oriented approach. It is not longer required to provide the robot
with a fully worked out description of its task (e.g., “Go to the big table, then
take the plate, then return and give me the plate!”) but rather to state some
imperative command (e.g., “Give me a plate!”) and leave it to the robot to find
a suitable plan to achieve the according goals on its own, combining the features
of the different components in a meaningful way.

1 DESIRE is a project with several partners from industry and academia and is an
abbreviation for “German Service Robotics Initiative”.



2 Thomas Keller, Patrick Eyerich, Bernhard Nebel

Task planning itself is a thoroughly investigated subfield in artificial intelli-
gence [2]. However, in a robotics context, it has to be dealt with certain aspects
complicating its application, including imperfect information about the environ-
ment, non deterministic changes, or user interaction. The main contribution of
this paper is to show how to overcome these problems and make task planning
suitable for everyday use in a robotics context.

The remainder of the paper is structured as follows: In the next section, we
present the basics of the used planning system, describe how the current situation
of the robot and its surroundings can be described in the Planning Domain
Definition Language (PDDL) and show how it can be adapted to a dynamically
changing and partially unknown environment via continual planning. Section 3
covers how to bridge the gap between several independent planning episodes,
while the subsequent section shows how problems containing subproblems of
different granularity can be solved efficiently. Before we conclude, we present the
whole system architecture of the planning subcomponent in Section 5. Related
work is referred to throughout the running text whenever it fits.

2 Planning in Real-World Environments

Given an initial state, a set of actions, and a goal formula, classical planning is
about finding sequences of actions turning the initial state into a state satisfying
the goal formula. The planning framework we use in this paper is PDDL2.1 Level
3 [11] extended by object fluents as proposed by Geffner [10]. In the following,
we will use the term state variable to refer to predicates, numeric fluents and
object fluents.

The classical planning approach heavily relies on having a complete and
certain description of the situation the agent is faced with. Furthermore, actions
need to be fully deterministic and the only changes allowed to occur in the
environment are due to actions the agent decides to execute. Obviously, these
constraints are too restrictive when it comes to modeling a domain depicting
the real world: There might be other agents altering the state of the world
(including nature), actions might have stochastic or probabilistic effects and the
current state of the world might not be fully known.

Typical approaches dealing with such domains are contingent and probabilis-
tic planning. These approaches try to generate conditional plans and policies
(mappings from states to actions), respectively. Unfortunately, both approaches
are of much higher complexity [7, 8] than classical planning and usually fail to
scale in even moderately complex scenarios. Furthermore, it might be impossible
to model all potential outcomes of actions in dynamic environments, or concrete
probabilities of outcomes are unknown.

Recently, we have proposed an alternative technique to deal with real world
environments: Continual Planning (CP) [6], in which a continuous loop between
planning, plan execution and execution monitoring is performed. In the planning
phase, the agent is allowed to postpone the decision of how to fulfill subgoals
to a later point in time when more information is available by using assertions



Task Planning for an Autonomous Service Robot 3

as part of the plan. Then, the first action of the plan is executed. In the third
phase, a monitoring procedure checks whether the remainder of the plan is still
executable and still fulfills the goal. If that is not the case or if the plan has to
be refined since the next executable action is an assertion, the agent switches
to the planning phase. Otherwise, the next action’s execution is started and the
system continues with monitoring it.

For DESIRE, we have integrated the CP approach within our temporal plan-
ning system which is briefly introduced in the next section. Since temporal plan-
ning allows for concurrent actions of variable durations, there might be more
than one action to start in the execution phase and these actions might have
different durations. Furthermore, situations might arise in which an action has
already finished, while others are still running. Therefore, we have extended the
monitoring component to consider such actions with their remaining durations.

2.1 Base Planning System: TFD

We use Temporal Fast Downward (TFD) [4] as the base planning system. TFD
is a domain-independent progression search planner built on top of the classical
planning system Fast Downward [3]. It extends the original system to support
durative actions and numeric and object fluents.

TFD solves a planning problem in three phases: First, the PDDL planning
task is translated from its binary encoding into a more concise representation
using finite-domain variables. This enables the use of heuristics employing hierar-
chical dependencies between state variables. In the second step, efficient internal
data structures for the heuristic and the search component are generated. The
most important ones are domain transition graphs for each variable that encode
how a state variable’s value can be changed, and the causal graph that repre-
sents the hierarchical dependencies between different state variables. Finally, a
best-first progression search is performed, guided by a numeric temporal variant
of the context-enhanced additive heuristic.

2.2 Generation of the initial state and the goal description

The preferential way of assigning jobs to a service robot certainly is to formulate
them as an imperative command. To process such a command, a robot needs to
be able to recognize that the user’s utterance is directed to him and to parse the
utterance into an appropriate textual format. In DESIRE, this is done by the
automatic speech understanding component (ASU). The ASU has a predefined
set of grammar based frame structures used to map utterances to keywords and
to classify them into categories like ’socialization’ or ’instruction’. Additionally,
single frames are mapped to classes like ’action’ or ’object’. With the help of these
keywords, the planner then extracts the information captured in an instruction
utterance and transforms the command into a logical formula describing the
goal. Basically, this is done by mapping the action frame of the frame structure
generated by the ASU to its description in the PDDL domain file. The starting
point of the generated goal formula is then the effect of this action. Afterwards,



4 Thomas Keller, Patrick Eyerich, Bernhard Nebel

the parameters of the effect are replaced with appropriate fillers extracted out of
the utterance (again detected with the help of the frame structure). Parameters
for which no filler exists become universally or existentially quantified, depending
on the found keywords (e.g., “Bring the salt cup to me!” is transformed to
∃s(salt cup(s)∧ loc(s) = user), while “Bring all salt cups to me!” is transformed
to ∀s(salt cup(s) ⇒ loc(s) = user)).

The information about the current world state is distributed among the sub-
systems, e.g., the information about the positions and orientations of objects is
present in the scene-analysis component while the position and internal status
of the robot belongs to the self-model. Thus, the planning relevant information
has to be gathered and unified in order to generate a coherent initial state. For
that purpose, we have developed the abstract world model (AWM). The AWM is
implemented as a plug-in mechanism and thus does not depend on the currently
active components. Each component generates a proxy subcomponent which is
responsible for passing the relevant information to the planner in a consistent
way. During runtime, the components register their proxies with the planner,
allowing the planner to query all relevant information. Based on the information
gathered that way the planner generates a globally consistent initial state.

To express information about specific properties like color or shape shared
by all instances of an object class, we have developed an ontology framework.
The ontologies content is grounded during runtime and added to the initial
state. Furthermore, for each object class a place where instances of that type
can usually be found is stored in the ontology. If one or more objects obviously
required to fulfill a task are missing (e.g., if the goal is to put away all salt cups
but none is present), the goal is temporally changed to find these objects and
the ontological information can be utilized to fulfill this temporally goal.

3 Global Memory

While Continual Planning serves as a much faster substitution for contingent
planning, one problem that has not been addressed yet arises: Typically, planning
systems are not designed to consecutively solve planning tasks that possibly
depend on each other. Especially the success or failure of an action’s execution,
which is unknown during the planning episode might cause dependencies that
need to be dealt with: While, in the case of an execution failure, the planning
system will realize via monitoring that no progress was made in the active plans
execution because the system’s state did not change in the anticipated way, it
might not be able to react on this because the state did not change at all. In this
case, the planner will be confronted with the same planning task over and over
again, leaving the whole system in an endless loop of generating a plan, failing
in its execution, identifying this through monitoring and again generating the
same, inexecutable plan.

Our solution to this problem is the Global Memory (GM), which keeps addi-
tional facts for each action that are added to the initial state in the next planning
episode after that actions execution. These facts are divided in two sets, one that



Task Planning for an Autonomous Service Robot 5

maintains facts that are applied in the case of successful execution, and the other
for execution failure. A fact consists of either atomic or universally quantified
state variable assignments, including increase and decrease operators for numeric
state variables. Depending on the feedback of the sequencer after an action’s ex-
ecution, the according facts are applied to the GM, and in each planner run the
content of the GM is added to the initial state.

An example for the syntax we use to describe GM updates is given in Figure
1. The first line merely states the name of the assigned operator, in this case
the grasp action with parameters ?m (a movable object), ?g (a gripper) and ?l
(a location). The grasp action has two preconditions that are important with
regard to the GM: The scene model of the environment needs to be up-to-date,
and the number of times it was unsuccessfully tried to grasp an object ?m with
gripper ?g from location ?l in the past may not exceed a certain number of trials
(in our case, a maximum number of two trials appeared to be reasonable).

GRASP ?m ?g ?l

SUCC: (not (scene_model_updated))

(forall ?M ?G ?L ((grasp_unsuccessful ?M ?G ?L) = 0))

FAIL: (not (scene_model_updated))

((grasp_unsuccessful ?m ?g ?l) += 1)

Fig. 1. Global Memory description of the grasp action.

Both pieces of information cannot be gathered by querying the AWM proxies
of the according subarchitectures, as neither scene-model nor manipulation keep
track of their history. Due to this reason, the GM is used to pass this information
between consecutive planning episodes: Independent of the success of a grasp
action’s execution, the scene model is considered to be out-of-date, as can be
seen in line 2 and 4 – in both cases, (not (scene model updated)) is added to
the initial state. The tracking of unsuccessful grasps on the other hand depends
on the success of an action’s execution: If the grasp action is executed successfully
line 3 is applied and all unsuccessful grasps that ever happened are forgotten, i. e.,
reset to zero, since by successfully grasping any object the environment changes
enough to justify retrying formerly unsuccessful grasps. In case that action’s
execution fails, the variable that keeps track of unsuccessful grasps is increased
by one, as is stated in line 5. This increase allows us to break the endless loop the
system possibly enters in case of execution failure: After a maximum number of
trials to grasp an object, the according state variable (grasp unsuccessful ?m

?g ?l) is bigger than the maximum number of trials given in the grasp action’s
precondition and the operator is no longer applicable, forcing the planner to
find a plan without trying to grasp object ?m with gripper ?g from location ?l
again. Of course, this kind of modeling the domain leads to situations where
the robot is not able to execute its orders anymore because it already tried to
grasp an object from all locations with both its grippers. For this case, we added



6 Thomas Keller, Patrick Eyerich, Bernhard Nebel

operators to the domain which can only be applied if some operator’s execution
failed more often than a given threshold allows, and which notify the user that
(parts of) the received command cannot be executed.

Note that counting the number of unsuccessful action executions is obviously
not the only way to break potential endless loops with the GM. Alternatively
we could for instance force the planner to never use an unsuccessfully executed
action again in the same state, or, in the case of grasping, the concerned docking
position could be altered somewhat, but in the DESIRE scenario the described
method worked sufficiently well.

4 Planning with External Modules

Planning in real-world domains requires to solve problems of different granu-
larity: On the one hand, high-level actions like driving to a certain position or
grasping a certain object are atomic actions with well-defined symbolic precon-
ditions and effects. On the other hand, how to actually perform such an action
might be a difficult subproblem in itself: To reach a certain position it is usu-
ally required to invoke a path planning subroutine, and before an object can be
grasped a collision-free trajectory needs to be computed.

In previous work we have presented a new approach to solve such types of
problems: The use of semantic attachments [5]. A semantic attachment is an
external procedure called during the planning process to evaluate specific condi-
tions or to directly alter the planning state. By using semantic attachments for
subproblems like path planning we combine the advantages of both approaches
while circumventing their disadvantages: on the one hand, the high-level plan-
ner does not need to care about subproblems since they are dealt with in the
semantic attachments, on the other hand, only information actually needed to
solve the problem is generated at the time the semantic attachment in invoked.

To deal with the mentioned issue of solving problems of different granularity,
we implemented several semantic attachments, in particular for manipulating
objects. When planning for grasping an object, it quickly falls into place that a
purely symbolic representation is insufficient for the task. Having said that, the
complete integration of a manipulation planner is far too inefficient, as one call
to such a planner usually requires runtimes in the magnitude of seconds and in
non-trivial problems hundreds to thousands of such calls are required. Therefore,
we used a solution in between by utilizing an approximation procedure as a
semantic attachment. This gives us more precise results than purely symbolic
planning while staying efficient even in problems of considerable complexity. In
dependence of the object’s location and the shape of the surface it is located on,
the semantic attachment checks whether a given docking position of the robot
is appropriate for grasping. For that purpose, it is checked whether the object
is within reach of the manipulator in question and whether it is not covered by
other objects nearby it. Furthermore, it is ensured that the angle between the
robot and the object’s position is within some predefined range.



Task Planning for an Autonomous Service Robot 7

To find an appropriate position on a given surface to place an object on, we
used a semantic attachment that works as follows: First, the surface is partitioned
into grid cells of one square centimeter. Then, the occupied cells are determined
on the basis of all other objects on the same surface. Finally, a free area big
enough to hold the object and maximizing the remaining free space is chosen
as the position to place the object on. Note that all these computations are
performed only when they are required.

5 System Architecture

Before we conclude, we give an overview of the whole implemented planning
subarchitecture, which is depicted in Figure 2. The heart of it is the TFD/M
planner as described in Section 4. Its input is generated by the subcomponents
depicted in the box at the bottom left – AWM and GM contribute the systems
current state, which corresponds to the planner’s initial state, and GoalGen
transforms a user’s command into a PDDL description of the goal.

As we described in the previous section, symbolic planning is not sufficient
in a dynamic real-world environment. This is taken into account by the addi-
tional use of semantic attachments (depicted as Modules), which do complex
calculations during planning such as checking spatial conditions for grasping or
deciding where to place an object.

The last depicted component that is part of the planning subarchitecture is
monitoring, which decides if the planner is triggered at all based on the success
of the currently active plan’s execution.

6 Conclusion

In this paper we have presented the planning system used in the DESIRE project.
We have shown how the current state of the robot is generated from information
of distributed subarchitectures and how additional knowledge is passed between
consecutive planning episodes to avoid endless loops in continual planning that
might arise if some action seems executable on the symbolic level but is indeed
not in the real world.

Another difficulty arising when planning in dynamic and uncertain environ-
ments is the necessity for calculations that exceed the expressive power of PDDL.
With the concept of semantic attachments we have presented a way to overcome
this hindrance.

Acknowledgments This research was supported by the German Federal Min-
istry of Education and Research (BMBF) under grant no. 01IME01-ALU.

References

1. Plöger, P., Pervölz, K., Mies, C., Eyerich, P., Brenner, M., Nebel, B.: The DESIRE
Service Robotics Initiative. Künstliche Intelligenz 08 (4), pp. 29–32 (2008)



8 Thomas Keller, Patrick Eyerich, Bernhard Nebel

Sequencer

Monitoring

Drive
Control

Scene
Analysis

Mani-
pulation

User
Interface

ASUAWM
Proxy

TFD/M

Global
Memory

AWM Goal Gen Domain

Modules

Fig. 2. System Architecture of the Planning subcomponent in DESIRE.

2. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practise.
Morgan Kaufmann Publishers, San Fransisco, CA (2004)

3. Helmert, M.: The Fast Downward Planning System. JAIR (26), pp. 191-246 (2006)
4. Eyerich, P., Mattmüller, R., Röger, G.: Using the Context-enhanced Additive

Heuristic for Temporal and Numeric Planning. In: 19th Int. Conf. on Automatic
Planning and Scheduling, pp. 130–137. AAAI Press, California (2009)

5. Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., Nebel, B.: Semantic
Attachements for Domain-Independent Planning Systems. In: 19th Int. Conf. on
Automatic Planning and Scheduling, pp. 114–121. AAAI Press, California (2009)

6. Brenner, M., Nebel, B.: Continual Planning and Acting in Dynamic Multiagent
Environments. Journal of Autonomous Agents and Multiagent Systems 19 (3), pp.
297-331 (2009)

7. Littman, M. L., Goldsmith, J., Mundhenk,M.: The Computational Complexity of
Probabilistic Planning. JAIR (9), pp. 1-36 (1998)

8. Rintanen, J.: Constructing conditional plans by a theorem-prover. JAIR (10), pp.
323352 (1999)

9. Hoffmann, J, Nebel, B.: The FF Planning System: Fast Plan Generation Through
Heuristic Search. JAIR (14), pp. 253-302 (2001)

10. Geffner, H.: Functional STRIPS: a more flexible language for planning and problem
solving. In Logic-Based Artificial Intelligence. Dordrecht, Holland: Kluwer (2000)

11. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal
planning domains. JAIR (20), pp. 61-124 (2003)


